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Brownian motion in a growing population of ballistic particles
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We investigate the motility of a growing population of cells in a idealized setting: We consider a system of hard
disks in which new particles are added according to prescribed growth kinetics, thereby dynamically changing
the number density. As a result, the expected Brownian motion of the hard disks is modified. We compute
the density-dependent friction of the hard disks and insert it in an effective Langevin equation to describe the
system, assuming that the intercollision time is smaller than the timescale of the growth. We find that the effective
Langevin description captures the changes in motility, in agreement with the simulation results. Our framework
can be extended to other systems in which the transport coefficient varies with time.
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I. INTRODUCTION

The statistical description of the movement of living or-
ganisms enables their quantitative study. Notable examples
include the study of animal migration [1] and the motion of
bacteria [2]. Over the past decades there has been increasing
interest in self-propelled particles whose ability to provide
their own propulsion results in systems where time reversibil-
ity and energy conservation cannot always be satisfied [3,4].
Furthermore, including interactions between organisms or
with the environment can lead to the emergence of biolog-
ical phase transitions and self-organization [5-8]. Besides
sourcing energy for their own motion, another important char-
acteristic of many such organisms is their ability to reproduce.
This can under some circumstances impact the properties of
motion of an active population, as the amount of interactions
taking place will depend on the population density at a given
time. One conspicuous example of such a system is a culture
of motile cells on a spatially confined substrate. This type of
in vitro setup is not uncommon, employed for example in the
study of human cell migration [9,10] related to tasks such
as tissue growth [11], wound healing [12], and vasculariza-
tion [13], as well as in studies concerning the migration of
tumor cells in metastatic cancer [14]. In many such cases the
motility of the individual cells is inextricably linked to the
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surrounding population growth, and measurements of related
statistical quantities should be interpreted in the context of this
dependence.

Here, we introduce a simple parameter-free generalizable
model for the averaged effect of growth in a system of repul-
sively interacting particles. Based on the notion of particles
obstructing one another’s paths, we adapt the Langevin equa-
tion for Brownian motion to include a dependence on the
particle volume density. We show how this formalism effec-
tively models the statistics of a two-dimensional (2D) gas of
hard disks subject to particle number growth through a com-
parison with stochastically seeded simulations of ballistically
moving hard disks undergoing elastic interactions. Because
this approach remains agnostic as to both the characteristics
of the particles’ motion between interactions as well as the
mechanism by which the particle density varies, it is poten-
tially applicable in any situation where there is an interest in
studying the properties of statistical motility in a population
subject to density dynamics.

II. MODELING AND METHODS

A. Dynamical model

We consider a two-dimensional system where the Brow-
nian particles are hard disks with diameter d and mass m
each occupying a finite surface wd?/4 (Fig. 1). The disks
interact through elastic collisions only and have ballistic tra-
jectories in between. As the disks all have identical mass, this
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FIG. 1. Schematic illustration of the model. The particles (repre-
sented as circles) are hard disks of finite area moving at fixed speed
in the periodic domain (the dashed grayed-out particle is reinserted
at its periodic location). Their ballistic trajectories are interrupted by
momentum-conserving collisions (blue semisolid circles). New par-
ticles (red solid circle) are inserted at random nonoccupied positions,
with velocity given by the corresponding thermal distribution, and at
times prescribed by the growth kinetics.

quantity plays no role and is set to m = 1. In this work, we
are interested in properties of the hard-disk system dependent
on the confluency (the proportion of surface S occupied by the
particles)

c(t) = n(t)wd*/4, )]

where n(t) is the number of particles per unit area at time 7.
Growth of the population is envisioned as the arrival of ran-
domly spaced particles according to a predetermined growth
curve which—in keeping with the model of a cell population
in culture—we take to be the logistic curve,

knge?
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with ng and k respectively the initial and the maximal particle
densities and p the rate of growth. We limit ourselves to a
confluency c(r) « 1, effectively considering a dilute regime
for the collisional dynamics. This limitation is also necessary
to make sure that new particles can be inserted easily in the
system.

