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Asymptotic states of Ising ferromagnets with long-range interactions
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It is known that, after a quench to zero temperature (T = 0), two-dimensional (d = 2) Ising ferromagnets
with short-range interactions do not always relax to the ordered state. They can also fall in infinitely long-lived
striped metastable states with a finite probability. In this paper, we study how the abundance of striped states is
affected by long-range interactions. We investigate the relaxation of d = 2 Ising ferromagnets with power-law
interactions by means of Monte Carlo simulations at both T = 0 and T �= 0. For T = 0 and the finite system
size, the striped metastable states are suppressed by long-range interactions. In the thermodynamic limit, their
occurrence probabilities are consistent with the short-range case. For T �= 0, the final state is always ordered.
Further, the equilibration occurs at earlier times with an increase in the strength of the interactions.
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I. INTRODUCTION

The domain coarsening in ferromagnetic systems fol-
lowing a quench below the critical temperature is a well-
understood phenomenon [1–5], whereby the locally magne-
tized domains of competing phases grow in time. For finite
systems, such competition comes to an end at time tm when
the typical size of growing domains R(t ) becomes comparable
with the system size L. At this point, the phase symmetry
is broken, and the macroscopic domains of the single phase
appear. This relaxation to the final state can take different
routes. One naive expectation is that a single large domain
may start prevailing at times t � tm and quickly invades the
entire system. On the other hand, it is also possible that the
system may reach some metastable configuration. Depending
on the stability of interfaces in such a configuration, system
can get trapped forever at zero temperature (T = 0). The
thermal activation is then required to escape by removing
remaining interfaces.

In the last two decades there has been a great interest
in zero-temperature relaxation of Ising ferromagnets. In di-
mension d = 1, they always reach the ordered state due to
trivial geometry, while in d � 3, they never reach the ordered
state [6–8]. The two-dimensional (2D) Ising ferromagnets are
even more intriguing and show a surprising connection with
percolation theory [9]. Previous studies [10–12] revealed that
on the square lattice with short-range interactions, a fraction
π+ � 0.62 of the realizations reach the ordered state, while
a fraction π− � 0.34 of the realizations reach the infinitely
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long-lived metastable state with vertical or horizontal stripes
[Fig. 1(a)]. Perhaps a small fraction π/ � 0.04 of the realiza-
tions reach a metastable state with diagonal winding stripes
[Fig. 1(b)]. The latter slowly decay to the completely ordered
state on a timescale tdiag ∼ L3 � tm [6]. The probabilities
(π+, π−, π/) of reaching distinct states are identical to the
crossing probabilities of clusters in the 2D random site per-
colation model at percolation threshold [11,13].

It was recently realized [14] that the choice among the
above possibilities is taken at a time tp occurring much before
tm. More precisely, despite tp and tm diverging when L → ∞,
one has limL→∞ tp/tm = 0. At such early times, the connected
domains do not extend too far, and on large scales, the physics
is mostly controlled by a fast-growing critical percolation
structure touching the boundaries of the system at t = tp. The
way this percolation structure crosses the system (spanning in
both lattice directions, only along one of them, or spanning
in diagonal directions) fully determines, as early as at t = tp,
the final destiny occurring at t > tm. This physics has been
shown to be quite general, at least in 2D, being robust against
different lattice choices [15] and presence of quenched disor-
der [16–18]. For low but nonzero T quenches, the early time
behavior of the system is governed by the T = 0 fixed point.
Thus, the above scenario applies to these cases as well. The
convergence to an ordered state only takes place at large times.

An important and unexplored question is how this phe-
nomenology is influenced by the presence of long-range
interactions. Considering an interaction decaying as 1/rd+σ ,
a first important distinction can be made between the cases
σ � 0 and σ > 0. In the first case, sometimes denoted as
the strong long-range regime, some fundamental physical
properties, such as additivity, are spoiled, causing major dif-
ferences with respect to the kinetics of the short-range case.
In particular, it was shown [19] that, at least in d = 1, a mean-
field like dynamics dominates in the thermodynamic limit
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(a) (b)
FIG. 1. The typical metastable states on a 2D square lattice

with periodic boundary conditions. (a) Stripes in vertical direction.
(b) Stripes in diagonal direction.

