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Percolation thresholds of randomly rotating patchy particles on Archimedean lattices
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We study the percolation of randomly rotating patchy particles on 11 Archimedean lattices in two dimensions.
Each vertex of the lattice is occupied by a particle, and in each model the patch size and number are monodis-
perse. When there are more than one patches on the surface of a particle, they are symmetrically decorated. As the
proportion χ of the particle surface covered by the patches increases, the clusters connected by the patches grow
and the system percolates at the threshold χc. We combine Monte Carlo simulations and the critical polynomial
method to give precise estimates of χc for disks with one to six patches and spheres with one to two patches on
the 11 lattices. For one-patch particles, we find that the order of χc values for particles on different lattices is
the same as that of threshold values pc for site percolation on these lattices, which implies that χc for one-patch
particles mainly depends on the geometry of lattices. For particles with more patches, symmetry becomes very
important in determining χc. With the estimates of χc for disks with one to six patches, using analyses related to
symmetry, we are able to give precise values of χc for disks with an arbitrary number of patches on all 11 lattices.
The following rules are found for patchy disks on each of these lattices: (1) as the number of patches n increases,
values of χc repeat in a periodic way, with the period n0 determined by the symmetry of the lattice; (2) when
mod (n, n0 ) = 0, the minimum threshold value χmin appears, and the model is equivalent to site percolation with
χmin = pc; and (3) disks with mod (n, n0) = m and n0 − m (m < n0/2) share the same χc value. The results
can be useful references for studying the connectivity of patchy particles on two-dimensional lattices at finite
temperatures.
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I. INTRODUCTION

Patchy particles [1,2] are created by modifying the surface
of colloidal particles, where each modified area is regarded
as a patch. One-patch particles with two distinct surface areas
are usually called Janus particles, and two-patch particles are
called triblock Janus particles. These particles can be designed
in various shapes, e.g., spheres, dumbbells, disks, and rods,
and the patches can be decorated with different properties,
e.g., chemical, optical, electrical, and magnetic properties. As
model systems with anisotropic interactions, patchy particles
are used to study equilibrium gels and water [3,4], and they
can self-assemble into open lattices [5–7] such as the entropy-
stabilized kagome lattice [5,6]. In two dimensions, systems of
self-assembled rigid rods (particles with two narrow patches)
exhibit continuous isotropic-nematic phase transitions on dif-
ferent lattices, which have been extensively studied [8–15].
When patchy disks or spheres are compressed tightly in
two dimensions, they form a triangular lattice. Putting Janus
particles onto the densely packed triangular lattice, various
continuous thermodynamic phase transitions and critical phe-
nomena have recently been observed [16–18].

Percolation is extensively studied in stochastic processes,
phase transitions, and critical phenomena, and widely applied
in various problems such as exploring gelation in polymers,
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transport behaviors in porous media, the spread of epidemics,
the fractal structure of landscapes, etc. [19,20] There ex-
ist many studies on percolation of patchy particles in the
continuum space, for which recent examples include differ-
ent percolated states in mixtures of patchy colloids [21],
reentrant percolation of inverse patchy colloids [22] and of
patchy colloids on patterned substrates [23], effects of surface
heterogeneity on percolation thresholds of random patchy
spheres [24], and the design of patchy particle gels with
tunable percolation thresholds [25]. However, except for a
study on directed percolation of patchy disks on the square
lattice [26], we find that the percolation behavior of patchy
particles on lattices remains largely unexplored.

In this work, we study percolation of patchy particles on
different lattices to fill the above gap. As model systems,
we assume that each vertex of the lattice is occupied by a
patchy particle, and that particles rotate randomly (in other
words, the systems are with full lattice occupancy and at the
infinite temperature). Two adjacent particles are considered as
connected only when their patches are in contact with each
other. As the proportion χ of the particle surface occupied
by the patch(es) increases, the clusters formed by connected
particles will gradually become larger. At a threshold value
χc, a cluster that spans the entire lattice first forms, i.e., the
percolation transition occurs. The threshold is an important
parameter for percolation [19,20]; e.g., its dependence on
concentration and temperature was explored in the 1980s in
experimental and theoretical studies of the conductivity in
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FIG. 1. The 11 Archimedean lattices in two dimensions. For
each lattice, all vertices are equivalent if the lattice size is infinite
or the boundary conditions are periodic. Lattice names are used as
in Ref. [37], and under the names symbols are designated using
the general notation proposed by Grünbaum and Shephard [39]. A
brief introduction of the history and nomenclature of the lattices are
available in Ref. [40].

