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XY model with competing higher-order interactions
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We study effects of competing pairwise higher-order interactions (HOI) with alternating signs and exponen-
tially decreasing intensity on critical behavior of the XY model. It is found that critical properties of such a
generalized model can be very different from the standard XY model and can strongly depend on whether the
number of HOI terms is odd or even. Inclusion of any odd number of HOI terms results in two consecutive
phase transitions to distinct ferromagnetic quasi-long-range order phases. Even number of HOI terms leads to
two phase transitions only if the decay of the HOI intensities is relatively slow. Then the high-temperature
transition to the ferromagnetic phase is followed by another transition to a peculiar competition-induced canted
ferromagnetic phase. In the limit of an infinite number of HOI terms only one phase transition is confirmed, and
under the conditions of fierce competition between the even and odd terms the transition temperature can be
suppressed practically to zero.
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I. INTRODUCTION

The standard 2D XY model is well known to undergo a sin-
gle topological Berezinskii-Kosterlitz-Thouless (BKT) phase
transition, due to the vortex-antivortex pairs unbinding [1,2].
Below the BKT transition temperature the system displays a
quasi-long-range-order (QLRO) characterized by a power-law
decaying correlation function.

Nevertheless, its numerous modifications and generaliza-
tions, mostly obtained by including higher-order interaction
(HOI) terms into the Hamiltonian,1 have produced a rather
rich critical behavior with a number of different phases and
a variety of the phase transitions [3–11]. In particular, the
well-studied system with the Hamiltonian

H = −J1

∑
〈i, j〉

cos(φi, j ) − Jq

∑
〈i, j〉

cos(qφi, j ), (1)

where 〈i, j〉 denotes the sum over nearest-neighbor spins and
J1, Jq > 0 are the coupling constants, is known to show for
q = 2 separate dipole and quadrupole QLRO phases with
the phase transition belonging to the Ising universality class
[3–8].

A more recent series of papers considered a nematiclike
coupling of the order q > 2 and found that the phase diagram
topology remains the same for q = 3 but changes for q > 3
[9–11]. The newly found phases were concluded to originate
from the competition between the ferromagnetic J1 > 0 and
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1Hereafter, by HOI we will understand higher-order terms in a

Fourier expansion of a general microscopic spin-spin interaction
and it should not be confused with the interactions going beyond
pairwise.

pseudonematic Jq > 0 couplings and the identified phase tran-
sitions were demonstrated to belong to the 2D Potts, Ising,
or BKT universality classes. These findings stirred theoretical
interest as they pointed to a rather surprising lack of univer-
sality in systems showing the same φ → φ + 2π symmetry.
However, the models that include HOI are also interesting
from the experimental point of view. They have been shown
to be applicable for modeling several physical (liquid crystals
[3,12], superfluid A phase of 3He [4], and high-temperature
cuprate superconductors [13]) as well as nonphysical (DNA
packing [14] and structural phases [15,16]) systems.

Some of the above experimental realizations involve HOI
with negative signs. Unfortunately, such models that would
include different HOI signs have received much less attention
so far. They may include the magnetic interaction J1, with
collinear (ferromagnetic J1 > 0 or antiferromagnetic J1 < 0)
ordering tendencies, and the generalized antinematic interac-
tions Jq < 0, which would favor noncollinear ordering. The
coexistence of these antagonistic interactions induce competi-
tion between them, which may lead to the formation of novel
phases [17]. Indeed, the ferromagnetic-antinematic model,
with J1 > 0 and J2 < 0, has been shown to feature at low tem-
peratures another peculiar canted ferromagnetic (CF) QLRO
phase, wedged between the ferromagnetic and antinematic
phases [18,19]. The new CF phase is characterised by ferro-
magnetic correlations which are significantly diminished by
the presence of zero-energy domain walls due to the inherent
degeneracy caused by the antinematic interactions.