L → ∞. In this case, spins tend to align with the sign of global
magnetization, the symmetry is soon broken, and metastable
states such as those described before for short-range systems
cannot be sustained. For σ > 0, instead, in the so-called weak
long-range regime, one observes a coarsening phenomenon
qualitatively similar to that of short-range systems. Despite
that, it was reported in recent works [20,21] that the striped
metastable states (typical of those systems) are absent or
significantly suppressed in the presence of long-range inter-
actions. This can be understood at a qualitative level because
the extended interaction allows single spins to probe the local
magnetization far away, and this may provide a global drift to
their update, even if it is not as efficient as in the mean field.
However, our understanding of the phenomenon does not go
much beyond this vague intuition, and several questions re-
main open, among which if metastability is fully suppressed
or only penalized by the long-range couplings.

In this paper, we study quantitatively and in detail this
problem by means of numerical simulations of the 2D Ising
model on the square lattice. In doing that, we uncover a
quite rich scenario where the abundance of metastable states
and their duration is determined by the interplay between the
exponent σ and system size L.

This paper is structured as follows. In Sec. II, we introduce
the model and provide simulation details. In Sec. III, we
present our main simulation results, i.e., for a quench to zero
temperature. We also infer some scaling laws to describe the
data. In Sec. IV, we discuss the case of nonzero temperature
quenches. In Sec. V, we summarize the results obtained in
this paper. In Appendixes A and B, some additional results
for σ = 0.6 and σ = 1.5 are provided. Appendix C contains
results for the pair-connectedness function, which is usually
considered in percolation theory.

II. MODEL AND SIMULATION DETAILS

We consider the ferromagnetic Ising model with long-
range couplings whose Hamiltonian is given as

H({si}) = −
∑
i< j

J (r)sis j, (1)

where si = ±1 are Ising spins on sites i of the two-
dimensional square lattice of linear size L with periodic
boundary conditions (PBC). Spins si, s j at distance r = |i − j|

interact with the ferromagnetic coupling constant

J (r) = 1

r (2+σ )
. (2)

Letting J (r) = δr,1, one recovers the usual nearest neigh-
bor (NN) model. In equilibrium, this model has a para-
ferromagnetic phase transition at a finite critical temperature
Tc(σ ) [22–27].

The single spins flip with METROPOLIS transition rates
L−2 min[1, exp(−�E/T )], with the Boltzmann constant set
to unity. Here �E is the energy difference in the proposed
move. Time is measured in Monte Carlo steps (MCS), each
corresponding to L2 attempts of spin flips. Initially, the system
is in equilibrium at infinite temperature, which is suddenly
quenched to T < Tc(σ ) at the time t = 0 and afterward
evolved at this temperature with METROPOLIS transition rates.
The Ewald summation technique [20,27,28] is used to handle
the pairwise long-range interaction between any two spins on
the periodic lattice. To assure the accuracy of the data, the
number of initial configurations used for each L is typically
104–106.

According to the Bray-Rutenberg predictions [29,30], for a
quench to nonzero T , the model in Eq. (1) exhibits the domain
growth law R(t ) ∼ t1/z. The exponent z = 2 for σ > 1 and
z = 1 + σ for σ � 1, with logarithmic corrections at σ = 1.
For quenches to T = 0, a different exponent (z = 4/3) was
observed for all σ [20,21]. At small T , a crossover from
this universal behavior to the Bray-Rutenberg law is observed
[20].

Here, we evaluate the average size R(t ) of grow-
ing domains as the inverse excess defect density R(t ) ≡
[ρ(t ) − ρeq]−1, with ρ(t ) being the fraction of antialigned
spins and ρeq its equilibrium value [2].

III. MAIN RESULTS

An important quantity to investigate the relaxation process
is the time-dependent crossing probability π (t ). It is the prob-
ability that a connected cluster of parallel spins spans the
system at time t . Such a cluster can cross the lattice from
one side to the other horizontally or vertically. We denote
the probability of these events as π−(t ). The clusters can also
percolate along one of the two diagonal directions with equal
probability π/(t ). Alternatively, a cluster can traverse the
system in both horizontal and vertical directions, with prob-
ability π+(t ). To compact the notation, these quantities will
also be generically denoted as πx(t ), with x = +,−, /. With
NN interactions the long time values of these probabilities
equal the corresponding (time-independent) values computed
[13] in two-dimensional critical percolation, namely, π

perc
+ =

0.61908, π
perc
− = 0.3388, and π

perc
/ = 0.04196. With PBCs,

wrapping the torus more than once is also possible, but the
associated probability is very small, and we will not keep track
of these events in this study.