B. Diffusion coefficient for dilute hard disks

To estimate the motility at a given particle density n we
compute the velocity autocorrelation function (VACF) of a
single test particle,

(v(t) - v(t + 1)) = (cosO(T)s()s(t + 7)), 3)

where v is the 2D velocity of a particle, the angle brackets
indicate ensemble averaging, s is the norm of the particle’s
velocity vector (the particle speed), 8(7) is the angle between
its velocities at t and ¢ + 7, and - is the scalar product. If the
particle moves undisturbed in the short time 7, then 6(t) =
0, s(t + ) = s(t), and thus v(¢) - v(t + t) = s(t)*>. If on the
other hand the particle undergoes a collision in this time, the

autocorrelation will depend on the form of the interaction. As-
suming isotropic interactions, there will be a class of systems
for which 0(t) can be modeled as a random uniformly dis-
tributed angle independent of the particle speed, such that the
many-particle average (cosf(t)) and thus (v(£)V(t + 7))con
vanishes. Then for a large ensemble only those particles which
have not yet collided will contribute to the VACF. For a sys-
tem in thermal equilibrium the occurrence of collisions may
reasonably be modeled as a memoryless stochastic process,
so that the intercollision time is given by the exponential
distribution, P {no collision in 7} = ¢~** with 1/A the average
intercollision time. The VACEF is thus

(V(t) - v(t + 1)) = (s(t)*)e " “)

By integrating Eq. (4), we obtain through the Green-Kubo
relation (see for instance the Ornstein-Uhlenbeck example in
Ref. [15]) the spatial diffusion coefficient

(s(t)*)
21

D= l/OO(V(t) vt +1))dr = (&)
0

2

(where the factor 1/2 comes from the fact that we work in
two spatial dimensions), so that in the absence of growth we
expect a linear mean-squared displacement (MSD) in equilib-
rium: (x(z)%) = 4Dr.

C. Effective Langevin dynamics

We establish here the link between the diffusion coefficient
computed in the previous section and the Langevin equa-
tion (LE) in two dimensions,

dv(t)
dt
where & (t) is white noise [15],
(E@)E)) =8t —1')8; ), @)

y is the friction coefficient, and 5 is the noise intensity. Inte-
gration of Eq. (6) provides the autocorrelation function

= —yv(t)+\/ﬁ$;‘(t), (6)

() =0 and

(V@) vt + 1)) = 2}/—"(””. (8)

For t = 0 we find the second moment of the speed

(s(t)*) =2n/y. ©)

Inserting this back into Eq. (8) and comparing with Eq. (4),
we see that the autocorrelation functions for the Brownian
particle and the ensemble of interacting particles are in fact
equal upon identification of L = y. We use this correspon-
dence to interpret the Langevin dynamics of Eq. (6) as an
averaged description of the particle paths in the interacting
ensemble, with the expected time between collisions encoded
in the Brownian friction coefficient as 1/y. For the simple
dynamical model of hard disks, we can now estimate the fric-
tion and noise intensity directly from the physical parameters
so that—in equilibrium—we can use Eq. (6) without fitting
any parameter. In the dilute regime, we can express the mean
intercollision time as a function of the mean free path /, which
in turn can be coupled to the particle density n (with o = 2d
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the collisional cross section) [16],

| = <;—> =1/v20n. (10)

At equilibrium, the speed distribution can be shown to ap-
proach the Rayleigh distribution [4] with mean

(s) =+/nm /2y, (11)

and the fluctuation-dissipation relation dictates the relation
between y and 7,

ksT =n/y. (12)

Thus combining Egs. (10)—(12), we may write the coefficients
in the Langevin equation in terms of the particle density and
system temperature,

y =+ mkgTon,

Using the derivations above and Egs. (5) and (9), we obtain
the spatial diffusion coefficient

D =n/y* = VkgT /7w (on)~". (14)

Up to this point we have silently assumed that the particle
density of the system is constant, both in the derivation of
the velocity autocorrelation as well as in the assumption of
an equilibrium speed distribution. It is however worth inves-
tigating to what extent Eq. (13) holds if the particle density
varies slowly. For example, we might envision a population
of cells undergoing divisions, where the growth rate is slow
enough that many collisions occur in between mitotic events.
If then the equilibrium assumption remains adequate, the LE
in Eq. (6) can be used with time-dependent coefficients y (¢)
and n(¢) to obtain statistical properties of the particles subject
to the growth function n(z).