Besides the competition between the HOI terms, the model
Eq. (1) can also involve some kind of frustration, which
further adds to the model’s complexity. As a result of its
presence, the model on a square lattice with a frustration
parameter shows an additional chiral phase transition, which
occurs above (below) the BKT transition line if the magnetic
and nematic couplings are of very different (comparable)
strengths [20]. A similar phase diagram is also obtained for the
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geometrically frustrated model on a triangular lattice, how-
ever, with the separate chiral phase transition occurring above
the BKT transition temperature regardless of the coupling
strength ratio [21]. Very recently it has been shown that in the
model on the frustrated triangular lattice with J1 < 0, Jq < 0
and q � 2 the parameter q can have a pronounced effect on the
phase diagram topology [22,23]. In particular, for values of q
divisible by 3, the ground-state competition between the two
interactions resulted in a new frustrated canted antiferromag-
netic phase, appearing at low temperatures, and the increasing
q nondivisible by 3 led to the evolving phase diagram topol-
ogy featuring two (q = 2), three (q = 4, 5), and four (q � 7)
ordered phases.

In some of our previous studies we further generalized the
model Eq. (1) by taking into account effects of more HOI
terms with purely positive signs, including an infinite number
[24–26]. Among others, we found the change to the first-order
transition in the models involving a sufficiently large number
of HOI terms with an exponentially vanishing strength [24]
or the possibility of multiple phase transitions between dif-
ferent phases in the models including only a small (two or
three) number of HOI terms for some setting of their strengths
[25,26].

In the present investigations we study the generalized XY
model, which includes up to infinite number of HOI terms
with alternating signs. The coexistence of such HOI terms
can result in nontrivial ways of their mutual competition and
collaboration in establishing some kind of preferred order-
ing. Besides the importance of HOI, demonstrated in the
above studies, considering such a model is also motivated by
some realistic systems in biology (DNA packing [14]) and
chemistry (structural phases of cyanide polymers [15,16]).
Its application can be facilitated by an appropriate mapping
between magnetic interactions in the generalized XY model
and (supra)molecular forces, which can have in the respective
systems attractive or repulsive characters. It is often assumed
that the essential features of the system behavior can be cap-
tured by considering only the simplified interaction potential
with the first or first two Fourier components of the real
interaction potential. In this study we show that higher-order
terms can also play an important role in correct identification
of the present phases.

II. MODEL

We consider a collection of classical two-component spins
(unit vectors) localized on a square lattice, which interact with
their nearest neighbors through the pairwise potential

Hi, j (p, α) =
p∑

k=1

Jk cosk φi, j, (2)

where φi, j = φi − φ j is an angle between the neighboring
spins and the constants Jk represent weights of the respec-
tive (higher-order) terms in the summation. We assume that
their intensity decays exponentially but their signs alternate
between positive and negative values for k odd and even,
respectively, i.e., Jk = −(−α)−k , where α > 1. Then, the
Hamiltonian can be expressed in the form

H(p, α) = J (p, α)
∑
〈i, j〉

Hi, j (p, α), (3)

where J (p, α) is a constant adjusted to reset the potential
within the interval [−1, 1] and 〈i, j〉 denotes the sum over
nearest-neighbor spins.

In the limiting case of p → ∞, i.e., with the infinite num-
ber of the higher-order terms (hereafter IHOI model) the
Hamiltonian simplifies to

H(α) = J (α)
∑
〈i, j〉

Hi, j (α) = −J (α)
∑
〈i, j〉

cos φi, j

α + cos φi, j
, (4)

where J (α) = α − 1 is the exchange interaction constant cho-
sen to rescale the weights Jk to sum up to unity.

In the more general case when the number of the higher-
order terms p stays finite (hereafter FHOI model), the
Hamiltonian takes the form

H(p, α) = J (p, α)
∑
〈i, j〉

Hi, j (p, α)

= −J (p, α)
∑
〈i, j〉

cos φi, j
[(− cos φi, j

α

)p − 1
]

α + cos φi, j
, (5)

where J (p, α) = (α − 1)/(α−p − 1).
Thus, there is one parameter, α, and two parameters, α and

p, which can be used to control the shapes of the potentials
of the IHOI and FHOI models, respectively. The shapes of the
potential functions for various cases are presented in Fig. 1.
The one in the IHOI model, shown in Fig. 1(a), reduces to the
conventional XY model when the interaction intensity decays
extremely fast, i.e., for α → ∞. We note that for α → ∞ the
value of p is practically irrelevant and the shape very close to a
cosine function would be also observed for any p in the FHOI
case. With the decrease in α, the upper part of the potential
well gets broader, the bottom rises towards positive values and
is becoming flat with the width tending to 2π as α → 1.