interacting microemulsions [27], and it was recently used to
predict a series of structural changes in compressed SiO2

glasses [28]. Thus we focus on determining the χc values and
exploring the dependence of these values on the symmetry
and geometry of patchy particles and lattices. The results can
provide references for further studies of patchy particles on
two-dimensional (2D) lattices, such as exploring the connec-
tivity of particles at finite temperatures and its relation to
phase behaviors [8–18].

For the purpose above, we first numerically study disks
with one to six patches and spheres with one to two patches,
on all 11 Archimedean lattices in two dimensions, which are
shown in Fig. 1. When there are more than one patches on
a particle, the patches locate symmetrically and share the
same size, as shown for patchy disks in Fig. 2. Monte Carlo
(MC) simulations are conducted to produce independent con-
figurations, and the recently developed critical polynomial
method [29–38] is combined with MC sampling to precisely
estimate χc of these models. For one-patch particles, it is
found that the order of χc values on different Archimedean
lattices is the same as that of threshold values pc for site
percolation on these lattices. This suggests that, for one-patch
particles, the lattice geometry is the most important factor
which affects χc values. For particles with more patches, their

θ

(a) (c)(b)

(e) (f)(d)

FIG. 2. Schematic drawings of patchy disks. On each disk the
dark areas are patches, which share the same size and locate sym-
metrically when their number is more than one. The half-angle θ

characterizes the size of a patch. Panels (a)–(f) show particles con-
taining one to six patches, respectively. Panel (a) also exemplifies the
connection of two particles, i.e., they are considered as connected if
their patches touch each other. The red arrow indicates the direction
of the particle, which is drawn by connecting the center of the particle
and that of one patch.

χc values on different lattices do not follow the same order
as those for one-patch particles, which reflects that symmetry
significantly influence percolation thresholds of particles with
more than one patches.

The role of symmetry in determining the χc values is
further exhibited in analytic calculations of the probabilities
of different patch-covering structures of a particle near the
above numerically estimated values of χc. These calculations
lead to expressions of the probabilities as a function of χ ,
which allow us to prove the equality of χc values for various
models or explain the difference between close χc values for
distinct models. As results, we are able to give precise values
of χc for disks with an arbitrary number of patches on all 11
Archimedean lattices in two dimensions. We find that χc val-
ues for patchy disks on each of the lattices are governed by the
following rules: (1) χc values repeat in a periodic way as the
number of patches n increases, with the period n0 determined
by the symmetry of the lattice; (2) the minimum threshold
value χmin appears when mod (n, n0) = 0, for which the
model of patchy disks is equivalent to site percolation with
χmin = pc; and (3) disks with mod (n, n0) = m and n0 − m
(m < n0/2) share the same value of χc.

The remainder of this paper is organized as follows.
Section II introduces the models and numerical methods.
Section III presents our main results. A brief conclusion and
discussion are given in Sec. IV. More details can be found in
the Supplemental Material [41].

II. MODELS AND NUMERICAL METHODS

A. Models

For the Archimedean lattices, all vertices are equivalent
and the lengths of edges are equal, as shown in Fig. 1. For
the model of a given type of patchy particles on one of the
Archimedean lattices, each vertex of the lattice is occupied
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by a randomly rotating particle. The particle center is located
right at the vertex, and its diameter is set equal to the edge
length of the lattice; thus two particles at the ends of an edge
are in contact with each other. Two neighboring particles are
connected if one patch on one particle touches another patch
on the other particle (the two patches both cover the same
edge). As shown in Fig. 2(a), the size of a patch is character-
ized by the half-angle θ . The one- and two-patch spheres can
be drawn similar to Figs. 2(a) and 2(b), except that a patch is
a sphere cap with θ being the polar angle. For convenience of
comparing thresholds of different types of particles, we also
define the size of patches by the proportion χ of the particle
surface covered by the patches, which is related to θ as

χ = 2nθ/2π = nθ/π (1)

for patchy disks, and as

χ = n

4π

∫ θ

0
sin θdθ

∫ 2π

0
dφ = n(1 − cos θ )/2 (2)

for patchy spheres. Here n is the number of symmetrically
distributed patches on a particle. In experiments, the patch size
can be designed through surface modification or compartmen-
talization [1,2].