While solving the LE with time-dependent coefficients is
difficult, we can also investigate the validity of an overdamped
approximation, which corresponds to taking d‘jz‘t)t = 0. This
permits a straightforward solution of the LE, as the cor-
responding Fokker-Planck equation is simply the diffusion
equation with time-dependent diffusion coefficient Eq. (14).
This can be solved in the usual manner and results in the MSD,

n=kgTy. (13)

(x(1)%) =4f D(t')dt'. (15)
0

D. Simulations

To test the validity of this approach we also study the
hard-disk system with event-driven simulations. We place the
disks in a periodic domain and assign random initial veloci-
ties such that the average kinetic energy per particle is kg7 .
Due to the randomness of the initial velocity distribution the
system will generally present a nonzero center-of-mass drift,
which we remove before initiating dynamics. The simulation
then proceeds in an event-driven manner. At the start of each
increment, all particles are moved according to their current
velocity. Next, potential collisions (detected as overlapping
surfaces) are identified and sorted in order of occurrence.
Collisions are then performed successively—with newly oc-
curring overlaps being similarly detected, timed, and added
to the queue—until all overlaps have been treated. Population

0.6 \\ —.— (DLE - Dsim)/DLE
d=0.5 -B

(ke = lim) e

100 10t
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FIG. 2. The relative errors on the diffusion coefficient D pre-
dicted by Eq. (14) and the mean intercollision distance / predicted
by Eq. (10) with respect to simulations at fixed density, as a function
of the ratio of the intercollision distance to the collisional cross
section. The simulations consisted of 2000 individual particles for
each confluency investigated.

growth is implemented by the introduction of new particles
at random positions in the simulation area and fixed times
according to the growth curve in Eq. (2). Newly birthed parti-
cles are added with initial speed +/2kgT to ensure the system
evolves isothermally [17]. To compare simulation results of
the density-varying system with the Langevin model (13)
we compute stochastic realizations of the equation with the
SOSRI algorithm [18] using the JULIA package DifferentialE-
quations.jl [19].

III. MODEL RESULTS

For systems where the particle density remains fixed, we
find the accuracy of the Langevin model to depend on the con-
fluency. The predicted diffusion coefficient agrees well with
simulations of the hard-disk particle dynamics for ¢ < 0.1,
whereas for higher particle densities the error grows as the
available volume is increasingly occupied (Fig. 2). The origin
of this error can be found in our assumption of independent
collisions with a well-defined mean free path (10), which
gives a poor representation of the hard-disk system when its
value approaches the order of the collisional cross section. In
the low-density limit the model’s validity is principally re-
stricted by the timescale of interest, since if the characteristic
collision time 1/y is larger than the timescale, the individual
particle motion is effectively ballistic and Brownian motion
does not apply. However, for a large number of particles the
ensemble statistics remained in agreement even for the lowest
density investigated (¢ = 0.01) at a timescale of a hundredth
of the characteristic time.

When population growth is introduced the particle den-
sity increases and the Langevin parameters y and 7 are no
longer constant in time. We investigate the validity of the
density-dependent model with respect to the hard-disk system
under isothermal growth by simulating the addition of parti-
cles at randomly distributed positions at a rate prescribed by
the growth function. As an illustrative example we consider
the case of logistic growth (2) for different rate parameters
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FIG. 3. Dynamics of particles in populations with density subject to the logistic growth function (2). Results for different growth rates p
are shown in populations with initial confluency ¢ = 0.01 (1000 particles) and maximal capacity ¢ = 0.1 (10 000 particles). Time and distance
are presented in units of the average intercollision time for the initial density 1/y, and the average intercollision distance s /y,. (a) Confluency
over time. (b) Derivative of the MSD obtained from particle simulations (solid lines), simulations of the LE (dashed lines), and predicted by
the overdamped approximation (dashed-dotted lines), for the slowest growth rates used in (a), increasing from top to bottom. (c) MSD under
all simulated growth rates for particle simulations [same legend as (b); for clarity, the overdamped prediction is not shown for the highest
growth rates]. (d) Log-log plot of the MSD under growth rate p = 5.0y,, compared to a simulation at fixed confluency ¢ = 0.1 (solid red line).
Additional trendlines (dotted) f,(¢) o< t“ are shown to illustrate motion type: @ = 1 adheres to classical diffusion, whereas o = 2 implies

ballistic motion.