In Fig. 2, we plot the crossing probabilities πx(t ) against t
for a system of size L = 128 quenched to T = 0, for different
values of σ . The NN case is also shown for comparison. The
figure shows that, for any value of σ , the crossing probabil-
ities are monotonous and display a two-step behavior. They
quickly attain a preasymptotic plateau of height π

early
x . This
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FIG. 2. The crossing probabilities (a) π+(t ), (b) π−(t ), and (c)
π/(t ) are plotted against t (with log-linear scales) for different values
of σ (see key), for a quench to T = 0 of a system of linear size
L = 128. The horizontal blue dashed lines represent the values of
π

perc
+ , π

perc
− , π

perc
/ .

sets in around R(t ) � 5. Later on, there is an evolution towards
another plateau at πx = π late

x . The same figure shows that, for
small σ , π

early
x overshoot the percolation values π

perc
x , while

for large σ they approach π
perc
x . The late time values π late

x
also show deviation from π

perc
x and approach towards the

ordered state (π− = π/ = 0, π+ = 1) when lowering σ . For
larger σ , the evolution completes at early times with π late

x
ending up close to π

perc
x . One might expect that, around a

critical value of σ (in the equilibrium context), a qualitative
change between weak long-range and short-range behavior
may occur in Fig. 2. Following the literature [24,27], σ = 1
is the lower critical decay exponent below which the critical
exponents match with the mean-field values. Further, σ = 7/4
is the upper critical decay exponent above which the critical
exponents are those of the NN model. From the data in Fig. 2,
nothing special is seen to happen around σ = 1. However, for
σ � 2 the data show behavior akin to the NN case. From the
numerical data, one does not observe a sharp crossover at the
critical values of σ . Notice that in the NN case, as it is known,
the percolation values π

perc
x are perfectly attained in Fig. 2.

These data of small system (L = 128) stresses that, for smaller
σ , the asymptotic striped states are suppressed. However, as
we will see below, the system size plays a major role for
long-range interactions, and the data from small systems are
insufficient to make general claims.

We investigate the role of the system size via repeating the
same kind of simulations described above upon varying L.
In Fig. 3, we show results for σ = 0.8 (see Appendix A for
σ = 0.6 and 1.5). We see that, with an increase in L, π

early
x

quickly set to π
perc
x (similar behavior is found for other values

of σ ). It indicates that, for any value of σ , the long-range
model exhibits a critical percolation structure at short times.
We will shortly probe this behavior in detail. Furthermore,
increasing L has another systematic effect: the late saturation
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FIG. 3. The crossing probabilities (a) π+(t ), (b) π−(t ),
and (c) π/(t ) are plotted against t (with log-linear scales) for a quench
to T = 0 with σ = 0.8 for systems of different sizes L, see key. The
horizontal blue dashed lines represent the values of π

perc
+ , π perc

− , π perc
/ .

values π late
x (L) also approach the percolation values π

perc
x and

the time they reach increases with L. This evolution of πx(t )
beyond the first plateau at π

early
x to π late

x can be understood in
terms of the following scaling law:

πx(t, L) = πperc
x + �x(L) fx

[
R(t )

L

]
. (3)

The argument of the scaling function fx(z) cannot exceed 1 as
R(t ) � L. The limiting behaviors are fx(z) → 0 for z 	 1 and
fx(z) = 1 for z � 1. The quantities �x(L)[= π late

x (L) − π
perc
x ]

are the overshoot from the percolation values π
perc
x (positive

for π+, and negative for both π− and π/).
To sensitively check the approach of π late

x to π
perc
x , we

extract �x from the saturation values of πx(t ) for different σ

and plot their absolute values in Fig. 4. They seem to show an
algebraic behavior of the form

|�x(L)| ∝ L−α. (4)

