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Stiffness of random walks with reflecting boundary conditions
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We study the distribution of occupation times for a one-dimensional random walk restricted to a finite interval
by reflecting boundary conditions. At short times the classical bimodal distribution due to Lévy is reproduced
with walkers staying mostly either to the left or right of the initial point. With increasing time, however, the
boundaries suppress large excursions from the starting point, and the distribution becomes unimodal, converging
to a δ distribution in the long-time limit. An approximate spectral analysis of the underlying Fokker-Planck
equation yields results in excellent agreement with numerical simulations.
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I. INTRODUCTION

Random walks are central to the theory of stochastic pro-
cesses, both because they can be analyzed analytically in great
detail and because they are ubiquitous in nature. Despite their
simplicity they have some intriguing properties and exhibit
several counterintuitive features. A prominent example is the
surprising “stiffness” of an unbiased one-dimensional random
walk: In a fixed time interval the walker will most of the time
stay either to the left or right of its starting point. Trajectories
that stay half of the time on either side of the initial point have
the smallest probability, in apparent contrast to the fact that
jumps to the left and to the right are equally likely.

More precisely, the probability density PT (S) for the frac-
tion S of overall time T the walker spent to the right (or left)
of the starting point is given by

PT (S) = 1

π
√

S(1 − S)
(1)

(cf. Fig. 1). This remarkable result was established long ago
by Lévy [1] and gave rise to a plethora of discussions and
generalizations in the mathematics and physics literature (see,
e.g., Refs. [2–6] and references therein). Examples include the
generalization to cases with deterministic [7,8] and random
drift fields [9] as well as to anomalous diffusion [10], the
investigation of different large deviation properties of PT (S)
[11–13], and the possibility of dynamical phase transitions
[14,15].

From an intuitive point of view one may suspect that the
large values of PT (S) near S = 0, 1 arise because the walker
may travel arbitrarily long distances away from the starting
point. This is corroborated by other well-known properties of
one-dimensional random walks such as the fact that although a
return to the origin is certain, the mean time for it diverges, by
the distribution of the number of returns to the starting point
[2], by the statistics of successive returns [5,10,16], as well
as by the asymmetry of the random walk [17]. The shape of
the distribution PT (S) should therefore change qualitatively if

reflecting boundary conditions restrict the random walk to a
finite interval.

To test this conjecture we analyze in the present paper
the distribution PT (S) for an unbiased one-dimensional ran-
dom walk with reflecting boundary conditions symmetric to
the starting point. Although various properties of random
walks on finite intervals have been investigated in the past
[10,13,18,19], the details of the shape transformation in PT (S)
have not been elucidated so far. The problem may be mapped
onto a Sturm-Liouville eigenvalue problem that cannot com-
pletely be solved analytically. Nevertheless, we provide a
highly accurate approximate solution that is in perfect agree-
ment with results from numerical simulations. We find that for
small T the distribution is still of the form shown in Fig. 1 but
changes to a unimodal distribution with maximum at S = 1/2
with increasing duration T of the walk. For T → ∞ it ap-
proaches a δ distribution around S = 1/2 in accordance with
equilibrium statistical mechanics [10].

The paper is organized as follows. In Sec. II we introduce
the basic notation and establish the central Fokker-Planck
equation for the joint probability distribution of the walker
position x and the time fraction S. In Sec. III we show how
to map the solution of this equation to a Sturm-Liouville
eigenvalue problem, that we analyze in Sec. IV. Section V
discusses the numerical determination of the eigenvalues. In
Sec. VI we analytically extract the asymptotics of PT (S) for
large T . In Sec. VII we present results for PT (S) for various
values of T and compare them with numerical simulations.
Finally, Sec. VIII contains some conclusions.

II. BASIC EQUATIONS

We consider the time interval 0 � t � T of a one-
dimensional random walk x(t ) with reflecting boundary
conditions at x = ±a that started at x(0) = 0. The main quan-
tity of interest is the fraction of time

ST := 1

T

∫ T

0
dt θ (x(t )) (2)
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FIG. 1. Distribution of the fraction of time S an unrestricted
symmetric one-dimensional random walker spends to the right of the
starting point.

the walker spent at positive values of x. Here, θ denotes
the Heaviside step function θ (x) = 1 for x > 1 and θ (x) = 0
otherwise.

