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We study quantum phase transitions in Heisenberg antiferromagnetic chains with a staggered power-law de-
caying long-range interactions. Employing the density-matrix renormalization group (DMRG) algorithm and the
fidelity susceptibility as the criticality measure, we establish more accurate values of quantum critical points than
the results obtained from the spin-wave approximation, quantum Monte Carlo, and DMRG in literatures. The
deviation is especially evident for strong long-range interactions. We extend isotropic long-range interactions to
the anisotropic cases and find that kaleidoscope of quantum phases emerge from the interplay of anisotropy of the
long-range exchange interaction and symmetry breaking. We demonstrate nonfrustrating long-range interactions
induce the true long-range order in Heisenberg antiferromagnetic chains with a continuous symmetry breaking,
lifting the restrictions imposed by the Mermin-Wagner theorem.
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I. INTRODUCTION

As a prototypical model of magnetism, antiferromag-
netic (AFM) Heisenberg model H = ∑

i, j Ji, j �Si · �S j has been
persistently investigated for decades [1]. Despite being a
simplified theoretical model, the Heisenberg model finds ap-
plications in a variety of contexts, ranging from quantum
phase transitions (QPTs) [2–6], superconductivity [7], local-
ization in disordered systems [8], spin liquid [9], quantum
chaos [10], to quantum information [11]. The ground state
of the nearest-neighbor AFM Heisenberg model on a bi-
partite lattice in d (� 2) dimensions is generally expected
to host Néel long-range order (LRO) for any spin magni-
tude S, although a rigorous proof of the existence of LRO
in a two-dimensional quantum-spin-1/2 Heisenberg magnet
is still lacking [12–14]. It was recognized that imposed by
the Mermin-Wagner theorem, the true LRO is prohibited
in short-range interacting Heisenberg model in one spatial
dimension. Pioneering work by Haldane demonstrated that
Heisenberg AFM chains of integer spins are endowed with a
symmetry-protected topological gapped ground state [15,16],
in stark contrast to the well-known spin-1/2 analog, which
supports a quasi-long-range ordered critical phase, known
as the Tomonaga-Luttinger liquid (TLL). In this regard,
higher-dimensional magnets provide a testbed for spin-wave
theory, while the spin-wave approximation usually fails in
one dimension. The remarkable difference between one-
dimensional (1D) AFM systems of integer and half-integer
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spins opens a highly successful avenue in understanding
the low-dimensional strongly correlated electronic materials.
The isotropic Heisenberg AFM model has been unexpectedly
coined in a number of nearly ideal quasi-one-dimensional ma-
terials such as Cu(C4H4N2)(NO3)2 [17], Sr2Cu(PO4)2 [18],
KCuF3 [19], CuSO4 5D2O [20], and spin-1 chain materials
like SrNi2V2O8 [21,22], Ni(C2H8N2)2NO2(ClO4) [23,24],
and NiI2 (C7H9N)4 [25]. There have also been attempts to re-
alize spontaneous symmetry breaking and develop true AFM
order in spin-1/2 Heisenberg chains. One scheme under the
consideration is the inclusion of the long-range interactions
[26], which effectively increases the dimensionality and lifts
the rigorous restrictions imposed by the Mermin-Wagner the-
orem.

In fact, long-range interactions occur naturally in numerous
quantum materials [27–30] and versatile quantum simulators
[31–34]. Especially it has been suggested that the existing
cavity-mediated cold atom system [35] or Rydberg dressed
atoms [36–39] could be more ideal experimental platforms for
long-range interactions than solid-state ones. For instance, the
interacting radius of the effective interaction between dressed
atoms and the potential shape can be finely tuned by dressing
to different fine-structure split states [40–43]. The typical
models have considered interactions decaying with distance r
as a power law ∝ 1/rα or a staggered power law ∝ (−1)r/rα ,
ranging from dipolar spin chain [44], Haldane-Shastry chain
[45], to spin-1 chain [46,47]. The effective exchange inter-
actions mediated by either photons or Rydberg dressing are
generally U(1) or Z2-symmetric, and a high degree of sym-
metry, ideally SU(2), can be achieved by adjusting the laser
detunings or increasing bosonic modes. To be specific, it is
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found that the long-range interactions of the longitudinal com-
ponent results in a Wigner crystal phase [48,49], whereas the
transversal one may break a continuous symmetry, resulting
in a continuous symmetry-breaking phase [49,50].