In the FHOI model, it is useful to distinguish between
the cases with the odd and even number of the HOI terms.
In the former case one can observe a similar effect of the
increasing number of the HOI terms on the potential shape,
for sufficiently small values of α [see Fig. 1(b)]. In this case,
the standard XY model is recovered for p = 1 and with the
increasing p the potential well again gets broader in the range
of positive values with the bottom becoming flat but a small
bump at φ = 0 remains up to very large p (see the inset). For
even p the potential function can show two distinct shapes,
depending on the actual values of the parameters. In particular,
for sufficiently small values of both p and α the potential has a
double-well shape, which is symmetrical around φ = 0. With
the increasing either p [see Fig. 1(c)] or α [see Fig. 1(d)]
the double-well becomes shallower until it is converted to a
single-well shape with the bottom at φ = 0 for some threshold
value of p∗ or α∗, respectively.

III. METHODS

A. Spin-wave approximation

We are interested in a large-scale behavior of the pair cor-
relation function gk (x1 − x2) ≡ 〈cos k[φ(x1) − φ(x2)]〉, where
k ∈ N and brackets 〈. . . 〉 denote an average over all possi-
ble spin configurations with the Gibbs distribution functional
exp(−βH), where H is the Hamiltonian Eq. (3) and β is the
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FIG. 1. Potential functions for the cases of (a) p → ∞ for several values of α, (b) the fixed α = 1.01 and various odd values of p, (c) the
fixed α = 1.2 and various even values of p, and (d) the fixed p = 2 and various values of α. In panels (c) and (d), p∗ = 20 and α∗ = 2 denote
transition values from single- to double-well shape.

inverse temperature. Let x be the coordinate vector of the ith
spin and a be the lattice vector. Then passing to the continuous
limit within the spin-wave (SW) approximation, we arrive at
the effective Hamiltonian

Heff = Jeff

2

∫
d2x[∇φ(x)]2, (6)

where the effective coupling Jeff ≡ −∑p
k=1 k/(−α)k . Direct

computation of the correlation function in the large-scale re-
gion |x1 − x2| 
 a using the effective Hamiltonian

gk (x1 − x2) =
∫ ∏

x

dφ(x) exp (−βHeff + ik[φ(x1) − φx2 ])

(7)
leads to the result

gk (x1 − x2) = C0 exp

(
− k2

2πβJeff
ln

|x1 − x2|
a

)

∝
(

a

|x1 − x2|
)ηeff

. (8)

Here C0 is an unessential constant and the critical exponent
ηeff = k2/(2πβJeff ). It is important to note that in order to
perform the Gaussian integration correctly, the effective ex-
change interaction Jeff has to be a positive quantity. In the

case at hand, one needs to separately consider the odd and
even values of p. Indeed, the magnitude of Jeff reads

Jeff =
{ α

(1+α)2 − pα+p+α

αp(1+α)2 , for even p,
α

(1+α)2 + pα+p+α

αp(1+α)2 , for odd p.
(9)

As p tends to infinity the coupling Jeff approaches the limit
α/(1 + α)2 being always positive. However, for even p the
amplitude Jeff as the function of α might vanish and become
negative. The value α = α∗ at which Jeff turns to be zero obeys
the equation

α∗ p+1 = α∗(p + 1) + p. (10)

This equation has a unique root α∗ ∈ [1, 2], ∀p ∈ 2N (even
natural numbers), and the SW approximation remains valid
for α > α∗. We note that the value of α∗, for a given p, (or p∗
for a given α) corresponds to the transition between the single-
and double-well shapes of the potential, shown in Fig. 1.

B. Monte Carlo simulation

Standard Monte Carlo (MC) simulations following the
Metropolis dynamics is applied to study spin systems on
a square lattice of the size L × L, with L = 24 − 120 and
the periodic boundary conditions. For thermal averaging we
take NMC = 2 × 105 MC sweeps after discarding another

034129-3



MILAN ŽUKOVIČ AND GEORGII KALAGOV PHYSICAL REVIEW E 105, 034129 (2022)

100 101 102 103

p

100

102

104

ef
f/

X
Y

=1.01 (p-even)
=1.05 (p-even)
=1.2 (p-even)
=2 (p-even)
=5 (p-even)

=5 (p-odd)
=2 (p-odd)
=1.2 (p-odd)
=1.05 (p-odd)
=1.01 (p-odd)

(b)

FIG. 2. (a) SW approximation of the reduced correlation function exponent ηeff/ηXY , shown as a function of (a) α for different p and (b) p
for different α. The solid and dashed curves represent the cases of even and odd values of p, respectively. In panel (a) the vertical broken lines
denote the respective limiting values α∗(p) and the inset shows for even p the area of Jeff > 0 in which ηeff is defined.