With x also ST is a random quantity. It is characterized by
a probability density function PT (S) such that PT (S)dS gives
the probability for S � ST � S + dS.

The stochastic dynamics of the system are described by
two coupled Langevin equations,

ẋ = ξ (t ) (3)

ṠT = 1

T
θ (x(t )), (4)

where ξ (t ) denotes Gaussian white noise with expectation
values

〈ξ (t )〉 ≡ 0 and 〈ξ (t )ξ (t ′)〉 = 2Dδ(t − t ′). (5)

The diffusion constant D characterizes the noise strength.
We measure x in units of a and rescale time such that D =

1/2. The only remaining parameter in the problem is then the
(dimensionless) time T . For T 	 1 the walker has hardly a
chance to feel the boundaries and PT (S) should be similar to
the form shown in Fig. 1. With T increasing towards values
of order one, the boundary conditions become more and more
relevant and the shape of PT (S) has to change accordingly.
Finally, for large T the walker has explored the whole interval
−1 � x � 1 evenly and we expect

PT (S) → δ
(
S − 1

2

)
. (6)

The set of Langevin equations (3) and (4) is equivalent to
the following Fokker-Planck equation for the joint probability
density function P(x, S, t ) [20],

∂t P(x, S, t ) = − 1

T
θ (x)∂SP(x, S, t ) + 1

2
∂2

x P(x, S, t ). (7)

This equation is complemented by zero-flux boundary condi-
tions at x = ±1,

∂xP(x, S, t )|x=±1 = 0 ∀t > 0, ∀S ∈ [0, 1], (8)

and the initial condition

P(x, S, 0) = δ(x)δ(S). (9)

From the symmetry of the problem it is clear that

P(−x, 1 − S, t ) = P(x, S, t ). (10)

Our central quantity of interest PT (S) is obtained from the
solution P(x, S, t ) of the Fokker-Planck equation (7) by
marginalization in x:

PT (S) =
∫ 1

−1
dx P(x, S, T ). (11)

III. SOLUTION OF THE FOKKER-PLANCK EQUATION

Since P(x, S, t ) is defined on a finite interval of S values it
may be written as a Fourier series of the form

P(x, S, t ) =
∑

p

ψp(x, t ) e2π ipS. (12)

The sum runs over all integer values of p and the function
ψp(x, t ) is given by

ψp(x, t ) =
∫ 1

0
dS P(x, S, t )e−2π ipS. (13)

Since P(x, S, t ) is real we have

ψ−p(x, t ) = ψ∗
p (x, t ), (14)

which together with (10) results in

ψp(x, t ) = ψ∗
p (−x, t ). (15)

Multiplying (7) by e−2π ipS and integrating over S we get

∂tψp(x, t ) = −2π ip

T
θ (x)ψp(x, t ) + 1

2
∂2

x ψp(x, t ). (16)

The boundary conditions translate to

∂xψp(x, t )|x=±1 = 0 ∀t > 0, ∀p ∈ Z, (17)

and the initial condition requires

ψp(x, 0) = δ(x) ∀p ∈ Z. (18)

Using the abbreviation

p̄ := 2π p

T
, (19)

we solve (16) with the help of the separation ansatz

ψp(x, t ) = e− 1
2 (E+i p̄)t ϕ(x). (20)

Plugging (20) into (16) yields

ϕ′′(x) + [E − i p̄ sgn(x)]ϕ(x) = 0, (21)

subject to the boundary conditions

ϕ′(x = ±1) = 0. (22)

Here, sgn(x) is the sign function

sgn(x) =
{

1, x > 0,

−1, x � 0,

and the prime denotes differentiation with respect to x. Alter-
natively, one may derive (21) from the path measure P[x(·)]
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using the Feynman-Kac formula (see Example 2 in Ref. [21]).
From (15) we have