Inspired by the rapid development of quantum information
science, various information measurements have been ex-
ploited to study of quantum critical phenomena in spin chains.
The well-known and widely studied measures are entangle-
ment entropy (EE) [51,52] and fidelity susceptibility (FS),
which diverges at the critical points in the thermodynamic
limit [53,54]. The ground-state EE and FS were deemed to be
capable of qualifying QPTs in many-body systems with short-
range interactions [55–61], even for long-range interacting
system [62–64]. In the paper, we will detect the phase tran-
sitions in AFM Heisenberg chain with long-range anisotropic
interactions by the FS and the EE.

The remainder of this paper is organized as follows. We
introduce the S = 1/2 Heisenberg model with long-range
anisotropic interactions in Sec. II. The details of numerical
methods and measurements are also introduced. In Sec. III,
effects of long-range interactions on correlation functions, the
FS and the EE are investigated. The discussion and summary
are presented in the last section.

II. HAMILTONIAN AND MEASUREMENTS

In what follows, we are interested in a 1D spin-1/2 nearest-
neighbor isotropic AFM chain under the effect of anisotropic
long-range Heisenberg anisotropic interactions, given by

H = J
∑

i

{
�Si · �Si+1 −

∑
r�2

λi,i+r
[
�xy

(
Sx

i Sx
i+r

+ Sy
i Sy

i+r

) + Sz
i Sz

i+r

]}
, (1)

where Sβ
i (β =x, y, z) are spin-1/2 operators at ith site among

total L sites. The AFM coupling J = 1 between the nearest-
neighbor spins is set up as an energy unit for simplicity unless
otherwise stated. The connectivity between two spins at sites
i and i + r separated by a distance of r(� 2) is given by

λi,i+r ≡ λ(−1)rr−α, (2)

for the nonfrustrating long-range interactions. Here we al-
ways choose the nearest-neighbor interactions to be isotropic,
favoring a TLL ground state. The deformation of beyond-
nearest-neighbor couplings breaking from SU(2) symmetry
down to a U(1) symmetry is characterized by the anisotropy
parameter �xy within the x-y plane, which recovers isotropic
interactions for �xy = 1 and reduces to Z2-symmetric Ising
interactions for �xy = 0. In this vein, the interplay of nearest-
neighbor isotropic and longer-range anisotropic interactions
admits certain magnetic symmetry breaking and stabilizes
kaleidoscope of quantum phases. While a solid-state im-
plementation of Hamiltonian Eq. (1) remains challenging,
engineering such graph of interactions can be possibly real-
ized in state-of-the-art cavity QED [65]. To be explicit, in
an array of atomic ensembles within an optical cavity, the
strength of spin-spin interaction patterns, including the flip-
flop and diagonal interactions as well as the decay exponent,

can be delicately resolved in a multimode cavity QED with an
additional drive field [66], and the changing sign is determined
by the phase of the corresponding sinusoidal modulation [67].
The unprecedented controllability of the cavity QED highlight
the graph of interactions in Hamiltonian Eq. (1) becomes
programmable.