N0 = 0.2 × NMC MC sweeps used for bringing the system
to equilibrium. A simulation usually starts at a sufficiently
high temperature T (measured in units J/kB, where kB is
the Boltzmann constant), corresponding to the paramagnetic
phase. Then the simulation proceeds to the lower temperature
T − �T , at which it is initialized using the last configuration
obtained at T . Sample averages are obtained from several
independent runs and temperature dependencies of different
quantities are typically presented for the lattice size L = 48.

We note that in general frustrated systems may have rugged
multimodal energy landscapes, featuring multiple local min-
ima separated by large entropic barriers, and therefore care
should be taken that the system does not get trapped in
metastable states during the cooling procedure. In the present
study we verified that all the simulations ended in the states
corresponding to the ground states by comparing the MC
energies at the lowest simulated temperature with the expected
ground-state values obtained by numerical global optimiza-
tion (minimization) of the energy functional H (Hamiltonian)
on the entire lattice.

We obtain temperature dependencies of the following
quantities: the internal energy per spin e = 〈H〉/L2, the spe-
cific heat per spin c

c = 〈H2〉 − 〈H〉2

L2T 2
, (11)

the generalized magnetizations per spin

mq = 〈Mq〉/L2 =
〈∣∣∣∣∣

∑
j

exp(iqφ j )

∣∣∣∣∣
〉
/L2, q = 1, . . . , p,

(12)
and the corresponding susceptibilities

χq =
〈
M2

q

〉 − 〈Mq〉2

L2T
. (13)

At the BKT transition from the paramagnetic phase, expected
for the XY model, the standard magnetization m1 vanishes
as power law, characterized by the exponent η = 1/4. The
latter can be estimated within the BKT phase as a function
of temperature by the finite-size scaling (FSS) analysis as

follows:

m1(T, L) ∝ L−η(T )/2, (14)

considering the lattice sizes L = 48–120.

IV. LOW-TEMPERATURE BEHAVIOR

At low temperatures the QLRO phase in the SW approxi-
mation is characterized by the power-law decaying correlation
function, given by Eq. (8). In contrast to the standard XY
model with the critical exponent ηXY = T/(2πJ ), in the
present model the exponent ηeff also depends on the pa-
rameters p and α, involved in the interaction Jeff , in a
nontrivial way. In Fig. 2 we present the reduced critical ex-
ponent ηeff/ηXY = JXY /Jeff , where JXY = Jeff (p = 1) = 1/α,
as a function of the parameters α [Fig. 2(a)] and p [Fig. 2(b)].
As one can anticipate from the form of Jeff in Eq. (9), the
behaviors for odd and even p will be different.

For odd values of p and small values of α → 1, the inclu-
sion of the HOI terms causes a dramatic drop of the exponent
down to ηeff/ηXY ≈ 0.053 at p ≈ 100, followed by a gradual
increase and leveling off at the limiting value ηeff/ηXY ≈ (α +
1)2/α2 above p ≈ 103. For larger α the minimum value of ηeff

increases but it is reached at smaller values of p. Eventually,
ηeff becomes a purely increasing function of p above α ≈ 1.5.

However, for even values of p the critical exponent ηeff is
only defined for α > α∗, where α∗ is a solution of Eq. (10).
As demonstrated in Fig. 2(a), for any p the reduced exponent
ηeff/ηXY takes its maximum at α∗ and then it gradually de-
creases to unity as α → ∞. A qualitatively similar behavior
can be observed for a fixed value of α and p being increased
from p∗ to ∞ [Fig. 2(b)]. It is worth noting that for even
number of terms ηeff � ηXY in the whole (p-α) parameter
plane. Finally, by comparing the reduced critical exponent for
odd and even values of p one can conclude that the former is
always smaller than the latter, albeit, beyond some value of α

or p differences become negligible.
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FIG. 3. Temperature dependencies of (a), (b) the internal energy per spin and (c), (d) the specific heat for (a), (c) even and (b), (d) odd
values of p, with α = 1.01 and L = 48. The black symbols corresponding to the internal energy at T = 0 shown in panels (a) and (b) are the
GS values obtained by the global minimization of the Hamiltonian on the entire lattice.