ϕ(x) = ϕ∗(−x). (23)

We expect for each p a denumerable set of discrete eigen-
values E (p)

n and corresponding eigenfunctions ϕ
(p)
n (x) solving

(21). Standard arguments show that the spectrum is nonde-
generate and that eigenfunctions corresponding to different
eigenvalues are orthogonal:∫ 1

−1
dx ϕ(p)

n (x)ϕ(p)
m (x) =: a(p)

n δnm. (24)

The general solution to Eq. (16) is hence of the form

ψp(x, t ) =
∞∑

n=1

c(p)
n ϕ(p)

n (x)e− 1
2 (E (p)

n +i p̄)t . (25)

It has to be kept in mind that due to the imaginary term
i p̄ sgn(x) in Eq. (21), E (p)

n and ϕ
(p)
n (x) and consequently also

the normalization and expansion coefficients a(p)
n and c(p)

n ,
respectively, will in general be complex.

The c(p)
n may be determined from the initial condition (18):

δ(x) = ψp(x, 0) =
∞∑

n=1

c(p)
n ϕ(p)

n (x). (26)

Multiplying with ϕ
(p)
m (x), integrating over x, and using the

orthogonality (24) yields

d (p)
m := ϕ(p)

m (0) = c(p)
m a(p)

m . (27)

Moreover, in view of (11) we do not need the complete
function ψp(x, t ) to finally determine PT (S). It is sufficient to
know

χp(T ) :=
∫ 1

−1
dx ψp(x, T ), (28)

from which we get using (12)

PT (S) =
∑

p

χp(T )e2π ipS. (29)

Defining

b(p)
m :=

∫ 1

−1
dx ϕ(p)

m (x), (30)

combining (25) with (27) and (30), and observing (19), we
end up with

χp(T ) = (−1)p
∞∑

n=1

b(p)
n d (p)

n

a(p)
n

e− 1
2 E (p)

n T . (31)

Whenever no confusion may arise we will suppress the super-
script p at E , ϕ(x), a, b, and d in the following to lighten the
notation.

IV. THE EIGENVALUE PROBLEM

To complete the determination of PT (S) via (31) and (29)
we need to solve the eigenvalue problem (21),

ϕ′′
n (x) + [En − i p̄ sgn(x)]ϕn(x) = 0, (32)

FIG. 2. Blue lines show the probability density function p(x, t )
for the position x of the walker for t = 0.05, 0.1, 0.25, 0.5, and t = 1
(middle top to bottom). The red line is the stationary distribution
pst (x) ≡ 1/2 reached for t → ∞.

for all integer values of p. The real part of En must always
be non-negative. To see this we multiply (32) with ϕ∗

n (x),
integrate over x, and take the real part to find

Re(En)
∫ 1

−1
dx|ϕn(x)|2 =

∫ 1

−1
dx|ϕ′

n(x)|2. (33)

The integral on the left-hand side (lhs) of this equation must
be positive for ϕn(x) to be an eigenfunction, and the one
on the right-hand side (rhs) is non-negative. This proves the
assertion. Similar arguments show that E = 0 is possible only
for p̄ = 0.

In fact, for p = 0 the whole eigenvalue problem is equiv-
alent to a standard exercise in quantum mechanics [22] and
may be solved analytically. The result reads

ψ0(x, t ) = 1

2
+

∞∑
n=1

cos(nπx)e− 1
2 n2π2t . (34)

Note that from (13) it follows that

ψ0(x, t ) =
∫ 1

0
dS P(x, S, t ) =: p(x, t ). (35)

Hence, (34) describes the time evolution of the probability
density function p(x, t ) for the position of the walker. Figure 2
shows a few snapshots. Moreover, Eq. (28) implies