The simultaneous appearance of long-range interactions
and symmetry breaking leads to quantum critical phenomena
that is different from short-range interactions. In the limit
of α → ∞ or λ → 0, the Hamiltonian in Eq. (1) is reduced
to a spin-1/2 chain solely with the nearest-neighbor inter-
actions, which can be analytically solved by Bethe ansatz
[68]. For generic parameters {α, λ}, the system becomes non-
integrable. It is anticipated that the ground state is still in
a quasi-long-range ordered phase for a sufficiently large α,
while the system favors long-range order for a small value
of α. For the Heisenberg chain with staggered power-law
decaying interactions, the transition between LRO phase and
quasi-long-range order (QLRO) was successively investigated
in literature [69–72]. At first Parreira et al. pointed out that
the LRO is absent for α > 3 with any λ based on spin-wave
theory [69], indicating that the critical line αc < 3 between
the AFM Néel order and the QLRO phase. Lately, Laflorencie
et al. utilized the staggered structure factor as order parameter
to detect the Néel instability in terms of quantum Monte Carlo
(QMC) simulations. For λ = 1 and �xy = 1, they obtained
αQMC

c = 2.225, which improved the numerical results αSW
c =

2.46 given by the lowest order spin-wave approximation [71].
Recently, Yang et al. studied the QPTs from the perspective of
the fractionalized excitations for chains of length L = 60 us-
ing 400 density-matrix renormalization group (DMRG) states
[72]. The development of the LRO is associated with the
formation of coherent magnons that emerge from deconfined
spinons in the gapless Luttinger liquid, giving rise to αDMRG

c ≈
2.2. Thus, it would be interesting to identify the accurate value
of the critical point across this unconventional phase transition
by other observables with enhanced sensitivity.

As a quantum information metric, the FS has proved
to be particularly useful for detecting the critical points of
symmetry-knowledge unknown systems [73–75]. For a gen-
eral many-body Hamiltonian H (g), the ground-state FS per
site can be calculated by [53,54]

χ (g) = lim
δg→0

−2lnF (g, δg)

L(δg)2
, (3)

where the fidelity F measures the similarity between the two
closest ground states |ψ0(g)〉 and |ψ0(g + δg)〉, which is de-
fined as

F (g, δg) = |〈ψ0(g)|ψ0(g + δg)〉|. (4)

Here g is the variational parameter of H (g) and δg denotes an
infinitesimal deviation. Note that Hamiltonian Eq. (1) cannot
be expressed as a simple form as H (α) = H0 + αHI . Sub-
sequently, we obtain the derivatives of Eq. (2) as δλi,i+r =
−λ(−1)rr−α ln rδα. Due to nonfrustrated characteristics, the
average derivatives of interactions per site is practically con-
sidered as an effective tuning parameter δᾱ = ∑

i< j δλi, j/L.
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Therefore, the FS per site can be calculated numerically by

χ (α) = lim
δα→0

−2lnF (α, δα)

L(δᾱ)2
. (5)

The peak of FS per site is thus used to identify the phase
boundary αc for continuously varying parameters {λ,�xy},
which provides a vital opportunity to testify theoretical
predictions with experimentally accessible results. Another
familiar probe to monitor critical point is the bipartite von
Neumann EE, which is defined by

SA = −Tr(ρA ln ρA). (6)

Here ρA is the reduced density matrix of subsystem A with
respect to the whole system. The EE can also be extracted
from the ground-state wave function |ψ0〉 and hence prop-
erly characterize the QPTs. The ground states of short-ranged
Hamiltonians usually satisfy an area law according to which
the EE SA of a subregion A of the system is proportional to
the size of its boundary area. This area-law conjecture is be
derived from the power-law decay of the bipartite correlations
[76] and numerically verified in various quantum many-body
systems, and is expected to be true in all noncritical phases
[51], even for long-range interacting systems [77]. However, a
logarithmic violation of the area law is usually known to occur
in critical ground states, as is coined by conformal field theory
(CFT), where the system size L is related to the correlation
length ξ near the critical point such as L ∼ ξ and the gap
decays as 1/L. In this case, a coefficient proportional to the
central charge of the underlying CFT, the half-chain EE of 1D
critical systems of finite size L with open boundary condition
satisfy

Sh(L) = c

6
ln L + S0, (7)

where c is the central charge, and S0 is a nonuniversal
constant. However, the area law for long-range interacting
systems is still elusive. The conformal symmetry will break
down under the long-range interactions when α is small
[50,78,79], as the long-range interactions results in correlation
patterns similar to those in critical phases. To this end, we
calculate the effective central charge ceff as a function of α,
which is obtained by calculating the half-chain EE for two
chains with different L1 and L2. By using finite-size DMRG
algorithm, the effective central charge can be obtained by

ceff = 6[Sh(L2) − Sh(L1)]

ln(L2) − ln(L1)
. (8)

We emphasize that ceff may not have the meaning of the
central charge for the short-range interacting cases with con-
formal symmetries, although we find the half-chain EE always
obeys the scaling form in Eq. (7).

