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Classical density functional theory in the canonical ensemble
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Classical density functional theory for finite temperatures is usually formulated in the grand-canonical ensem-
ble where arbitrary variations of the local density are possible. However, in many cases the systems of interest
are closed with respect to mass, e.g., canonical systems with fixed temperature and particle number. Although
the tools of standard, grand-canonical density functional theory are often used in an ad hoc manner to study
closed systems, their formulation directly in the canonical ensemble has so far not been known. In this work,
the fundamental theorems underlying classical DFT are revisited and carefully compared in the two ensembles
showing that there are only trivial formal differences. The practicality of DFT in the canonical ensemble is
then illustrated by deriving the exact Helmholtz functional for several systems: the ideal gas, certain restricted
geometries in arbitrary numbers of dimensions, and, finally, a system of two hard spheres in one dimension (hard
rods) in a small cavity. Some remarkable similarities between the ensembles are apparent even for small systems
with the latter showing strong echoes of the famous exact of result of Percus in the grand-canonical ensemble.

DOI: 10.1103/PhysRevE.105.034120

I. INTRODUCTION

Density functional theory (DFT) is a powerful reformu-
lation of equilibrium statistical mechanics that has found
applications throughout physics. The most well-known ver-
sion of DFT is that for quantum systems at zero temperature
(qDFT) which is a fundamental tool used in applications in
materials science, chemistry and physics [1,2]. Conceptually
related, but quite different in practice, is classical DFT (cDFT)
for systems at nonzero temperature (see, e.g., Refs. [3,4]).
Recently, quantum DFT at nonzero temperatures has drawn
increasing attention as well (see, e.g., Refs. [5,6]). All three
varieties have the same conceptual structure: One proves that
there is one-to-one mapping between external applied fields
and the local number density. A corollary of this proof is
the existence of a functional of the one-body density which
is minimized by the equilibrium density distribution. At zero
temperature the value of the functional evaluated at its mini-
mum is the ground-state energy of the system, whereas for the
finite-temperature cases it is the grand-canonical free energy.
In general, this energy functional is not known and applica-
tions depend on carefully constructed approximate functionals
which are usually constrained by various exact limits and
scaling relations, in the quantum case, or by certain specific
exact results in the classical case.

An aspect of DFT that has always caused confusion is the
fact that the classical theorems for finite-temperature systems
are proven in the grand-canonical ensemble [7]. One reason
for this is simply that it is easier, at the formal level, to work
in the grand ensemble than it is under the constraint of fixed
particle number that is required for the canonical ensemble.
In typical DFT applications, the distinction is often of little

*jlutsko@ulb.ac.be; http://www.lutsko.com.

practical importance since the ensembles are equivalent in
the thermodynamic limit. However, in applications on small
systems, in particular, the differences between the ensembles
can be qualitatively large. It is sometimes thought that one can
simply minimize the grand-canonical energy functional under
the constraint of a fixed number of particles and thereby get
the canonical result but this is not true: This only fixes the
average number of particles in the grand-canonical calculation
and does not eliminate the effect of particle number fluctua-
tions which do not exist in the true canonical system. Besides
small systems, another important motivation for wanting a
canonical version of DFT is that dynamical models often
require as input a free energy functional and it is natural
to use the sophisticated functionals developed in DFT [8].
However, dynamical models are almost always formulated for
canonical systems (e.g., starting from the Liouville equation)
and so the use of grand-canonical energy functionals is al-
ways open to question. This also holds true for dynamical
density-functional theory [9,10], although the point is often
not discussed.

Over the years, there have been a number of proposals
coming from the statistical mechanics community [11], the
quantum condensed matter community [12] and the classical
DFT community [13,14] for extracting more or less exact
canonical results from grand-canonical calculations (or in
general, results in one ensemble from calculations in another).
However, the direct formulation of finite-temperature DFT in
the canonical ensemble seems to have been little explored
until now. A notable exception is the work of White and
Velasco [15] and of White and González [16]. In these papers,
the formalism is discussed without, however, giving construc-
tive derivations of the variational principle and without giving
exact results beyond the basic example of the ideal gas. One
should also mention work by Ashcroft [17], who similarly
explores some of the formal statistical mechanics of cDFT in
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the canonical ensemble but again without any applications.
The perspective of the present work differs from previous
discussions in two ways. First, by comparing constructive
proofs of the formalism in the two ensembles, it becomes clear
that there is no overwhelming difference in the formalism of
DFT in the open and closed ensembles. This is not to say
that there are no differences, as sometimes implied in formal
discussions (see, e.g., Parr and Wang [18]) but rather that the
differences are easily accounted for. Second, the present dis-
cussion differs in further illustrating this point by development
of nontrivial exact results in the canonical ensemble mirroring
those already known in the grand-canonical ensemble. In the
next section, the basic theorems of Mermin and Evans that
underlie finite-temperature (classical) DFT are revisited by
following them step by step in both the canonical and the
grand-canonical ensembles. The result is that there is virtu-
ally no difference aside from the fact that in the canonical
ensemble the relation between external fields is not one to
one, as in the grand-canonical ensemble, but rather the local
density maps uniquely onto an affine family of external fields,
which makes little practical difference. This formal similar-
ity is exploited in the third and fourth sections where some
exact results are given. First, the rather trivial example of the
ideal gas, previously known from the work of White et al.
[15,16], is rederived from the present perspective. Second,
the exact functionals for various collections of small cavities
in arbitrary dimensions are determined and compared to the
corresponding grand-canonical results. Third, the highly non-
trivial problem of hard rods in one dimension is discussed.
In the grand-canonical ensemble, the exact functional for this
system was given by Percus [19–21] and these have since
played in a central role in the development of cDFT [4].
The problem is in some ways more difficult in the canonical
ensemble and here only the special case of two hard rods in
a small cavity is worked out. Nevertheless, it is possible to
construct the exact solution and in the limit that the cavity
becomes just large enough to hold two rods, the functional
is very similar to Percus’s general result, which is quite sur-
prising given that one is in some sense making the worse
comparison possible—a grand-canonical result to a canonical
result for a very small system. The paper concludes with a
discussion of the implications of these results.