The value of α seems unique for the three quantities �x and is
dependent on σ : α � 0.15 for σ = 0.6, α � 0.25 for σ = 0.8,
and α � 0.6 for σ = 1.5. For σ = 0.6, however, we find the
same value α � 0.15 for �+ and �−, and somewhat smaller
value α � 0.08 − 0.09 for �/. It could be due to the noisy
character of the quantity �/ and possibly, to finite-size effects,
which are more pronounced upon lowering σ . Notice that α

decreases with σ , indicating that the approach to the large-L
behavior is slower. In Fig. 4(c), the changes in |�/(L)| with
system size L are very small for σ = 0.6 and 0.8. Therefore, a
much larger range of sizes would be needed, which is not cur-
rently feasible given the difficulty with handling long-range
interactions. For σ = 1.5, on the other hand, |�/(L)| shows
a reasonable change, and the best fit yields α � 0.58 ± 0.03,
which is consistent with α � 0.6. Notice that, given the rela-
tively small range of L which we could access numerically, the
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FIG. 4. The absolute values (a) |�+(L)|, (b) |�−(L)|, and (c)
|�/(L)| are plotted against L with double logarithmic scales, for
T = 0 quench with σ = 0.6, σ = 0.8, and σ = 1.5. The straight
dashed lines indicate the behavior L−α with α = 0.15 for σ = 0.6,
α = 0.25 for σ = 0.8 and α = 0.6 for σ = 1.5. The solid line in
(c) denotes the best fit: |�/(L)| � 0.23 × L−(0.58±0.03).

scaling behavior in Eq. (4) is not compelling. This, however,
has no consequences on the following analysis where the
numerical values of �x(L) [not the proposed form Eq. (4)]
will be directly considered.

If the scaling in Eq. (3) works, one should observe a data
collapse when plotting [πx(t ) − π

perc
x ]/�x(L) versus R(t )/L.

This is demonstrated in Fig. 5 for σ = 0.8. For all three
crossing probabilities, the observed data collapse is very good.
In fact, we found that the data in Figs. 5(a) to 5(c) fall on
the same scaling function (not shown here). Thus, the finite-
size-scaling functions fx in Eq. (3) are universal with respect
to the different crossings. A similar behavior is observed for
σ = 0.6, 1.5, as shown in Appendix B. Note that the scaling
proposed in Eq. (3) is obeyed over the entire evolution of πx(t )
after the first plateau.

We next turn to our observation regarding the critical per-
colation structure near the first plateau at π

early
x and investigate

the geometry of the clusters in the system. Note that, at critical
percolation, the geometrical features in the system are fractal
objects. Therefore, when πx(t ) � π

perc
x , the connected spin

clusters of the long-range system should have the fractality of
the critical percolation class. The (average) squared winding
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FIG. 5. The quantities (a) [π+(t ) − π
perc
+ ]/�+(L), (b) [π−(t ) −

π
perc
− ]/�−(L), and (c) [π/(t ) − π

perc
/ ]/�/(L) are plotted against

R(t )/L (with log-linear scales) for a quench with σ = 0.8 to T = 0
for systems of different sizes L.

angle 〈θ2(r)〉 is one of the quantities to test this behavior sensi-
tively. For geometrical spin clusters this quantity is calculated
as follows: At a given time, two points i, j are chosen on the
external perimeter (the hull) of a cluster and the winding angle
θi j , namely the angle (measured counterclockwise) between
the tangents to the perimeter at i and j, is computed. The
procedure is repeated for all the couples of perimeter points
at distance r measured along the hull, taking square, and av-
eraging over such measurements is denoted by θ2(r). Further,
averaging θ2(r) over the nonequilibrium ensemble, one ends
up with 〈θ2(r)〉. This quantity is known exactly in the 2D
random percolation at percolation threshold p = pc [31,32],
and is given as

〈θ2(r, r0)〉 = a + 4k

8 + k
ln

( r

r0

)
, r � r0, (5)

with k = 6, a number related to the fractal dimensions of
cluster area and cluster interface at critical percolation [15].
Here a is a nonuniversal constant and r0 is the lattice spacing.
When computing this quantity in the coarsening system, we
consider only the largest cluster for numerical convenience.