A precise numerical determination of αc poses significant
technical challenges in terms of various criticality measures.
Theoretically, the treatment of quantum many-body systems is
notoriously complicated so that many investigations are still
accessible by numerical techniques like the DMRG method
[80–82], the present studies of Hamiltonian Eq. (1) can be
simulated with very high accuracy. Based on matrix prod-
uct states, we adopt both infinite-size DMRG (iDMRG) [83]
and finite-size DMRG [84] where up to m = 2000 in the
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FIG. 1. Phase diagram of Hamiltonian Eq. (1) as functions of α

and λ with �xy = 1. The boundary (-•-) between QLRO and LRO is
computed by the large scale QMC simulation [71], and the results (-
�-) is obtained by the FS. It is noted that the LRO phase is equivalent
to Néel phase in 1D spin systems. The symbols (∗,×, +) mark the
positions of parameters used in Fig. 2.

truncation of bases are kept, and this allows the truncation
error to be smaller than 10−9. The long-range interactions
can be approximated by a summation of finite exponential
terms [85,86], which inevitably introduces additional system-
atic error and corrupts the numerical results of FS. In our
calculations of finite-size DMRG algorithm, we handle with
the long-range interactions using a summation over matrix
product operators (MPOs). Our codes are mainly based on
iTensor C + + library [87]. Since the z-component of the total
spins for the present system commutes with the Hamiltonian
Eq. (1), the ground-state energy is obtained by comparing the
lowest energies for each subspace of Sz

tot = ∑L
i=1〈Sz

i 〉. The
ground state resides in the sector Sz

tot = 0 as a consequence
of the continuous U(1) symmetry therein.

III. RESULTS

With the DMRG algorithm at hand, we analyze the kalei-
doscope of quantum phases that emerge in this system for
different types of long-range exchange interactions. In the
following, we will consider isotropic (�xy = 1), Ising-type
(�xy = 0), and XY -type (�xy = 1.5) anisotropic cases, re-
spectively. Using the powerful tools, the phases of long-range
interacting systems are numerically diagnosed and the corre-
sponding phase diagrams are determined.

A. �xy = 1

For the long-range isotropic Heisenberg interactions, i.e.,
�xy = 1, by using a combination of QMC and analytic meth-
ods, Laflorencie et al. have studied the phase diagram in the
λ − α plane [71], as is shown in Fig. 1. It is shown that the
critical point between the Néel phase and the QLRO phase
increases sharply from αc(λ = 0+) = 2 to αc(λ = 8) ≈ 2.7.
To further understand two phases, we investigate the correla-
tion functions of the system using iDMRG, which can avoid
the boundary effects. The correlation functions 〈Sz

i Sz
i+r〉 and

〈S+
i S−

i+r〉 with respect to the distance r for α = 2.1, λ = 1 are
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FIG. 2. Loglog-plot correlations 〈S+
i S−

i+r〉, 〈Sz
i Sz

i+r〉 versus the
distance r with �xy = 1 for (a) λ = 1, α = 2.10; (b) λ = 0.5, α = 2
and (c) λ = 0.01, α = 1.

shown in Fig. 2(a). As we know, for 1D spin-1/2 short-range
AFM Heisenberg system, the spin-spin correlation function