V. PHASE DIAGRAMS

A. FHOI model

Below we study a finite-temperature behavior of the FHOI
model with the goal to construct phase diagrams in the
(p-α) parameter space. In particular, we calculate tempera-
ture dependencies of various quantities, which can provide
locations of the transition temperatures (peaks in the response
functions) and reveal the nature of the ordering (generalized
magnetizations).

In Fig. 3 we present temperature dependencies of the in-
ternal energy per spin and the specific heat for a relatively
small α = 1.01, in which case the effect of HOI is expected
to be prominent. We separately consider the cases with even
[Figs. 3(a) and 3(c)] and odd [Figs. 3(b) and 3(d)] values
of p. In the internal energy dependencies we can see that
the values at the lowest simulated temperatures match very
well with those obtained by the global minimization of the
Hamiltonian on the entire lattice, indicating that the system
reached the respective ground states without getting trapped in
some local minima corresponding to metastable states. In the
specific heat curves we can observe two peaks for both even
and odd values of p, which move towards low temperatures
with the increasing p. Nevertheless, their characteristics are
somewhat different. In the former case, all low-temperature

peaks are relatively sharp, while the high-temperature ones are
rather broad. With the increasing p the heights of all of them
decrease. For odd p the high-temperature peaks behave in a
similar fashion, albeit their widths are narrower than for even
p. However, the low-temperature peaks for odd p are relatively
broad for smaller p and only become distinctly sharp for
sufficiently large p. Moreover, unlike for even p, their heights
increase with the increasing p. These features indicate the
presence of low-temperature phase transitions for both even
and odd p but also suggest that their nature is different.

The character of the respective phases can be partially
revealed from the behavior of different generalized magneti-
zations mi. Even though they are not proper order parameters
they are still useful for distinguishing between different kinds
of magnetic or nematiclike QLRO phases. For different QLRO
phases one can define an appropriate mi, which within the
corresponding phase stays finite and saturates to one for tem-
perature approaching to zero. This is however not the case in
the frustrated CF phase, in which the magnetic and nematic
interactions compete. The result is a peculiar domain state
characterized by the lack of saturation of mi [19]. Therefore,
based on the generalized magnetizations, one can distinguish
between the magnetic, nematiclike, and CF phases. The onset
of the respective phase transitions can be estimated from the
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FIG. 4. Temperature dependencies of (a), (c) the generalized magnetizations mi and (b), (d) the generalized susceptibilities χi, i = 1, . . . , p,
for (a), (b) p = 2, (c), (d) p = 3 and the values of α = 1.01 and L = 48.

corresponding response functions, i.e., the generalized sus-
ceptibilities.

In Fig. 4 we present them for the representative cases of
even (p = 2) and odd (p = 3) number of the interaction terms,
with α = 1.01. As the temperature is lowered, for p = 2 the
system crosses from the paramagnetic phase to a QLRO ferro-
magnetic phase with finite values of both m1 and m2. However,
upon further temperature decrease, instead of approaching the
ground state saturation values mgs

1,2 = 1, roughly at the temper-
ature corresponding to the low-temperature specific heat peak
they slightly decrease and eventually approach some nontriv-
ial values mgs

1,2 < 1. The corresponding susceptibilities χ1,2

diverge as T → 0. We note that the present p = 2, α = 1.01
case corresponds to the previously studied XY model with
the ferromagnetic-antinematic J1-J2 interactions [19], for J1 =
J2 + 1 = 0.68. Indeed, the results shown in Figs. 3(c), 4(a)
and 4(b) can be compared with those in Fig. 4 from Ref. [19].
The latter model was shown to display such a low-temperature
behavior as a result of a transition to a peculiar CF phase. The
CF phase is characterized by highly degenerate states in which
neighboring spins belonging to different sublattices are due to
the coupling competition canted by a nonuniversal angle.