In the case with NN interactions [15–17], the law (5) is
obeyed with the replacement r0 → R(t ), i.e., the growing
structure in a coarsening system has the property of a critical
percolation cluster on an effective lattice with spacing R(t ).
With long-range interactions, we find the same result, as it
can be seen in Fig. 6 for σ = 0.8. In the main frame of the
figure, one sees that, up to a certain value of r that increases
with time, the curves at different times deviate from the slope
k = 6 of critical percolation. This value of r is identified with
R(t ). For a large value of r the curves increase linearly with
ln(r), with the slope k = 6. In the inset, a nice collapse is
observed in terms of the scaling variable r/R(t ), compatible
with Eq. (5). The different data sets considered in Fig. 6 are in
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the range of time whereby the crossing probabilities πx stay
near π

perc
x , i.e., πx(t ) � π

perc
x . Similar results were found for

the other values of σ considered, in the range [0.6–3].
We also performed a careful investigation of the pair-

connectedness function, another quantity to testify the critical
percolation signature (see Appendix C). Also this quantity, as
the winding angle, shows that the cluster geometry in long-
range systems resembles that of critical percolation.

The above reasoning confirms that, similar to the NN case,
a critical percolation structure is formed at time tp in the pres-
ence of long-range interactions. Further, the same structure
remains in the system up to the longest times [33] in the ther-
modynamic limit, as is clear from Eq. (4). Thus, for L → ∞,
there are basically no main differences between the long-range
and the NN case. However, for any finite L, the extended
interactions are able to convert a fraction �− + �/ of realiza-
tions spanning along one single direction into double spanning
ones. Given Eq. (4), for even sufficiently large values of L, this
fraction can be high, thus suppressing the striped states at long
times. This explains the observation made in Refs. [20,21]
regarding the substantial absence of metastable states: Ac-
cording to the present study, this is a mere finite-size effect.

As to the physical origin of this behavior, a possible in-
terpretation is the following. In the weak long-range regime
considered here (σ > 0), the interaction is integrable, i.e.,∑


r J (r) < ∞. Hence, one expects that a magnetized part
cannot influence regions sufficiently far away. Then, in the
thermodynamic limit, competing regions with opposite mag-
netization are expected, a situation which results in the
formation of striped states. However, if the system is small
enough, a magnetized part will influence the entire system,
leading to a single domain (no stripes). As the decay of the
power-law interaction is scale-free, the crossover between
the two behaviors is expected to be broad and regulated by
algebraic forms, which is indeed observed.
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FIG. 7. The crossing probabilities (a) π+(t ), (b) π−(t ), and (c)
π/(t ) are plotted against t (with log-linear scales) for the NN model
and for the long-range one with σ = 0.6, σ = 0.8, and σ = 1.5 (see
key), for a quench to T = 0.3 Tc of a system of linear size L = 128.
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IV. ROLE OF THERMAL FLUCTUATIONS

Let us now shift our focus to the nature of relaxation at
nonzero T quenches. With NN interactions and quench to T =
0 the configuration with vertical or horizontal stripes near
tm are blocked states, but for nonzero T , such configurations
will be eventually converted to a completely ordered state by
means of activated processes. This raises the natural question
of how the presence of thermal fluctuations affects the above-
discussed interplay of long-range interaction and system size.
To gain a better understanding, we perform numerical sim-
ulations for nonzero T quenches and different σ . First of
all, we show in Fig. 7 a comparison between the crossing
probabilities πx(t ) in the NN model and the long-range model
for a quench to final temperature T = 0.3 Tc and the same
system size L = 128. Here one sees that for NN, the system
gets trapped for a long time in the striped metastable states and
only at very long times (of order 105), the πx move from the
percolation values and converge to the values π− = π/ = 0,
π+ = 1 of the ordered state. Instead, with long-range inter-
actions, the system orders at earlier times. As is clear in the
figure, this time required to reach the ordered state decreases
with stronger long-range interaction (small σ ).

Furthermore, the time required to reach the asymptotic
state tm depends on the quench temperature as well as on
the system size. In the NN model, one finds [7] tm ∼ L3tact,
where tact is the Arrhenius time ∼e4J/T (the time required
to create a dent on the flat stripe via the activated process),
and prefactor L3 comes from the diffusive processes ensuing
after the creation of the dent. With long-range coupling, this
scaling argument modifies in two respects. First, the extended
interactions add a drift to the diffusive processes. Since an
order L2 of spins must be flipped to align all the spins, one
expects tm ∝ L2, instead of tm ∝ L3 for NN. Another differ-
ence concerns the temperature dependence, which for NN
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FIG. 8. The crossing probabilities (a) π+(t ), (b) π−(t ), and
(c) π/(t ) are plotted against t (with log-linear scales) for a quench to
T = 0.3 Tc with σ = 0.8 for systems of different sizes L, see key. The
horizontal blue dashed lines represent the percolation values π

perc
+ ,

π
perc
− , π

perc
/ .

was easily estimated from tact since an activated process was
needed to create the dent. As discussed in Ref. [20], counting
the number of activated processes with long range is a difficult
task, and therefore, we cannot as easily predict the temper-
ature dependence of tm. We expect tm ∼ L2 f (T, σ ), where
f (T, σ ) is an unknown monotonically decreasing function of
temperature at a fixed value of σ .