〈�Si · �Si+r〉 ∝ (−1)r
√

ln r

r
, (9)

is expected to characterize the QLRO phase, and

lim
r→+∞〈�Si · �Si+r〉 = ±m2

c (10)

is capable of identifying the Néel phase [88]. The power-law
decay of 〈Sz

i Sz
i+r〉, 〈S+

i S−
i+r〉 in Fig. 2(a), implies limr→∞〈�Si ·

�Si+r〉 would approach zero and the ground state for {α = 2.1,
λ = 1} under consideration is within the QLRO phase and
thus the critical point of Néel-to-QLRO transition should be
below 2.1 for λ = 1. The spatial correlation functions for
{α = 2, λ = 0.5} are also calculated, and the QMC results
showcase the system should be in Néel phase. One finds
〈Sz

i Sz
i+r〉 and 〈S+

i S−
i+r〉 also exhibit a power-law decay, as is

observed in Fig. 2(b), which means the ground state remains
the QLRO phase. These above mentioned discoveries indicate
the critical points retrieved by the QMC are not accurate. A
more creditable measure should be adopted to determine the
phase boundaries.

To alleviate the controversy by the discrepancy between
the QMC results (cf. Fig. 1) and correlations (cf. Fig. 2), we
consider a limiting case, i.e., λ → ∞, which can be equiv-
alently implemented by switching off the nearest-neighbor
isotropic interactions in Hamiltonian Eq. (1) with finite λ. The
absence of the LRO has been rigorously proven for α > 3
with λ = 1 [69,89], and was lately extended to arbitrary λ
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Δ

1/L

α=2.7

α=2.9

α=3.1

α=3.3

α=3.5

FIG. 3. (a) Half-chain EE versus ln L for different α with �xy=1,
λ = ∞. Symbols show numerical results obtained by DMRG cal-
culations, and solid lines are linear fits of the data. (b) Finite-size
scaling of the energy gap � with various α. Symbols show numerical
results obtained by DMRG calculations, and solid lines are fits of the
data by quadratic polynomials in 1/L.

[71]. The critical point αSW
c (λ → ∞) = 2.9032 was inferred

by the spin-wave approximation [71]. In this case, we use the
EE to speculate the critical point. We find the EE decreases
monotonically with increasing α. In particular, the EE always
shows a logarithmic growth with the system size as Sh ∝ ln L
[Fig. 3(a)], which can be treated as reminiscent of gapless
ground state in both the QLRO phase and the Néel phase [72],
as is indicated in Fig. 3(b). Consequently the signal of the QPT
is hardly discerned from the EE.

The impetus to identify the precise position of the quantum
critical point(QCP) was given by the FS, which has been
proven to be capable of detecting the phase transition suc-
cessfully between two gapless phases [49]. To this end, we
will adopt the FS to identify the QCP between the Néel phase
with LRO and the QLRO phase for λ = ∞ as a glimpse. The
numerical results are shown in Fig. 4(a). One can observe
the peak of the FS increases with the system size L nearby
α = 3.1. To locate the critical points αc in the thermodynamic
limit, we have used the finite-size scaling theory [90], which
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lnL

FIG. 4. (a) Fidelity susceptibility per site is plotted as a function
of the parameter α on different system sizes L with �xy = 1, λ= ∞.
(b) Scaling of the peak positions of χ .
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FIG. 5. (a) Fidelity susceptibility per site is plotted as a function
of the parameter α on different system sizes L with �xy = 1, λ = 1.
(b) The corresponding scaling of the peak positions of χ .

can be used in finite systems with long-range interactions [91].
The position of the maximal points of the FS can be fitted by
the following formula:

|αc(L) − αc| ∼ L−b, (11)

where b is a constant and αc is the QCP in the thermodynamic
limit. For properly chosen values of αc = 3.00, b = 0.85, we
can see from Fig. 4(b) that a linear relation following Eq. (11)
for different L is verified. Our results indicate the critical
points αc would approach 3.0 as λ → ∞. Recall that Parreira
et al. pointed out the nonexistence of the Néel phase at zero
temperature for α > 3 for λ = 1 [69] and a straightforward
extension for all λ [71]. In this sense, the surprising consis-
tence between our result with the previous results confirm that
the FS shows high accuracy and reliability in detecting the
critical point of the Néel-to-QLRO transitions.