II. DFT IN THE CANONICAL ENSEMBLE

A. Notation

Consider a system of N particles with positions and mo-
menta qi and pi, respectively, for 1 � i � N . The collection
of all phases will be denoted as �(N ) and the Hamiltonian for
the N-particle system is ĤN where the caret means that the
quantity depends on the phases �(N ). The systems are subject
to an external one-body field φr so that

ĤN [φ] = ĤN [0] +
N∑

i=1

φqi , (1)

where the square brackets denote a functional dependence
and, in order to keep separate the function and functional
dependencies, positions and momenta will be denoted as sub-
scripts so that what is written here as φqi would normally
be written as φ(qi ). In the following, I will give the equa-

tions for each step of the arguments simultaneously for the
grand-canonical (GC) and canonical (C) ensembles so that the
close similarity—and important differences—are apparent.

B. Definitions

Let

f̂N [φ] = 1

ZN [φ]N!hND
exp(−βĤN [φ]), (C)

f̂Nμ[φ] = 1

�μ[φ]N!hND
exp[−β(ĤN [φ] − μN )], (GC)

(2)

where h is Planck’s constant, β = 1/kBT is the inverse tem-
perature and kB is Boltzmann’s constant, and μ is the chemical
potential. For the canonical case, this is just the usual equilib-
rium distribution while for the grand-canonical case, it is the
N-body contribution to the full distribution. The canonical and
grand-canonical partition functions are

ZN [φ] = 1

N!hND

∫
exp(−βĤN [φ])d�(N ), (C)

�μ[φ] =
∞∑

N=0

1

N!hND

∫
exp[−β(ĤN [φ]−μN )]d�(N ), (GC)

(3)

and the corresponding free energies are

βAN [φ] = − ln ZN [φ], (C)

β�μ[φ] = − ln �μ[φ]. (GC). (4)

The central quantity in the analysis is of course the average
local density. It is defined in terms of the microscopic density,

ρ̂Nr =
N∑

i=1

δ(r − qi ), (5)

as

ρNr[φ] =
∫

ρ̂Nr f̂N [φ]d�, (C)

ρμr[φ] =
∞∑

N=0

∫
ρ̂Nr f̂Nμ[φ]d�. (GC) (6)

Notice that in terms of the density one has that the Hamilto-
nian can be written as

ĤN [φ] = ĤN [0] +
∫

ρ̂Nrφrdr, (7)

and as a consequence, one verifies from the definitions that

δβAN [φ]

δβφr
= −δ ln ZN [φ]

δβφr
= ρNr[φ], (C)

δβ�μ[φ]

δβφr
= −δ ln �μ[φ]

δβφr
= ρμr[φ], (GC) (8)

and it is useful below to note the elementary result that

∂β�μ[φ]

∂μ
= −〈N〉μ = −

∫
ρμr[φ]dr ≡ −Nμ, (9)

the average number of particles.
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Finally, the central actors in the following will be the func-
tionals that depend on two different one-body potentials φr
and ψr:

�N [φ,ψ] ≡ AN [ψ] + kBT
∫

f̂N [φ] ln
f̂N [φ]

f̂N [ψ]
d�(N ), (C)

�μ[φ,ψ] ≡ �μ[ψ] + kBT
∞∑

N=0

∫
f̂Nμ[φ] ln

f̂Nμ[φ]

f̂Nμ[ψ]

× d�(N ), (GC) (10)

which, after substuting the explicit expressions for the func-
tions f̂N [φ] from Eq. (2), can also be written as

�N [φ,ψ] = AN [φ] +
∫

ρNr[φ](ψr − φr )dr, (C)

�μ[φ,ψ] = �μ[φ] +
∫

ρμr[φ](ψr − φr )dr. (GC) (11)

C. Fundamental theorem: Relation between fields and densities

From the Gibbs inequality, one immediately finds that

�N [φ,ψ] � AN [φ0], (C)

�[φ,ψ] � �μ[φ0], (GC) (12)

with equality if and only if

f̂N [φ]

f̂N [φ0]
= 1, (C)

f̂Nμ[φ]

f̂Nμ[ψ]
= 1, (GC) (13)

for all �(N ). (Note that this requirement holds up to a set of
measure zero.) To understand the meaning of the requirement
for equality, we substitute the explicit expressions for f̂N and
f̂Nμ and after rearranging one finds

{
f̂N [φ]

f̂N [ψ]
= 1

}
→

{
exp

[
−β

N∑
n=1

(φqn − ψqn )

]
=

∫
exp(−βĤN [φ])d�(N )∫
exp(−βĤN [ψ])d�(N )

}
, (C)

{
f̂Nμ[φ]

f̂Nμ[ψ]
= 1

}
→

{
exp

[
−β

N∑
n=1

(φqn − ψqn )

]
=

∑∞
N ′=0

1
N ′!hN ′D

∫
exp[−β(ĤN ′ [φ] − μN ′)]d�(N )∑∞

N ′=0
1

N ′!hN ′D
∫

exp[−β(ĤN ′ [φ0] − μN ′)]d�(N )

}
, (GC) (14)

where the brackets are used to indicate complete equations and the arrows mean that the right-hand equation is just a rewriting
of the left-hand equation. In the right-most parts of each of these implications, the left-hand sides of the equations depend on
the field at all points in space while the right-hand sides are constants: This means that in both cases the equations can only be
satisfied if φr − ψr = c for some constant, c. Substituting into both sides and using the fact that ĤN [φ + c] = ĤN [φ] + Nc then
gives {

f̂N [φ]

f̂N [ψ]
= 1

}
→ {exp (−βNc) = exp (−βNc)}, (C)

{
f̂Nμ[φ]

f̂Nμ[ψ]
= 1

}
→

{
exp (−βNc) =

∑∞
N ′=0

1
N ′!hN ′D

∫
exp{−β[ĤN ′ [ψ] − (μ − c)N ′]}d�(N )∑∞

N ′=0
1

N ′!hN ′D
∫

exp[−β(ĤN ′ [ψ] − μN ′)]d�(N )

}
, (GC) (15)

and now the fundamental difference between the ensembles appears: The condition holds in the canonical ensemble for all values
of the constant, whereas in the grand-canonical ensemble, since the expression must hold for all N and yet the right-hand side is
independent of N , the only choice is c = 0.