The situation changes dramatically by adding the third
HOI term, as shown in Figs. 4(c) and 4(d) for p = 3. In the
competition between the J1 and J2 terms, striving to enforce

respectively parallel and perpendicular spin arrangements, the
J3 term helps the former one to recover the ferromagnetic
order in the low-temperature region. Consequently, for T → 0
all the generalized magnetizations mgs

i → 1, for i = 1, 2, and
3. Therefore, the low-temperature phase transition occurs be-
tween two different ferromagnetic phases: F0 phase appearing
at intermediate temperatures and characterized by m1,2 > 0
but m3 = 0 is followed at lower temperatures by F1 phase with
mi > 0 for i = 1, 2, and 3. The peak in χ3 roughly coincides
with the low-temperature specific heat peak in Fig. 3(d) and
marks the F0-F1 phase transition.

Let us look into the characters of the ferromagnetic F0

and F1 phases. As mentioned above, the former one is char-
acterized by finite m1,2 and zero m3. Figure 4(d) also shows
that within F0 the susceptibilities χ1,2 remain anomalously
elevated. As shown in Fig. 5, this behavior can be related
to enhanced spin fluctuations resulting from the competition
between the J1 and J2 couplings. In Fig. 5(a) it is demon-
strated by showing the mean value of standard deviations
of spin angle distributions at different temperatures, for p =
3 and α = 1.01. Evidently, within the temperature range
corresponding to the F0 phase (shaded region), it shows rel-
atively large values as well as considerable fluctuations. A
representative spin angle histogram within F0 (at T = 0.35),
shown in the inset, demonstrates that the spin distribution
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FIG. 5. (a) Mean value of the standard deviation of spin angle distributions as a function of temperature, for p = 3 with α = 1.01 and
L = 48. The inset in panel (a) shows the angle distribution in the phase F0 (at T = 0.35) and the snapshot in panel (b) their spatial distribution
on the lattice. Panels (c) and (d) show the angle distribution and the snapshot in the phase F1 (at T = 0.10).

on the lattice includes values spanning practically the entire
interval [0, 2π ]. The corresponding spin angles snapshot is
presented in Fig. 5(b).

Below the F0-F1 transition temperature, i.e., within the F1

phase, the spin distribution becomes much narrower with min-
imal fluctuations. A typical spin angles histogram at the onset
of the F1 phase (at T = 0.10) and their spatial distribution
are shown in Figs. 5(c) and 5(d), respectively. The histogram
width in the phase F1 is reduced to about one-third of that
in the phase F0. Thus, the phase F1 has similar characteris-
tics as the phase F1 in the model H = −J1

∑
〈i, j〉 cos(φi, j ) −

Jq
∑

〈i, j〉 cos(qφi, j ), for q � 4 [9,11] and in the present case
it can be considered as a result of the interplay between the
terms J1 and J3.

The phase diagrams in (α-T ) planes are presented in Fig. 6,
separately for even [Fig. 6(a)] and odd [Fig. 6(b)] values of
p. The (pseudo)critical temperatures were estimated from the
specific heat peak positions. For even p, there are either one
or two phase transitions. There is always a phase transition
from the paramagnetic to the F0 phase for any combination
of p and α. Two phase transitions occur for the cases with
α < α∗, where α∗ is a solution of Eq. (10). In such cases,
the P-F0 transition is followed by the F0-CF transition, like
for the p = 2 and α = 1.01 case described above. With the

increasing p the transition temperatures along both P-F0 and
F0-CF phase boundaries tend to decrease, particularly for
smaller α. For a fixed value of p the effect of the increasing
α on the P-F0 and F0-CF transition temperatures is differ-
ent. Except for a small dip, observable for smaller p and α,
the P-F0 transition temperatures increase with the increas-
ing α. However, the F0-CF transition temperatures display
a gradual decrease down to zero at α∗. This behavior can
be explained by the fact that the gradually decreasing val-
ues of α enforce still higher degree of competition between
the odd and even HOI terms. Consequently, the increasing
competition requires lower and lower temperatures to reach
the ferromagnetic F0 phase and below the threshold values
α∗ also facilitates creation and gradual growth of the CF
phase.