χ0(t ) ≡ 1, (36)

which via (29) ensures the normalization of PT (S) for all T .
For p 
= 0 (32) is a linear ordinary differential equa-

tion with piecewise constant coefficients. It is solved for x < 0
and x > 0 separately and the solutions are then matched at
x = 0 such that ϕn and d

dx ln ϕn are continuous there. With the
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FIG. 3. (a) Left-hand side of Eq. (39) for real E and p̄ = 1. (b) Blowup for small values of E and p̄ = 1.2, 1.3855, and 1.6 (left top to
bottom). (c) Blowup around the second pair of roots for p̄ = 8.2, 8.3862, and 8.6 (left top to bottom).

abbreviations

kn :=
√

En + i p̄ and qn :=
√

En − i p̄, (37)

the result is

ϕn(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
cos qn

cos kn
cos kn(x + 1), −1 � x � 0,√

cos kn

cos qn
cos qn(x − 1), 0 � x � 1,

(38)

where En has to fulfill√
En + i p̄ tan

√
En + i p̄ +

√
En − i p̄ tan

√
En − i p̄ = 0.

(39)
The prefactors of the cosine functions in (38) have been cho-
sen such that (23) holds. From (38) the coefficients an, bn, and
dn can be determined from their respective definitions (24),
(30), and (27). We find

bn dn = cos qn sin kn

kn
+ cos kn sin qn

qn
, (40)

an = 1

2

(
cos qn

cos kn
+ cos kn

cos qn
+ bn dn

)
. (41)

V. NUMERICAL DETERMINATION
OF THE EIGENVALUES

Equation (39) can only be solved numerically. Neverthe-
less a few prior consideration are in order. Taking the complex
conjugate of (32) and using the fact that sgn(x) is an odd
function of x, we see that with En, ϕn(x) also E∗

n , ϕ∗
n (−x)

is an admissible solution. Complex eigenvalues hence come
in pairs of conjugates entailing the same for the associated
constants an, bn, and cn.

Moreover, for real En the imaginary part of Eq. (39) is
identically zero [23]. Figure 3 shows plots of the lhs of (39)
for real E . From Fig. 3(a) we infer that the gap between
successive real roots En is much larger than 1. Keeping in
mind that we are interested in values of T of order 1 only
the contributions from the first two roots will play a noticeable
role in the superposition (31). This is corroborated by compar-
ison with our numerical simulations (see Sec. VII below). The
higher eigenvalues are only important for the very short-time

dynamics in which PT (S) has to transform from the initial
condition δ(S) to the shape shown in Fig. 1.

The other two plots of Fig. 3 show that with increasing
p̄ the real roots disappear successively to give way to pairs
of complex conjugate solutions for En. At the critical values
p̄ci of p̄ where these transitions occur, the lhs of (39) and
its derivative with respect to En both vanish. For the first
two bifurcation values we find p̄c1 = 1.385 577 425 and p̄c2 =
8.386 237 648, respectively. The first bifurcation of this type
is shown in detail in Fig. 4.

These considerations make clear how to get rather accurate
approximate results for PT (S). First, depending on the desired
resolution for S, the maximal number pmax of Fourier modes
is chosen. Then for a given value of T one checks for each
p whether p̄ is smaller or larger than p̄c1. For p̄ < p̄c1 one
determines the two lowest real solutions E1 and E2 numeri-
cally from (39) and calculates the corresponding values of a,
b, and d . If p̄ > p̄c1 it is sufficient to determine one eigenvalue

FIG. 4. The two solutions of the eigenvalue equation (39) with
the smallest real part as a function of p̄. The real part is shown
in red, and the imaginary one in blue. At p̄ = p̄c1 � 1.38 the two
real solutions merge and give birth to a pair of complex conjugated
solutions.
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FIG. 5. Blue lines are plots of PT (S) obtained as described in the main text. Symbols are results of numerical simulations with time step

t = 5 × 10−4 averaged over 2.5 × 106 realizations. Statistical errors are smaller than the symbol size. (a) T = 1, 2, 2.5 (middle bottom to
top). (b) T = 3, 3.5, 4 (middle bottom to top); note the reduced scale for PT . (c) T = 5, 10, 50 (middle bottom to top).

E1 with its coefficients a, b, and d; E2 and its corresponding
coefficients then follow by complex conjugation. Because of
(14) it is sufficient to consider positive values of p only. Plots
obtained in this way are shown in Sec. VII below together with
results from numerical simulations.