Next we investigate the case of λ = 1. The FS results for
various system sizes are shown in Fig. 5(a). The correspond-
ing finite-size scaling according to Eq. (11) is illustrated in
Fig. 5(b), giving rise to αc = 1.955, b = 1.0. In contrast to
the QMC result αQMC

c = 2.225 ± 0.025 and the spin-wave
result αSW

c = 2.46, the obtained value of αc indicates that the
ground state for α = 2.1 is within the QLRO phase. This is
consistent with the correlations in Fig. 2(a). To this end, the FS
is calculated for different λ and the positions of critical points
can be precisely retrieved from the FS results for λ � 0.02.
One finds αc � 1.12 for λ = 0.02, whereas the positions of
the critical points become elusive through the peak of the FS
for λ < 0.02. As is observed in Fig. 2(c), it is found that the
correlations 〈Sz

i Sz
i+r〉, 〈S+

i S−
i+r〉 tend to a constant for {α = 1,

λ = 0.01}, implying that the critical point αc � 1 when λ →
0+, which is consistent with spin-wave result. Based on the
above analysis of correlation functions and the FS, we obtain
the critical points and establish the ground-state phase dia-
gram in Fig. 1. It is clear that the critical values ac(λ) get lower
than those obtained by the large scale QMC simulation. The
deviation is extremely prominent for small λ but negligible for
large λ.
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FIG. 6. Phase diagram of Hamiltonian Eq. (1) as functions of α

and λ with �xy = 1.5. Inset: Correlations 〈S+
i S−

i+r〉, 〈Sz
i Sz

i+r〉 versus
the distance r for λ = 1, α = 2 with �xy = 1.5.

B. �xy = 1.5

Next, we begin to study the effect of anisotropy of long-
range exchange interactions. First, the XY -type (�xy > 1)
exchange interactions are considered. The phase diagram of
Hamiltonian Eq. (1) with �xy = 1.5 as functions of α and
λ is shown in Fig. 6. For sufficiently large α, the system
would be in the QLRO phase. As the decay exponent α gets
smaller, the long-range interactions will become dominated.
The correlation functions for {α = 2, λ = 1} are shown in the
inset of Fig. 6, where 〈Sz

i Sz
i+r〉 tends to vanish as r → ∞,

while 〈S+
i S−

i+r〉 will alternate between −0.1 and 0.1, which
means that the xy-Néel phase is stabilized with breaking of
the continuous U(1) symmetry in the x-y plane. In a sense, the
correlation function 〈S+

i S−
i+r〉 can act as an order parameter

for the QPT between the QLRO and U(1)-symmetric broken
phase. The ground-state FS per site χ for λ = 1 is exhibited in
Fig. 7(a). Following the similar strategy as SU(2) symmetric
model, the critical point αc = 2.42 between the xy-Néel and
QLRO phase is identified from Fig. 7(b). Similarly, the EE
scales logarithmically with the system size in the xy-Néel
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FIG. 7. (a) Fidelity susceptibility per site is plotted as a function
of the parameter α on different system sizes L with λ = 1, �xy = 1.5.
(b) The corresponding scaling of the peak positions of χ .
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FIG. 8. (a) Half-chain EE versus ln L for different α with �xy =
1.5, λ = 1. (b) Finite-size scaling of the energy gap � with various
α. Symbols show numerical results obtained by DMRG calculations,
and solid lines are linear fits of the data in 1/L.

phase, as is disclosed in Fig. 8(a), suggesting that the xy-
Néel phase remains gapless. To validate the gapless nature,
the finite-size energy gap �(L) is calculated for α < αc in
Fig. 8(b). The linear fitting with respect to 1/L designates
that �(∞) will vanish in the thermodynamic limit and the
dynamical exponent z = 1.