However, for odd p there are always two phase transitions
for any combination of p and α [Fig. 6(b)]. Another important
difference is the character of the low-temperature F1 phase, as
demonstrated above for p = 3 and α = 1.01, and the fact that
it seems to extend to α → ∞. The behavior of the transition
temperatures along the P-F0 and F0-F1 boundaries with the
parameters p and α is qualitatively similar to the even p case,
except for the absence of the small dip in the P-F0 transition
temperature curves.
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FIG. 6. Phase diagrams in (α-T ) planes for (a) even and (b) odd values of p, estimated from maxima of the specific heat curves for L = 48.
F0, F1, and CF denote two different ferromagnetic and canted ferromagnetic phases, respectively. The arrows in panel (a) show the values of
α∗ at which CF phase terminates for different p.

B. IHOI model

The phase diagrams in Fig. 6 outlined the evolution of the
phase boundaries with the increasing number of HOI terms.
While the high-temperature P-F0 phase boundaries appear to
consistently converge to some curve, regardless of whether p
is even or odd, the limiting behavior of the low-temperature
F0-CF and F0-F1 phase boundaries is more intriguing. Below
we present a MC analysis of the critical behavior of the p →
∞ IHOI model, given by the Hamiltonian Eq. (4).

We particularly focused on the most interesting range of
relatively small values of α → 1. Considering the evolution
of the respective phase boundaries with the increasing p,
presented above, we are mainly interested in two aspects. Can
the high-temperature P-F0 branch be suppressed down to zero
temperature for some sufficiently small values of α, i.e., is
it possible that the model would show no finite-temperature
phase transition at all? Can any of the low-temperature phases
(CM or F1) survive in the limit of p → ∞?

In Fig. 7(a) we present temperature dependencies of the
specific heat for various α. All the curves display one peak,
corresponding to the P-F0 phase transitions, which with de-
creasing α moves towards lower temperatures. We note that
the ultimate increase at T → 0 is related with the convergence

to cgs = 1/2, expected for the XY model, and thus represents
no additional anomaly. Therefore, the specific heat indicates
the presence of a single P-F0 phase transition and the absence
of any other transition at lower temperatures. However, the
corresponding magnetization m1 curves in Fig. 7(b) display
low-temperature anomalous increase toward the saturation
value of 1, which might indicate an additional phase transi-
tion. The curve for the smallest α = 1.01 suggests that there
is still a phase transition occurring at finite temperature but the
magnetization failed to reach the saturation value down to the
lowest simulated temperature.

We note that the presented quantities (in both FHOI and
IHOI models) correspond to a finite lattice size and thus the
transition temperatures estimated from the observed anoma-
lies are actually pseudotransition temperatures. For example,
it is well known that those estimated from the specific heat
peaks, have a tendency to overestimate the true values (see,
e.g, Ref. [19]). Therefore, there is a chance that the phase
boundary drops to zero at least in the limit of α → 1. How-
ever, based on the presented results, also the scenario of two
phase transitions remains open. To verify the possibility of
either of these scenarios in Fig. 8(a) we performed a FSS anal-
ysis for the lowest considered value of α = 1.01 and very low
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FIG. 7. Temperature dependencies of (a) the specific heat and (b) the magnetization m1, for p → ∞, several values of α and L = 48.
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FIG. 8. (a) FSS behavior of m1 at very low temperatures. The inset shows the temperature dependence of the correlation function critical
exponent η and the adjusted coefficient of determination R2 [27]. (b) The blue circles show the phase boundary for p → ∞ as a function of the
parameter α, separating the F0 and paramagnetic phases. The (pseudo)transition temperatures are obtained from maxima of the specific heat
curves shown in Fig. 7(a). The red star represents the FSS estimation of the true value at α = 1.01. For reference, the black squares show the
phase boundary for the case of only positive coupling constants Jk . The filled squares represent the first-order transition points and the dashed
line the transition temperature of the standard XY model.

temperatures, using the scaling relation Eq. (14). The obtained
temperature dependence of the correlation function critical
exponent, shown in the inset, indicates that the P-F0 transition
occurs at Tc(L → ∞) = 0.011 ± 0.0015, which is lower than
Tc(L = 48) = 0.03 ± 0.005 but still finite. The values of m1 at
the lowest simulated temperature neither reached the satura-
tion value of mgs

1 = 1 nor they leveled off at some other value
smaller than 1, as it was in the CF phase. Nevertheless, the SW
theory predicts a ferromagnetic ground state with mgs

1 = 1 for
any α > 1 but the question whether the phase transition occurs
only at T = 0 or finite temperatures remains undetermined.