B. The critical polynomial

The critical polynomial method is a powerful method pro-
posed and developed in recent years to calculate percolation
thresholds in two dimensions [29–38]. It originated from the
fact that every exactly solved percolation threshold in two di-
mensions can be expressed as the unique root of a polynomial.
For general (solved and unsolved) percolation models in two
dimensions, the critical polynomial was first defined using a
linearity hypothesis and symmetry analyses [29–31]. Then the
recursive deletion-contraction algorithm [32] was proposed to
find the polynomial. The latest developments of the method
are the alternative probabilistic, geometrical interpretation of
the critical polynomial [33] and transfer-matrix techniques for
its calculation [34–37]. Unprecedented estimates for thresh-
olds of unsolved planar-lattice models have been obtained;
e.g., for bond percolation on the kagome lattice, the precision
of the estimate is in the order of 10−17 [37]. The critical
polynomial has also been combined with MC sampling to
provide high-precision estimates of threshold values, e.g., for
nonplanar and continuum percolation models [38], for which
transfer-matrix calculations are difficult.

For a finite periodic lattice B in two dimensions, the proba-
bilistic, geometrical definition of the critical polynomial [33]
is

PB ≡ R2 − R0. (3)

Here R represents the wrapping (or crossing) probabil-
ity [42–44], where “wrapping” means that, when putting the
periodic lattice in two dimensions onto a torus, there exists a
percolation cluster which wraps around the torus. The quantity
R2 is the probability of wrapping in two directions, and R0

is the probability of nonwrapping. If filling the infinite space
in two dimensions using copies of B in some periodic way,
wrapping in two directions means that there is an open cluster

which connects every copy, and nonwrapping means that no
infinite copies of B can be connected by open clusters [33].

Due to universality [33], the root p(L) of PB(p, L) = 0
gives an estimate of the percolation threshold that becomes
more accurate as the linear size L of the lattice B is increased.
Here p represents the control parameter for the percolation
problem, e.g., the occupation probability (p ∈ [0, 1]) for bond
or site percolation. From previous studies on the critical poly-
nomial [29–37], it is known that p(L) = pc [pc ≡ p(L →
∞)] for exactly solved lattice models, even at the smallest L,
and that, for unsolved percolation problems, p(L) very quickly
approaches pc as L increases. For example, on Archimedean
lattices, the unsolved bond percolation thresholds behave as
[p(L) − pc] � ∑∞

k=1 AkL−�k , with �1 = 4 or 6, and �i > � j

when i > j [37]. The finite-size correction of PB is much
smaller than that for other quantities such as wrapping proba-
bilities [38].

The critical polynomial PB is a dimensionless quantity,
since PB(pc, L → ∞) = 0. Thus in the renormalization group
formulation [45], PB has the finite-size scaling formula [38]

PB(t, u1, u2, L) = PB(Lyt t, Ly1 u1, Ly2 u2). (4)

Here t ∝ p − pc is the relevant thermal renormalization scal-
ing field, and yt = 1/ν = 3/4 is the associated renomalization
exponent. The parameters u1 and u2 represent two leading
irrelevant scaling fields with renormalization exponents y2 <

y1 < 0. When assuming y2 > 2y1, by Taylor expansion to the
first order, one gets

PB(p, L) � a1(p − pc)Lyt + b1Ly1 + b2Ly2 , (5)

where a1, b1, and b2 are nonuniversal amplitudes. The ir-
relevant exponents are related to � values as y1 = yt − �1

and y2 = yt − �2 [38]. Our MC data will be fitted by the
above finite-size scaling formula, with p replaced by θ , though
the irrelevant exponents may be different from those of bond
percolation on Archimedean lattices [37].