p, shown in Fig. 3(a). We observe that as the density rises
the intercollision time decreases, resulting in a decreasing
variation of the particle MSD during the growth period and
thus apparent subdiffusive motion [Figs. 3(b)-3(d)]. Once the
maximal population density is reached, the slope of the MSD
becomes constant. Such a linear limit of the functional form of
the MSD for large times is an indicator of classical diffusion
[Figs. 3(c) and 3(d)].

As intended, simulations of the LE show good agreement
with the particle simulations in the quasiequilibrium parame-
ter regime [Fig. 3(c)], where the rate of growth is smaller than
the time between collisions. Furthermore, the overdamped
approximation of Eq. (15) agrees well with the subdiffusive
variation of the MSD, however, as to be expected it does
not capture the initial short-time ballistic motion [Fig. 3(b)],
resulting in an eventual overestimation of the displacement
[Fig. 3(c)]. Interestingly, the LE model maintains similar ac-
curacy even if the growth rate is significantly higher, as a
growth rate of up to 25 times the intercollision time was tested.

IV. DISCUSSION

We have shown how a 2D system of ballistic hard-disk
particles subject to population level density dynamics can

be modeled by an effective Brownian Langevin equation,
in which the friction y and force intensity n are made to
depend explicitly on the particle density of the system. This
parameter-free dependence is obtained by employing a clas-
sic model for the mean intercollision distance that—with the
assumption of memoryless collisions—arises in the velocity
autocorrelation function of the LE. By comparison with sim-
ulations of the system, we showed the model to be accurate
up to a confluency of around 0.1. For higher densities we
found the error on the mean intercollision distance to grow
rapidly with confluency, implying that the LE could poten-
tially remain accurate under a different model for the free path
lengths.

To test the validity of the LE in the case of a dynamically
varying density—where the assumption of thermal equilib-
rium is in principle no longer valid—we investigated a model
system where new particles are added according to a logis-
tic growth function. The mean-squared displacement under
these conditions becomes nonlinear, reflecting the changing
dynamic parameters. Comparing statistics from numerical
simulations of the density-dependent LE with the particle
simulations showed agreement up to the highest growth rates
investigated. The good correspondence at such growth rates
comes as a surprise, considering the equilibrium assumptions
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used to derive the LE. We can think of a number reasons why
this is the case, such as the fact that we insert particles from a
thermal distribution at random locations, thus not promoting
spatial inhomogeneity, and the dilute nature of the gas. How-
ever, we have no formal explanation to elucidate this matter.
While the specific system studied here may appear restric-
tive, it is illustrative of the potential for modeling the effect of
stochastically occurring interactions within a density-varying
population as an effective random walk. A generalization to
three spatial dimensions would be straightforward, the main
difference in the derivation being that the Maxwell-Boltzmann
distribution must be taken for the particle speeds. Further-
more, the inclusion of external forces can be achieved by
introducing their relevant potentials in the LE. The consid-
eration of more complicated interaction effects—such as for
example aligning forces [8] or particle-generated flow fields in
a background fluid [20]—Ilikely presents a greater challenge,
as the method described here exploits a simple statistical
uniformity of interactions, i.e., the particle’s direction of mo-

tion following a collision modeled as a uniform distribution.
Nevertheless, such interactions can in principle be included
through multiparticle potentials in the LE, for which various
analysis procedures exist in the literature (see, for example,
Refs. [6,20], or [7]). Finally, the application of the LE de-
rived here need not be constrained to the case of ballistically
moving particles, as it can simply be added to the LE of
more complex motions, serving as a population effect on
the movement of individual particles. With growing interest
in biological systems where proliferation is present, this ap-
proach provides a useful alternative to modeling interactions
directly.
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