The resulting phase diagram, based on the specific heat
peaks positions (blue circles) including the FSS thermody-
namic limit extrapolation at α = 1.01 (red star), is presented
in Fig. 8(b). It shows that the P-F0 transition temperature
remains finite even in the limit of very low α → 1, while both
low-temperature phases F0-CF and F0-F1, present for a finite
number of HOI terms, have disappeared. We found it interest-
ing to compare the phase boundary of the present model with
the alternating HOI [Jk = −(−α)−k] signs with its uniformly
ferromagnetic (Jk = α−k) counterpart [24]. In the latter (black
squares), inclusion of infinite number of HOI terms, besides
decrease of the transition temperatures with respect to the
standard XY model (dash-dotted line), led to the change to
first-order transitions in the limit of α → 1 (filled squares). In
the present case (blue circles), the reduction of the transition
temperatures for a given α is much more pronounced and no
signs of the first-order phase transitions are observed.

VI. SUMMARY AND CONCLUSIONS

We studied effects of higher-order nearest-neighbor pair-
wise interactions with an exponentially decreasing intensity
and alternating signs, Jk = −(−α)−k , for α > 1 and k =
2, . . . , p, included into the standard XY model. At low
temperatures, the spin-wave theory predicted different be-
haviors for even and odd values of p. The low-temperature
phase is characterized by a ferromagnetic QLRO with an

algebraically decaying correlation function with the ex-
ponent ηeff = T/(2πJeff ), where Jeff = α/(1 + α)2 ± (pα +
p + α)/[αp(1 + α)2] for odd (+) and even (−) p. However,
for even p it is true only for sufficiently large value of α > α∗.
Otherwise, the system shows a peculiar CF QLRO phase.

The phase diagrams at finite temperatures differ for even
and odd values of p. In the former case there is a single phase
transition from the paramagnetic to ferromagnetic F0 phase, if
α > α∗. For α < α∗ the systems shows two phase transitions:
the paramagnetic-F0 transition is at lower temperatures fol-
lowed by another transition to the CF phase. However, for odd
values of p there are always two phase transitions. In this case,
the low-temperature phase is another ferromagnetic phase F1,
different from F0. The character of F1 is the same as that in the
model Eq. (1) with only J1 and Jq terms [11]. It is interesting
to remark, however, that in the latter it only appears for q > 3.
However, in the present model it is stabilized already for
q = 3 by inclusion of the negative J2 HOI. Thus, inclusion
or neglecting of this intermediate term may lead to different
phase diagrams.

In the limit of p → ∞ the differences between even and
odd values of p naturally vanish, nevertheless, it is interesting
to assess effects of the competition between the even and
odd HOI terms of opposite signs. Compared to the model
with all terms of the same positive signs in the present
model the transition temperatures from the paramagnetic
phase are considerably reduced. This reduction becomes the
most prominent for small α, where the two types of HOI are
of comparable strengths and their mutual competition is the
fiercest. In the limit of α → 1 the transition temperature is
reduced practically to zero. However, in the model with all
positive HOI the transition temperature is only reduced to
about one half of that for the standard XY model and the
transition character changes to the first order [24].

Finally, in the present study we focused on the construction
of approximate (pseudo)phase diagrams in a wide parame-
ter space (p, α). As a future study we find it interesting to
investigate the nature of the identified phase transitions by
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performing a FSS analysis. Similar investigations in a non-
frustrated ferromagnetic model with higher-order harmonics
revealed phase transitions belonging to different universality
classes [9–11] and our earlier study of the character of the
phase transition between the antinematic and CF phases in
the present model for p = 2 indicated a frustration-induced
nonuniversal behavior [19]. Furthermore, we anticipate even
more interesting critical behavior with richer phase diagrams
for other choices of the coefficients Jk . Besides the above
mentioned nonuniversal behavior for q = 2 and J2 < 0 dom-
inant over J1 > 0, some other interesting results have been
reported. For example, for q = 3 with J1 = 0 and J2,3 > 0
there are phase transitions between the magnetic and ne-
maticlike phases belonging to the Ising and three-state Potts

universality classes [25] and for q = 4 and a selected set
of the values of J1 = 0 and J2,3,4 > 0 even three successive
phase transitions of the BKT and Ising universality classes
are possible [26]. Therefore, a more systematic study of the
effect of higher-order terms on the critical behavior of the
generalized XY model would be desirable.
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