In Fig. 8, we plot the crossing probabilities πx(t ) against
t for σ = 0.8, for systems of different sizes L quenched to
T = 0.3 Tc. The figure shows that, similar to zero temperature
quench, πx(t ) first reach a preasymptotic plateau at height
π

early
x . With the increase in L, π

early
x approach the percolation

values π
perc
x . Asymptotically, the system of any L reaches the

ordered state (π− = π/ = 0, π+ = 1). However, the required
time tm is increased with L. To testify the above-proposed
scaling tm ∝ L2, we plot in Fig. 9 the πx(t ) against the scaling
variable t/L2 for the data in Fig. 8. One can see a good
collapse of the data for the entire evolution of πx(t ) (after a
microscopic time) indicating that tm ∝ L2. Similar behavior is
obtained for σ = 0.6.

Further, to understand the temperature dependence of equi-
libration time tm, we plot the crossing probabilities πx(t )
against t in Fig. 10 for σ = 0.8 and L = 200, for different
quench temperatures. We see that, upon lowering the temper-
ature, the system relaxes to the ordered state at larger and
larger times. This relaxation at low temperatures occurs via
a two-step behavior. Initially, the system behaves as in the
zero temperature case, and it approaches the ordered state
only at large timescales. Instead, at higher temperatures, the
relaxation process is faster due to thermal agitation.

V. CONCLUSION

This paper addresses the asymptotic states of two-
dimensional Ising ferromagnets with power-law long-range
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FIG. 9. The crossing probabilities (a) π+(t ), (b) π−(t ), and
(c) π/(t ) are plotted against t/L2 (with log-linear scales) for the same
data in Fig. 8.

interactions, after a quench below the critical temperature.
This is the first systematic study of this problem with long-
range interactions. For zero temperature quench we found
that, during the early stage of coarsening, a critical per-
colation structure is formed in the presence of long-range
interactions, which spans across the system and determines
the fate of the final states. Due to extended interactions, this
structure does not always pin the system for longer times and
depends on the interplay between the system size L and the
strength of the interaction. For finite L, the extended interac-
tions convert a fraction of the percolation structures spanning
in one direction to the one spanning in both directions. This
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FIG. 10. The crossing probabilities (a) π+(t ), (b) π−(t ), and
(c) π/(t ) are plotted against t (with log-linear scales) for the long-
range system with L = 200 and σ = 0.8 quenched to different final
temperatures (see key). The horizontal blue dashed lines represent
the values of π

perc
+ , π

perc
− , π

perc
/ .
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FIG. 11. The crossing probabilities (a) π+(t ), (b) π−(t ), and
(c) π/(t ) are plotted against t (with log-linear scales) for a quench
to T = 0 with σ = 0.6 for systems of different sizes L, see key. The
horizontal blue dashed lines represent the values of π

perc
+ , π perc

− , π perc
/ .

leads to the suppression of striped metastable states. However,
in the thermodynamic limit L → ∞, the same percolation
structure remains in the system up to the equilibration time
tm, and the striped states occur with the same probabilities as
in the short-range model [10,11].

For nonzero temperature quenches, the present system
always reaches the ordered state by means of activated
processes. Again, the system size L and the long-range inter-
action play a major role. The relaxation to the ordered state is
faster for stronger interaction strength, i.e., small σ . With the
increase in L, the convergence to an ordered state is delayed
to larger time, which scales as tm ∝ L2.
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APPENDIX A: SYSTEM-SIZE DEPENDENCE
OF CROSSING PROBABILITIES πx(t ) FOR σ = 0.6, 1.5

In Fig. 11, the crossing probabilities πx(t ) are plotted
against t for σ = 0.6 for different system sizes L quenched
to T = 0. It is clear that, with an increase in system size, the
preasymptotic plateau of height π

early
x settles to π

perc
x . Apart

from that, the saturation values π late
x also reduce (and approach

π
perc
x ) with the increase in L.