Using this information, the result up to this point can be summarized as

{φr = ψr + c} ∨ AN [ψ] < AN [φ] +
∫

ρNr[φ](ψr − φr )dr, (C)

{φr = ψr} ∨ �μ[ψ] < �μ[φ] +
∫

ρμr[φ](ψr − φr )dr, (GC) (16)

Repeating the derivation but switching the role of the two fields gives

{φr = ψr + c} ∨ AN [φ] < AN [ψ] +
∫

ρNr[ψ](φr − ψr )dr, (C)

{φr = ψr} ∨ �μ[φ] < �μ[ψ] +
∫

ρμr[ψ](φr − ψr )dr, (GC) (17)

and adding the two gives

{φr = ψr + c} ∨ 0 <

∫
(ρNr[φ] − ρNr[ψ])(ψr − φr )dr, (C)

{φr = ψr} ∨ 0 <

∫
(ρμr[φ] − ρμr[φ0])(ψr − φr )dr. (GC) (18)
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The import of this result is the conclusion that the densities
generated by two potentials, φ and ψ , can only be equal if the
potentials are trivially related,

ρNr[φ] = ρNr[ψ] ⇒ φr = ψr + c, (C)

ρμr[φ] = ρμr[ψ] ⇒ φr = ψr (GC) (19)

(up to a set of measure zero). It is obvious from the expres-
sions for the local density, Eq.(6), that the reverse implication
holds: Each field (or affine family of fields in the CE) gener-
ates a unique local density, so the final result is

ρNr[φ] = ρNr[ψ] ⇔ φr = ψr + c, (C)

ρμr[φ] = ρμr[ψ] ⇔ φr = ψr, (GC) (20)

thus showing that there is a unique mapping between local
densities and fields, in the GCE, or affine families of fields in
the CE. One way to understand the difference between these is
that in the canonical ensemble, one must also supply a gauge
condition to fix the constant such as min φr = 0 or ZN [φ] = 1,
etc. Given such a condition, the mapping between fields and
densities becomes unique in the canonical ensemble, just as in
the grand-canonical ensemble.

In summary, in the grand-canonical ensemble, each field φ

generates a unique local density ρμr[φ] as evidenced by the
explicit formula for the density, Eq. (6). This means that if
two density fields ρμr[φ] and ρμr[ψ] differ, then the fields
φ and ψ cannot be identical at all points. Conversely, two
fields that differ on a set of nonzero measure, φr and ψr
generate densities which also differ, at least in some regions
of space. What is not proven is that for any given density
field ρr there exists an external field φr such that ρr = ρμr[φ].
This is the well-known “v-representability” problem (because
the external field is often called v rather than φ) and, in fact,
examples will be given below where this is trivially seen not
to be the case. If we let R denote the set of all v-representable
local densities (that is, the set of all local densities ρr for
which a field φr exists such that ρr = ρμr[φ]), then we can
say that there is a one-to-one correspondence between fields
φ and densities ρ ∈ R. Notice that the set R is independent
of the chemical potential since it is obviously the case that

ρμ1r[φ] = ρμ2r[φ + μ2 − μ1], (21)

so a density that is v-representable at some chemical potential
is representable at any chemical potential.

In the canonical ensemble, we can formulate a similar
statement: One can say that there is a one-to-one correspon-
dence between affine families of fields φ + c and densities
ρ ∈ RN . Notice that the density does not need to be labeled
with N since any density that results from Eq. (6) auto-
matically has total number of particles N : This means that∫

ρrdr = N is a necessary condition for ρ ∈ RN . Equiva-
lently, if G is the set of all potentials satisfying a given gauge
condition, then one could say that for a given value of N there
is a one-to-one correspondence between fields φ ∈ G and den-
sities ρ ∈ RN . Again, there is no proof of v-representability of
any arbitrary ρr and, in fact, examples for which there is no
such general representability will be given below although, as
just mentioned, a density with

∫
ρrdr �= N would be a trivial

example.

D. The Helmholtz functional

Let us write the minimization condition in the form

AN [ψ] = min
φ∈G

{
AN [φ] +

∫
ρNr[φ](φ0,r − φr )dr

}
, (C)

�μ[ψ] = min
φ

{
�μ[φ] +

∫
ρμr[φ](φ0,r − φr )dr

}
. (GC)

(22)

Given the uniqueness of the mappings, one can parametrize
the field by v-representable densities and so get

AN [ψ]= min
ρ∈RN

{
AN [φN [ρ]] +

∫
ρr(φ0,r − φNr[ρ])dr

}
, (C)

�μ[ψ]= min
ρ∈R

{
�μ[φμ[ρ]] +

∫
ρr(φ0,r − φr[ρ])dr

}
, (GC)

(23)

or

AN [ψ] = min
ρ∈RN

{
FN [ρ] +

∫
ρrφ0,rdr

}
, (C)

�μ[ψ] = min
ρ∈R

{
F [ρ] +

∫
ρr(φ0,r − μ)dr

}
, (GC) (24)

with

FN [ρ] ≡ AN [φN [ρ]] −
∫

ρrφNr[ρ]dr, (C)

F [ρ] ≡ �μ[φμ[ρ]] −
∫

ρr(φμr[ρ] − μ)dr. (GC)

(25)

Note that in the grand-canonical ensemble, the “Helmholtz”
functional F [ρ] does not depend on the chemical potential as
is easily verified from

∂F [ρ]

∂μ

∣∣∣∣
ρμ

= ∂�μ[φμ[ρ]]

∂μ

∣∣∣∣
ρ

−
∫

ρr

(
∂φμr[ρ]