C. �xy = 0

We can consider the Ising-type (�xy < 1) long-range in-
teractions. Here we exhibit a special case, i.e., �xy = 0. The
phase diagram of Hamiltonian Eq. (1) as functions of α and
λ is shown in Fig. 9. For sufficiently large α, the system
also would enter the QLRO phase. As the decay exponent
α decreases, the long-range Ising interactions will become
dominated. The correlation functions for {α = 3, λ = 1} are
shown in the inset of Fig. 9, where 〈S+

i S−
i+r〉 exhibits an

oscillating decay until vanishes as r → ∞, while 〈Sz
i Sz

i+r〉
alternates between −0.053 and 0.053, implying the charac-
teristic of Z2 symmetry broken z-Néel phase.
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i+r〉 versus
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Moreover, we find that the phase transitions between z-
Néel and QLRO can be sensitively detected by both the FS
and the EE. In Fig. 10(a), the FS per site with respect to α

for different system sizes L is presented and the peak of the
ground-state FS becomes pronounced with increasing system
sizes, which signals the occurrence of the QPT. Regarding the
finite-size scaling in Eq. (11), αc = 3.88 and b = 0.40 can
be extracted from Fig. 10(b). Further evidence for indicating
the z-Néel-to-QLRO transition is provided by the EE, which
is shown in Fig. 11(a). Upon increasing the system size L,
the EE shows a logarithmic growth for α > αc but saturates
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FIG. 11. (a) Half-chain EE is plotted as a function of the de-
cay exponent α on different system sizes L with �xy = 0, λ = 1.
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corresponding scaling of peak positions of Sh.
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quickly otherwise [see Fig. 11(b)], suggesting the z-Néel
phase is gapped and the breaking of conformal symmetry. The
effective central charge ceff would be zero [cf. Fig. 11(c)].
Similar to that of the FS, the finite-size scaling of the EE
yields αc = 3.88, b = 0.457, as is exhibited in Fig. 11(d). It is
worthy noting that the critical point αc with �xy = 0 becomes
vanishing when the parameter λ tends to zero, and diverges
when λ increases to the infinity.

IV. DISCUSSION

In this paper, we have studied the quantum phase tran-
sitions (QPTs) in the one-dimensional spin-1/2 chains with
modulated long-range power-law-decaying interactions in
terms of the density-matrix renormalization group technique.
Together with the correlations and the entanglement en-
tropy (EE), the ground-state fidelity susceptibility (FS) are
employed to determine the phase boundary. The XY -type
long-range interactions lead to the emergence of U(1)-
symmetric broken xy-Néel phase with long-range order (LRO)
along easy axes [92], akin to the SU(2) symmetry broken Néel
phase induced by isotropic long-range interactions, while the
Ising-type long-range interactions prompt the Z2 symmetry
broken z-Néel phase. The FS can detect the QPT between
the gapless quasi-long-range order (QLRO) phase and three
different Néel phase, whether it is gapless or not. The FS
proved to be a reliable tool to determine the ground-state
phase diagram. An area-law scaling is still valid in the gapped
phase in the presence of the long-range interactions, although
it was originally derived for the short-range interacting Hamil-
tonian. Figures 3(a) and 8(a) demonstrate that the half-chain

EE satisfies a logarithmic scaling with respect to the system
size in gapless phases. In this respect, the half-chain EE can
faithfully seize the QPT between the gapless QLRO phase
and the gapped z-Néel phase, while it is insensitive to QPTs
between two gapless phases, such as QLRO to xy-Néel phase
transition, QLRO to Néel phase transition. The insensitivity of
the EE at quantum critical points between gapless phases may
be traced back to the gapless mode associated with the spon-
taneous breaking of the continuous symmetry, sparking the
challenge to demand much larger-scale computation for the
effective central charge. In this context, using the maximum
of bipartite EE as an indicator of a QPT from a gapless phase
to another gapless phase is still elusive. The models under
consideration could be envisioned in quantum simulation in
ultracold atoms [67,93], opening the prospect for experimen-
tal investigation of the issues confronted here.
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torization in the Heisenberg chain with Dzyaloshinskii-Moriya
interaction, Phys. Rev. B 100, 024423 (2019).

[4] W.-L. You, P. Horsch, and A. M. Oleś, Quantum phase tran-
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