Figure 12 shows plots of πx(t ) versus t for σ = 1.5, for
different system sizes L quenched to T = 0. As for σ = 0.6
(see above) and σ = 0.8 (see main text), with increase in L,
both π

early
x and π late

x approach the percolation values π
perc
x .

Notice that the range of time where πx(t ) stays near π
perc
x

(especially for higher L) is larger for higher σ .
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FIG. 12. The crossing probabilities (a) π+(t ), (b) π−(t ), and
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APPENDIX B: PLOTS OF [πx(t ) − πperc
x ]/�x(L) VERSUS

R(t )/L FOR σ = 0.6, 1.5

In Figs. 13 and 14 we plot [πx(t ) − π
perc
x ]/�x(L) versus

R(t )/L for σ = 0.6 and σ = 1.5, respectively. A good data
collapse, irrespective of the crossing type, is observed for both
σ = 0.6 and σ = 1.5.
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FIG. 13. The quantities (a) [π+(t ) − π
perc
+ ]/�+(L), (b) [π−(t ) −

π
perc
− ]/�−(L), and (c) [π/(t ) − π

perc
/ ]/�/(L) are plotted against

R(t )/L (with log-linear scales) for a quench with σ = 0.6 to T = 0
for systems of different sizes L.
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perc
/ ]/�/(L) are plotted against

R(t )/L (with log-linear scales) for a quench with σ = 1.5 to T = 0
for systems of different sizes L.

APPENDIX C: PAIR-CONNECTEDNESS

Given a discrete lattice, the pair-connectedness function
gives the probability that two points at a distance r are part
of the same cluster. In the two-dimensional (d = 2) random
percolation model at percolation threshold p = pc, it is given
as [9]

Cperc(r, r0) =
[ r

r0

]−2�

, (C1)

with � = 5/48 being a critical exponent. Here r0 is the lattice
spacing. The above relation holds for r � r0.

In a spin system, the pair-connectedness function at time t
can be calculated from the connected domains of positive and
negative spins as follows:

C(r, t ) = 1

4L2

∑
i

∑
ir

〈δsi,sir
〉, (C2)

where 〈· · · 〉 is a nonequilibrium average, L is the linear size
of the 2D square lattice, and the index ir indicates the local
neighboring spins at distance r from si. The quantity δsi,sir

= 1
if the two spins belong to the same cluster, δsi,sir

=0 otherwise.
C(r, t ) is useful to recognize the geometry of critical perco-
lation in a coarsening spin system by replacing r0 → R(t )
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FIG. 15. The pair-connectedness function C(r, t ) is plotted
against r with double logarithmic scales at different times (see key)
after the quench to T = 0 of a long-range system of linear size
L = 1024 with σ = 0.8. The dotted lines are the power laws given
by Eq. (C1) with the exponent 2� = 5/24 of critical percolation. In
the inset, the same data are plotted against scaling variable r/R(t ).

in Eq. (C1), where R(t ) is the characteristic lengthscale in the
coarsening system. Thus, one has

C(r, t ) ∼
[

r

R(t )

]−2�

, for r � R(t ). (C3)

As time t � tp, the system can be considered a lattice at
critical percolation with lattice spacing R(t ).

In Fig. 15, we calculate the pair-connectedness function
C(r, t ) for σ = 0.8 and L = 1024, after a quench to T = 0.
In the main frame, C(r, t ) is plotted against distance r for
different times. Initially (t � 1), C(r, t ) deviates from the
power-law behavior of critical percolation (C1). This is be-
cause a critical percolation structure has not yet emerged in
the system. At later times, for r larger than a typical value that
increases in time (i.e., R(t ), see Ref. [16] for more details),
the curves at different times agree with Eq. (C1). Further,
because of finite-size effects, this agreement does not hold
till large distances. This behavior is analogous to what is
observed with the nearest-neighbor (NN) case [15,16]. In the
inset of the same figure, C(r, t ) is plotted against the scaling
variable r/R(t ) for the same data in the main frame. The
obtained collapse stresses the validity of the scaling relation
(C3), confirming the critical percolation geometry of the spin
clusters in the long-range model. Again, the collapse is not
observed at large r due to the finite-size effect.
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