∂μ
− 1

)
dr

= ∂�μ[φ]

∂μ

∣∣∣∣
φμ[ρ]

+
∫

δ�μ[φ]

δφr

∣∣∣∣
φμ[ρ]

∂φμr[ρ]

∂μ
dr

−
∫

ρr

(
∂φμr[ρ]

∂μ
− 1

)
dr

= −Nμ[φμ[ρ]] +
∫

ρr
∂φμr[ρ]

∂μ
dr

−
∫

ρr

(
∂φμr[ρ]

∂μ
− 1

)
dr

= −
∫

ρr[φμ[ρ]]dr +
∫

ρrdr

= 0, (26)

since by definition ρr[φμ[ρ]] = ρr. This gives the central
result that the canonical (grand-canonical) free energy is ob-
tained by minimizing the functional

�N [ρ; ψ] = FN [ρ] +
∫

ρrφ0,rdr, (C)

�μ[ρ; ψ] = F [ρ] +
∫

ρr(φ0,r − μ)dr, (GC) (27)
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over the density with the minimizing density being ρN [φ0] and
ρμ[ψ], respectively, and with the values of the functionals
�N , respectively �μ, at that minimizing density being the
free energies for the field ψ . Thus, aside from the irrelevant
technicality of the gauge condition, the main formal difference
between DFT in the canonical and grand-canonical ensemble
is the definition of the v-representable densities. In particular,
in the canonical ensemble, the minimization with respect to
densities must obviously respect the canonical condition that
the particle number is fixed. The Helmholtz functionals, F [ρ]
and FN [ρ], are universal in the sense that they depend only
on the interaction potential and on the temperature: Knowing
these, the free energy for any inhomogeneity-inducing exter-
nal field, φ(r), can be obtained via minimization with respect
to the one-body density.

III. EXACT RESULTS

A. Eliminating the momenta

All exact results begin with the evaluation of the partition
function and density in terms of the field. If the Hamiltonian
is written as

ĤN [φ] =
N∑

i=1

p2
i

2m
+ ÛN +

N∑
i=1

φqi , (28)

then the partition functions become

ZN [φ] = 1

N!
�−ND

T

∫
exp

[
−βÛNq(N )−

N∑
i=1

βφqi

]
dq(N ), (C)

�μ[φ] =
∞∑

N=0

1

N!
�−ND

T

∫
exp

[
−βÛNq(N )

−
N∑

i=1

βφqi + βμN

]
dq(N ), (GC) (29)

where the thermal wavelength is

�T = h√
2πmkBT

. (30)

B. The ideal gas

The first example to illustrate the differences between the
ensembles is the ideal gas for which the interaction potential
is zero so

ZN [φ] = 1

N!

[
�−D

T

∫
exp (−βφq)dq

]N

, (C)

�μ[φ] = exp

[
exp (βμ)�D

T

∫
exp (−βφq)dq

]
, (GC)

(31)

and the free energies are

βAN [φ] = − ln
1

N!

[
�−D

T

∫
exp (−βφq)dq

]N

, (C)

β�μ[φ] = − exp (βμ)�D
T

∫
exp (−βφq)dq, (GC) (32)

which, via Eq. (8), imply the local densities

ρNr = N
exp (−βφr )∫
exp (−βφq)dq

, (C)

ρμr = �−D
T exp (βμ) exp (−βφq). (GC) (33)

The next step is to invert this relation. In the canonical case,
it is clear that exp(−βφr ) ∝ �DρNr but there is no way to
determine the proportionality constant without specifying the
gauge. This is of no concern as we simply write

βφr[ρr] = βc − ln
(
�D

T ρr
)
, (C)

βφμr[ρr] = βμ − ln
(
�D

T ρr
)
, (GC) (34)

where c is arbitrary. The partition functions can then be ex-
pressed in terms of the density as

ZN [φ[ρ]] = 1

N!
[exp (−βc)N]N , (C)

�μ[φ[ρ]] = exp

(∫
ρrdq

)
, (GC) (35)

giving the free energies

βAN [φ[ρ]] = − ln

[
1

N!
(e−βcN )N

]
, (C)

β�μ[φμ[ρ]] = −
∫

ρqdq. (GC) (36)

Substituting into Eq. (25) gives the Helmholtz functionals

FN [ρ] = − ln

[
1

N!
(e−βcN )N

]
−

∫
ρr(βc − ln �DρNr )dr, (C)

F [ρ] = −
∫

ρrdr +
∫

ρr ln(�Dρr )dr, (GC) (37)

which can be written as

FN [ρN ] =
∫

ρr ln(�Dρr )dr − ln
NN

N!
, (C)

F [ρ] =
∫

{ρr ln(�Dρr ) − ρr}dr. (GC) (38)

Note that the gauge constant does not appear in the final result
for the canonical ensemble. Using Sterling’s approximation,
one sees that in the limit of large N ,

ln
NN

N!
= N

{
1 + O

[
ln (N )

N

]}
(39)

so one can write

FN [ρ] =
∫ {

ρr ln(�Dρr ) − ρr

[
1 + O

(
ln N

N

)]}
dr, (C)

(40)
showing that the functional becomes the same as that for
the grand-canonical ensemble in the limit of large N . This
reproduces the result previously given by White et al. [15,16].
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FIG. 1. Chains of one, two, and four overlapping cavities. The
chain of length two shows a hard disk and the small black circle is
the volume accessible to its center in the first cavity.

C. Hard particles in a restricted geometry

An example that has played an important role in recent
years [22] is that of a system of identical hard particles con-
fined to a set of cavities each of which is large enough to hold
one, but not two, of the particles. A further complication is that
the cavities may overlap in such a way that if one is filled, then
one or more of the others is partially filled and so blocked. In
the grand-canonical ensemble, this is quite nontrivial, espe-
cially in the case of overlapping cavities, since each may hold
either zero or one particles but exact results are nevertheless
possible since the sum over particle number is restricted by
the number of cavities. Here the functionals for linear chains
of one or more such cavities which overlap in such a way that
if one cavity is filled, then its neighbors cannot be occupied
(see Fig. 1). In the following discussion, the center of the ith
cavity will be si, and we define the dimensionless quantities

ei = �−D
T

∫
Vi

exp (−βφr )drNi =
∫

Vi

ρ(r)dr, (41)

where the integrals are restricted to the volume accessible
to the center of mass of a particle and the second quantity
is the average number of particles in the ith cavity. When
considering the grand-canonical ensemble, the definition of
ei will be modified with the replacement φr → φr − μ.