VI. ASYMPTOTICS FOR LARGE T

The asymptotics of χp(T ) as given by (31) for large T
are not completely obvious since T enters the eigenvalue
equation (39) via p̄ [cf. Eq. (19)] and therefore the En depend
on T . For T → ∞ we have p̄ → 0 giving rise to E1 → 0. An
expansion of (39) in p̄ and E1 yields the asymptotic behavior

E1 ∼ p̄2

3
. (42)

For large T we therefore have E1 = O(1/T 2) and conse-
quently E1 T → 0. At the same time we find from (40) and
(41) for q̄ → 0 by using (37) and (42),

b1 d1

a1
→ 1. (43)

Hence (31) results in χp(T ) → (−1)p for T → ∞, which
implies

PT (S) → δ
(
S − 1

2

)
for T → ∞, (44)

as expected.
As already mentioned after Eq. (5), the result of Lévy’s

shown in Fig. 1 is recovered in the opposite limit of small T .
This is, e.g., clearly seen in Fig. 5(a). To discuss this crossover
analytically, however, our choice of dimensionless units is less
appropriate because p̄ diverges for T → 0.

VII. RESULTS

Results for PT (S) obtained along the lines of Secs. III–V
for different values of T are shown in Fig. 5. We have chosen
pmax = 128 as the number of Fourier modes which is suffi-
cient to resolve the important details of PT (S). To suppress
spurious oscillations, in particular in the almost constant parts

of PT (S) for small T , we have additionally smoothed the
results with a Gaussian filter of width σ = 0.01.

Figure 5(a) shows that for T � 2 there are only small mod-
ifications in PT (S) as compared to the case without boundary
conditions shown in Fig. 1. Only few realizations are able to
reach the boundaries at x = ±1 and to get back and cross
the starting point to contribute to the slight increase of PT (S)
near S = 1/2. Note that, in marked contrast, for these values
of T the distribution of the walker itself is already near to
the stationary state (cf. Fig. 2). The equilibration of p(x, t )
therefore occurs mostly separately in the regions of positive
and negative x without many crossings of the starting point.

For 2.5 � T � 4 the main reshaping of PT (S) from a bi-
modal distribution with maxima at S = 0, 1 to a unimodal one
with maximum at S = 1/2 takes place. This is demonstrated
by Fig. 5(b). For the values of T shown the walker typically
not only reaches one of the boundaries but also has enough
time to get back to the starting point. As a result, more and
more of the realizations cross the starting point and contribute
to the growing central maximum of PT (S). At the same time
it becomes increasingly unlikely for the walker to stay in only
the left or the right half of the allowed interval, resulting in a
steady decrease of PT (S) near the boundary values S = 0 and
S = 1.

Finally, for T � 5 most realizations have visited both
boundaries and crossed the origin several times. Accordingly,
PT (S) approaches a Gaussian centered at S = 1/2 that be-
comes sharper with increasing T to eventually approach the
limit given by (44). Figure 5(c) shows some intermediate
stages.

All results obtained are in excellent agreement with nu-
merical simulations shown by the symbols in Fig. 5. This a
posteriori validates the restriction of the expansion (31) to the
two leading eigenvalues.

VIII. CONCLUSION

In conclusion, we have shown that the somewhat surprising
shape of the distribution PT (S) for the fraction S of total
time T an unrestricted random walker spends to the right of
the starting point as shown in Fig. 1 is indeed due to the
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possibility of very large excursions away from this point.
When restricting the walker to a finite interval by reflect-
ing boundary conditions, these excursions are precluded and
PT (S) assumes a unimodal form with maximum at S = 1/2
for sufficiently large T . Unlike the case without boundaries no
complete analytical solution seems possible. However, rather
accurate approximate results may be obtained on the basis of
just the two leading eigenvalues of the corresponding Fokker-

Planck operator. The results are in excellent agreement with
numerical simulations, and the emerging picture is consistent
with physical intuition.
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