1. One particle in a chain of M cavities

To see what happens in the canonical ensemble, consider
the case of a chain of M such cavities in D dimensions. The
case of Nc = 1 is referred to as a “zero-dimensional” system
in the limit that the cavity is just large enough to hold a single
particle. Elementary evaluations lead to

Z1[φ] =
M∑

i=1

eiρr = e−βφr

Z1[φ]

M∑
i=1

δ(r ∈ V1) (42)

so that

e−βφr = Z1[φ]�D
T ρr (43)

and

βF1[ρ] = − ln (Z1[φ[ρ]]) +
∫

ρr ln
(
Z1[φ[ρ]]�D

T ρr
)
dr

=
∫

ρr ln
(
�D

T ρr
)
dr, (44)

which is the ideal-gas result, as one would guess. For compar-
ison, the grand-canonical functional is

βF [ρ] = βF (id)[ρ] + 


(
M∑

i=1

N1

)
(45)

with 
(x) = (1 − x) ln(1 − x) + x (see, e.g., Ref. [22]). The
excess functional—the correction to the ideal gas—is nonzero
solely due to the fluctuations in particle number.

2. Two particles in a chain of three cavities

If the three cavities do not overlap, then the functional can
be guessed based on the preceding results. In the new case of
a chain of overlapping cavities the results in both ensembles
are nontrivial. We first consider the grand-canonical ensemble
for which the partition function is

�μ[φ] = 1 + e1 + e2 + e3 + e1e3 (46)

giving the density

ρμr = e−β(φr−μ) (1 + e3)δ(r ∈ V1) + δ(r ∈ V2) + (1 + e1)δ(r ∈ V3)

�μ[φ]
. (47)

This is integrated over each cavity to get

N1 = 1 + e3

�μ[φ]
e1, N2 = 1

�μ[φ]
e2, N3 = 1 + e1

�μ[φ]
e3 (48)

and from this system we find

e1 = N1

1 − N1 − N2
, e2 = N2 − N2

2

(N2 + N3 − 1)(N1 + N2 − 1)
, e3 = N3

1 − N2 − N3

� = 1 − N2

(N1 + N2 − 1)(N2 + N3 − 1)
(49)

and

e−β(φr−μ) = �μ[φ]ρμr

{(
1 − N3

1 − N2

)
δ(r ∈ V1) + δ(r ∈ V2) +

(
1 − N1

1 − N2

)
δ(r ∈ V3)

}
(50)

so that the Helmholtz functional for the grand-canonical ensemble is

βF [ρ] =
∫

ρr ln ρrdr − N1 ln

(
N3

1 − N2

)
− N3 ln

(
N1

1 − N2

)
. (51)

034120-6



CLASSICAL DENSITY FUNCTIONAL THEORY IN THE … PHYSICAL REVIEW E 105, 034120 (2022)

In the canonical ensemble, one particle is an ideal gas so
we turn to the case of two particles. Here

Z2[φ] = e1e3

ρ2r = e−βφr

e1
δ(r ∈ V1) + e−βφr

e3
δ(r ∈ V3) (52)

so

e−βφr = e1ρ2rδ(r ∈ V1) + e3ρ2rδ(r ∈ V3) (53)

and it follows that

βF2[ρ] =
∫

V1

ρr ln ρrdr+
∫

V3

ρr ln ρrdr, (54)

which is not an ideal gas unless the potential happens to
forbid occupancy (i.e., to be infinite) in the middle cavity.
Note that there are several a priori constraints on the density:
N1 = N3 = 1 and N2 = 0.

3. Two particles in a chain of four cavities

For two particles in a chain of four cavities, the canonical
partition function is

Z2[φ] = e1e3 + e1e4 + e2e4 (55)

and repeating the usual steps one finds the field

Z2[φ]e−βφr = 1

e3 + e4
ρ2rδ(r ∈ V1) + 1

e4
ρ2rδ(r ∈ V2)

+ 1

e3
ρ2rδ(r ∈ V3) + 1

e1 + e2
ρ2rδ(r ∈ V4)

(56)

giving the Helmholtz functional

F2[ρ] =
∫

ρ2r ln ρ2rdr + N1 ln
1

e3 + e4
+ N2 ln

1

e4

+ N3 ln
1

e1
+ N4 ln

1

e1 + e2
+ ln (e1e3 + e1e4 + e2e4)

(57)

with the constants determined from

Z2[φ]N1 = (e3 + e4)e1Z2[φ]N2 = e2e4

Z2[φ]N3 = e1e3Z2[φ]N4 = (e1 + e2)e4. (58)

The physical requirements that one particle be in one of the
first two cavities and the second in one of the last are reflected
in the degeneracy N1 + N2 = N3 + N4 = 1, so there are only
two independent equations giving, e.g.,

N1

N3
= e4

e3
+ 1 → e3 = e4

(
N1

N3
− 1

)−1

N4

N2
= e1

e2
+ 1 → e2 = e1

(
N4

N2
− 1

)−1

(59)

and, finally,

F2[ρ] =
∫

ρ2r ln ρ2rdr + N1 ln

(
1 − N3

N1

)
+ N4 ln

(
1 − N2

N4

)
− ln

[
N1N4 − N2N3

(N1 − N3)(N4 − N2)

]

=
∫

ρ2r ln ρ2rdr + (N1 + N4 + 1) ln (N1 − N3)

− N1 ln N1 − N4 ln N4. (60)

For comparison, the grand-canonical ensemble gives

�[φ] = 1 + e1 + e2 + e3 + e4 + e1e3 + e1e4 + e2e4 (61)

and

e1 = N1

1 − N1 − N2

e2 = N2(N2 − 1)

(1 − N2 − N3)(N1 + N2 − 1)

e3 = N3(N3 − 1)

(1 − N2 − N3)(N3 + N4 − 1)

e4 = N4

1 − N3 − N4
, (62)

yielding

βF [ρ] ≡
∫

ρr ln (ρr )dr + (1 − N1 − N3 − N4) ln (1 − N2)

+ (1 − N1 − N2 − N4) ln (1 − N3)

− (1 − N1 − N4) ln (1 − N2 − N3)

− (1 − N3 − N4) ln (1 − N1 − N2)

− (1 − N1 − N2) ln (1 − N3 − N4). (63)

4. Comments on v-representability

Notice that all of these results imply certain limits on v-
representability. For example, in the case of a single cavity,
in the grand-canonical ensemble the average particle number
is restricted to be N1 < 1 [see Eq. (45)]. In the case of a
chain of four cavities, in the canonical ensemble one has that
N1 + N2 = N3 + N4 = 1 since there must be two particles and
since adjacent cavities cannot be simultaneously occupied.
Any density violating these constraints cannot be generated by
a field. Similarly, in the grand-canonical ensemble, it must be
that N1 + N2 < 1 and N3 + N4 < 1 for similar reasons: when
there are zero particles, both sums are zero, when there is one
particle neither sum can be greater than one and for two par-
ticles the canonical condition holds. So, the weighted average
of these giving the grand-canonical result is necessarily less
than one and any density violating this is not v-representable.

IV. HARD RODS IN A CAVITY

Two classes of exactly solvable models have played im-
portant roles in the development of modern cDFT in the
grand-canonical ensemble. The first is that of hard spheres in
one dimension, also known as hard rods. The exact Helmholtz
functional for hard rods was found by Percus in 1976 and will
be given below. As of now, no equivalent result is known for
the canonical ensemble. Attempts to generalize Percus’ result
to higher dimensions eventually led to the development of
fundamental measure theory (FMT) which is widely viewed
as the most sophisticated model functional. The development
of FMT was further guided by the second class of exact
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models, already discussed above, which are hard particles in
small cavities.

A. Grand-canonical

In the grand-canonical ensemble, the exact Helmholtz
functional for the case of a single species of hard rods of
length σ can be written as

F [ρ] =
∫ ∞

−∞
ρx(ln ρx − 1)dx −

∫ ∞

−∞
sx[ρ] ln (1 − ηx[ρ])dx

(64)
with

ηx[ρ] = 1 −
∫ x+ σ

2

x− σ
2

ρydy

sx[ρ] = 1

2
(ρx− σ

2
+ ρx+ σ

2
). (65)

If there is a hard wall at x = 0 and at x = L that means that
the center of a hard rod is confined to the domain [ σ

2 , L − σ
2 ]

and so the external field is infinite and the density ρx = 0

outside this domain. Consider the case that L < 2σ so that
the cavity can only hold a single rod. Some elements of
the grand-canonical ensemble will have zero rods and some
will have one rod so the average total particle number is
between zero and one. In general, ηx[ρ] will therefore always
be between zero and one. Furthermore, if x − σ

2 < σ
2 , so that

ρx− σ
2

= 0, then x < σ and so x + σ
2 < 3σ

2 < L − σ
2 so sx[ρ]

gives (in general) a nonzero contribution. This is all to say
that the nonideal gas part of F [ρ] contributes, as expected.
Nothing conceptually changes as the size of the cavity in-
creases except the maximum value of the average number
of particles.

B. Canonical ensemble

As noted above, a single particle in a cavity is just an
ideal gas, so the simplest nontrivial example would involve
two particles. In the following, it is assumed that the length
of the cavity is in the range 3σ < L < 4σ . The reason for
not directly considering the possibility 2σ < L < 3σ is that
it gives rise to mathematical difficulties that will be discussed
below.

1. The local density

The partition function for the system is

Z2[φ] = 1

2!
�2

T

∫ 5σ
2 +�

σ
2

∫ 5σ
2 +�

σ
2

e−βφy1 e−βφy2 �(|y1 − y2| − σ )dy1dy2, (66)

where L = 3σ + � and so 0 < � < σ and the step function �(z) = 1 for z > 0 and zero otherwise. The local density is

Z2[φ]�2
T ρx = �

(
5σ

2
+ � − x

)
�

(
x − σ

2

)
e−βφx

∫ 5σ
2 +�

σ
2

e−βφy�(|x − y| − σ )dy, (67)

which can be written more explicitly as

Z2[φ]�2
T ρx = �

(
5σ

2
+ � − x

)
�

(
x − 3σ

2

)
e−βφx

∫ x−σ

σ
2

e−βφy dy

+ �

(
3σ

2
+ � − x

)
�

(
x − σ

2

)
e−βφx

∫ 5σ
2 +�

x+σ

e−βφy dy (68)

or, even more explicitly, the density is zero except for

�2
T Z (2)[φ]ρx = e−βφx

∫ 5σ
2 +�

x+σ

e−βφy dy,
σ

2
< x <

3σ

2
, (69a)

= e−βφx

∫ x−σ

σ
2

e−βφy dy + e−βφx

∫ 5σ
2 +�

x+σ

e−βφy dy,
3σ

2
< x <

3σ

2
+ �, (69b)

= e−βφx

∫ x−σ

σ
2

e−βφy dy,
3σ

2
+ � < x <

5σ

2
+ �. (69c)

One sees immediately that the function ρxeβφx is continuous although its first derivative is not and in fact satisfies the jump
conditions

lim
ε→0

(
d

dx
ρxeβφx

)
3σ
2 +ε

= lim
ε→0

(
d

dx
ρxeβφx

)
3σ
2 −ε

+ 1

�2
T Z (2)[φ]

e−βφ σ
2

lim
ε→0

(
d

dx
ρxeβφx

)
3σ
2 +�+ε

= lim
ε→0

(
d

dx
ρxeβφx

)
3σ
2 +�−ε

+ 1

�2
T Z (2)[φ]

e
−βφ 5σ

2 +�. (70)
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The density also obeys the relation

ρxeβφx + ρx+2σ eβφx+2σ = 1

�2
T Z (2)[φ]

∫ 5σ
2 +�

σ
2

e−βφy dy ≡ A,
σ

2
< x <

σ

2
+ �, (71)

which is easily verified by substituting the appropriate expressions for the density from Eq. (69). This will be referred to as the
“duality” relation since it tells us that the functions ρxeβφx in the domains σ

2 < x < σ
2 + � and 5σ

2 < x < 5σ
2 + � are trivially

related.

2. Differential relations

Multiplying Eq. (69) by eβφx and taking the derivative gives a new set of relations

�2Z (2)[φ]
d

dx
(eβφx ρx ) = −e−βφx+σ ,

σ

2
< x <

3σ

2

�2Z (2)[φ]
d

dx
(eβφx ρx ) = e−βφx−σ − e−βφx+σ ,

3σ

2
< x <

3σ

2
+ �

�2Z (2)[φ]
d

dx
(eβφx ρx ) = e−βφx−σ ,

3σ

2
+ � < x <

5σ

2
+ � (72a)

and shifting the spatial variable in the first and third of these gives

�2Z (2)[φ]
d

dx
(eβφx−σ ρx−σ ) = −e−βφx ,

3σ

2
< x <

5σ

2
(73a)

�2Z (2)[φ]
d

dx
(eβφx ρx ) = e−βφx−σ − e−βφx+σ ,

3σ

2
< x <

3σ

2
+ � (73b)

�2Z (2)[φ]
d

dx
(eβφx+σ ρx+σ ) = e−βφx ,

σ

2
+ � < x <

3σ

2
+ �. (73c)

Taking advantage of overlaps between the regions in Eq. (69) and Eq. (73) and repeatedly using the duality relation and shifts
of the spatial arguments (see Supplemental Material [23]) results in a closed systems of equations which can be partially solved
with the result:

d

dx

ρx+σ

d
dx (eβφx ρx )

= ρx+2σ

A − ρxeβφx
− e−βφx ,

σ

2
< x <

σ

2
+ � ≡ D1, (74a)

e−βφx = e−βφ σ
2 +�

ρx

ρσ
2 +�

exp

(∫ x

σ
2 +�

ρy+σ

λy[ρ]
dy

)
,

σ

2
+ � < x <

3σ

2
≡ D2, (74b)

e−βφx = ±�2Z (2)[φ]
d

dx
(eβφx±σ ρx±σ ),

3σ

2
< x <

3σ

2
+ � ≡ D3, (74c)

e−βφx = e
−βφ 5σ

2
ρx

ρ 5σ
2

exp

(∫ 3σ
2

x−σ

ρy

λy[ρ]
dy

)
,

3σ

2
+ � < x <

5σ

2
≡ D4, (74d)

e−βφx = ρx

A − eβφx−2σ ρx−2σ

,
5σ

2
< x <

5σ

2
+ � ≡ D5, (74e)

with

λx[ρ] = λσ
2 +� +

∫ 3σ
2 +�

σ
2 +�

ρydy −
∫ x+σ

x
ρydy = λσ

2 +� +
∫ x

σ
2 +�

ρydy −
∫ x+σ

3σ
2 +�

ρydy

�2Z (2)[φ] = 1

e
βφ 5σ

2 ρ 5σ
2

1

eβφ σ
2 +�ρ σ

2 +�

λ σ
2 +�[ρ] exp

(∫ 3σ
2

σ
2 +�

ρy

λy[ρ]
dy

)
. (75)

Names have been assigned to various domains and the
physical significance of these divisions is as follows: The do-
main D3 is the only one which both hard rods can visit. When
the rightmost rod is in this range, the leftmost is confined to
D1 and when the leftmost is in the overlap range, the rightmost
is confined to D5. The leftmost rod can be in the range D2

when the rightmost rod is not in the overlap region, D3, and
vice versa for D4. In the course of solving the equations, the

following constraints are generated:

∫ σ
2 +�

σ
2

e−βφy dy = e−βφ σ
2 +�

1

ρσ
2 +�

λ σ
2 +�

∫ 5σ
2 +�

5σ
2

e−βφy dy = e
−βφ 5σ

2
1

ρ 5σ
2

λ 3σ
2
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−ρσ
2 +�eβφ σ

2 +�

(ρxeβφx )′σ
2 +�

ρ 3σ
2 +� +

∫ 3σ
2

σ
2 +�

ρydy

=
ρ 5σ

2
e
βφ 5σ

2

(ρxeβφx )′5σ
2

ρ 3σ
2

+
∫ 5σ

2

3σ
2 +�

ρzdz. (76)

The solution of Eq. (74) involves six integration constants:
two from the ordinary differential equation in domain D1,

e−βφ σ
2 +�, e

−βφ 5σ
2 , λ σ

2 +�, and A. Continuity of the quantity
ρxeβφx across the boundaries of the domains gives four con-
ditions and the first two of Eq. (76) already give six. There
is also the definition of A, Eq. (71), the jump conditions,
Eq. (70), and the last of Eq. (76): Clearly, many of these
are redundant. In fact, based on the solution given here, one
can easily show that the jump conditions are automatically
satisfied and that the evaluation of A from its definition ends in
a tautology giving no new information. Also, the second of the
relations in Eq. (76) follows from the first as is easily shown
using Eq. (73b) and the third relation also follows from the
definitions. So, in the end, there are only the four continuity
relations and the first of Eq. (76) and the indeterminacy of the
parameter A represents the gauge freedom of the potential.

As a simple illustration of these results, note first that in
the case of no field (or, more generally, a constant field), the
density is a piecewise-linear function

�2
T Z (2)[φ]ρx =

(
� − x + 3

2
σ

)
,

σ

2
< x <

3σ

2

= �,
3σ

2
< x <

3σ

2
+ �

=
(

x − 3

2
σ

)
,

3σ

2
+ � < x <

5σ

2
+ �,

(77)

with

�2
T Z (2)[φ] = 1

2 (� + σ )2. (78)

The field as a function of the density can be solved analytically
for the case of a constant density ρx = 2

2σ+�
throughout σ

2 <

x < 5σ
2 + � with the result

e−βφx = ρ

A
[1 + eB(x− 1

2 σ− �
2 )],

σ

2
< x <

σ

2
+ �

= ρ

A

B�

B� − 2
e− 2

� ( σ
2 +�−x),

σ

2
+ � < x <

3σ

2

= ρ

A

(B�)3

4(B� − 2)
e− 2

�
(�−σ ) eB(x− 3

2 σ )

[1 + eB(x− 3
2 σ− �

2 )]2
,

3σ

2
< x <

3σ

2
+ �

= ρ

A

B�

B� − 2
e− 2

� (x− 5
2 σ ),

3σ

2
+ � < x <

5σ

2

= ρ

A

[
1 + eB( 5

2 σ+ �
2 −x)], 5σ

2
< x <

5σ

2
+ �,

(79)

where A is the expected arbitrary constant (so that the family
of equivalent potentials is φx − kBT ln A), the constant B is de-

termined from B� = 2 + 2W (e−1) ≈ 2. 556 92 where W (x)
is the Lambert W function and the partition function is

�2Z (2)[φ] =
[

B�

A(B� − 2)

]2 1

2
ρ�e− 2

�
(�−σ ). (80)

3. The Helmholtz functional

The Helmholtz functional is determined from Eq. (25) as
in the case of the ideal gas (see Supplemental Material [23]).
Not all contributions can be explicitly worked out but a useful
result is still possible in the form

F [ρ] =
∫ 5σ

2

σ
2

ρx(ln �T ρx − 1)dx

−
∫ 2σ

σ

sx[ρ] ln (1 − ηx[ρ])dx + O

(
�

σ

)
. (81)

In fact the limit �
σ

= 0 can be derived directly but there
are certain ambiguities which, in this extended calculation,
resolve as terms which separately diverge in the limit �

σ
→ 0

but which are collectively finite for all �
σ

. This was, in fact,
the reason for considering this more general system. It is
interesting to note that the origin of the singularities lies in the
physical fact that for a cavity of length 3σ , the center of one
rod is confined to [ σ

2 , 3σ
2 ] and that of the second to [ 3σ

2 , 5σ
2 ] so

that ρ 3σ
2

= 0 and ησ [ρ] = η2σ [ρ] = 1, the latter fact leading
to difficulties with the log in Eq. (81).

V. CONCLUSIONS

It has been shown that the mapping between the external
field and the density in both the canonical and grand-canonical
ensembles is virtually identical with the only difference being
an unimportant freedom in the canonical ensemble to shift the
field arbitrarily (and this freedom can be removed by imposing
a gauge condition). As a consequence, DFT in the two ensem-
bles is formally identical and this is explicitly seen in the case
of the ideal gas for which the functionals are almost the same
in the two ensembles. Beyond the ideal gas, there are only
a few systems for which exact results have been derived in
the grand-canonical ensemble: Hard particles in small cavities
that can only hold a single particle and, at the other extreme,
hard rods in one dimension with no constraint on the geometry
(and slight generalizations, such as sticky hard rods). It was
shown here that for chains of small cavities, results for small
cavities can be easily obtained in the canonical ensemble.
These can no doubt be extended, as in the grand-canonical
ensemble, to other interesting topologies [22]. Finally, the
important case of hard rods in one dimension was considered
where the general exact result for the grand-canonical ensem-
ble is known. In this case, the canonical ensemble seems to be
more difficult to work with and in fact, the problem of even
two hard rods in a restricted geometry turns out to be difficult
to solve explicitly although a formal solution was constructed.
A remarkable aspect of the resulting Helmholtz functional
was the close similarity it has to the general grand-canonical
result. This can be made even more apparent by writing them
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together:

F [ρ] =
∫ 5σ

2

σ
2

ρx(ln �T ρx − 1)dx −
∫ 2σ

σ

sx[ρ]

× ln (1 − ηx[ρ])dx + O

(
�

σ

)
, (C)

F [ρ] =
∫ 5σ

2

σ
2

ρx(ln �T ρx − 1)dx

−
∫ 3σ

0
sx[ρ] ln (1 − ηx[ρ])dx, (GC) (82)

so that one sees that to leading order in �
σ

, the only differ-
ence is in the limits of the integrals. Nevertheless, the overall
complexity of the full result is far more involved than for the
grand-canonical ensemble, thus highlighting important differ-
ences between them.

Finally, one can only speculate on the broader implications
of these results. Clearly, cDFT exists equally rigorously in
both the canonical and grand-canonical ensembles. The most
important difference between them is in the variety of exact
results available on which to base models and even then, the
gap is not as large as might be expected. Indeed, in the exam-
ples considered here, the functionals show certain similarities
of structure. While this might have been anticipated for the
ideal gas, it is very surprising that even for a very small system
such as the case of two hard rods, the canonical and grand-
canonical Helmholtz functionals can be so similar. While this
does not rigorously justify using grand-canonical functionals
in canonical models, it does suggest that do so—for lack of
better options—is not unreasonable.
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APPENDIX: THE HELMHOLTZ FUNCTIONAL

For completeness, the expression for the Helmholtz func-
tional for two rods in a cavity in the canonical ensemble as
derived in the Supplemental Material [23] is quoted here:

βF2[ρ] = F ideal
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where F ideal
2 is the ideal gas functional, Eq. (38), ηx[ρ], sx[ρ]

are components of the Percus functional, Eq. (65), and

�λ ≡ λσ
2 +� +

∫ 3σ
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ρydy − 1. (A2)

Finally, it is important to note that these expressions are not as
explicit as they appear since the quantities φσ

2 +�, φ 5σ
2
, λ σ

2 +�

are all functionals of the density as well as, of course, the
explicit contributions in φx[ρ].
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