C. Monte Carlo simulation

The MC method is used to sample independent configura-
tions for 88 models, including six types of patchy disks and
two types of patchy spheres, on all 11 Archimedean lattices
in two dimensions. For a single configuration, a random di-
rection is generated for each particle to simulate the random
rotation. In simulations, each lattice is encoded with the aid
of a square or triangular array, whose correspondence with
the actual lattice is shown in Figs. S1–S11 [41], and periodic
boundary conditions are employed for the lattices. The num-
ber of vertices (equivalent to the number of particles) on each
lattice can be calculated from L, as shown in Table S1 [41].
Hereafter L is the linear size of the square or triangular array
for encoding the lattices, which is in proportion to the actual
linear size. We conduct simulations at different patch sizes and
systems sizes, and use sampled values of PB to determine the
percolation threshold θc (χc).

In our MC simulations, we simulated systems with up
to O(105) particles. At least 108 independent configurations
were generated for each set of (θ, L) values, for all 88 models
(up to 1010 independent configurations for one-patch disks
when L < 16, as shown in Table S2 [41]). The total simulation
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FIG. 3. Plot of PB vs θ for one-patch disks on triangular lattices
for different linear sizes L. The lines are added to guide the eye.

time was about 14.6 months if using a computer workstation
with 2 Intel Xeon Scalable Gold 6130 CPU and 8 × 16 GB
DDR4 ECC Registered Shared Memory (time for each model
is shown in Table S3 [41]).

III. RESULTS

We first present numerical results for one-patch particles,
then for particles with two to six patches. Precise estimates of
χc for these particles on 11 Archimedean lattices are obtained
by combining MC simulations and the critical polynomial
method. It is found that the lattice geometry mainly deter-
mines χc for one-patch particles, and that the symmetry of
patches and lattices significantly affects χc for particles with
more patches. Furthermore, with the above numerical esti-
mates of χc, using analyses related to symmetry, we give
values of χc for disks with an arbitrary number of patches
on all 11 Archimedean lattices. We also present the rules
governing χc values of patchy disks on these lattices.

A. Numerical results for one-patch particles

1. One-patch disks

For one-patch disks on the triangular lattice, the plot of
PB vs θ is shown in Fig. 3. It can be seen that curves for
different sizes approximately cross near θc � 1.972 183. To
more precisely estimate the percolation threshold θc, we use
Eq. (5), with p replaced by θ , to fit the data of PB according
to the least-square criterion. When performing the fits, we
gradually increase Lmin and exclude data points for L < Lmin.
In general, the fit results are acceptable only when χ2 is less
than or close to the degree of freedom (DOF), and the decrease
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FIG. 4. Plots for one-patch disks on the triangular lattice: (a) PB

vs L at θc = 1.972 183 2 and two nearby values of θ . As θ deviates
from θc, the curves bend upwards (θ > θc) or downwards (θ < θc).
(b) ln(−PB) vs ln L at θc for small sizes L. The slope of the straight
line is given by the correction exponent y1 � −4.9.

of χ2 per DOF does not exceed one when increasing Lmin.
Fits are made with fixed yt = 3/4, and the results are shown
in Table I. When setting b2 = 0, the fit results show that the
leading irrelevant exponent is y1 � −4.9. When y2 is fixed
at −6, −7, or −8, the fit results are also consistent with
y1 � −4.9. Thus we put our final estimate as y1 = −4.9(3).
From Table I, the percolation threshold of one-patch disks on
the triangular lattice is estimated to be θc = 1.972 183 20(8),
i.e., χc = 0.627 765 41(3). All error bars of quantities in this
work can be regarded as 1 σ .

To demonstrate the above estimates of θc, we plot in
Fig. 4(a) PB vs L at θc and two nearby values. It can be
seen that when θ deviates from θc, the curves bend upwards
(θ > θc) or downwards (θ < θc) as the size L increases. Since

TABLE I. Fit results of the critical polynomial PB for one-patch disks on the triangular lattice.

Lmin χ 2/DOF θc a1 b1 y1 b2 y2

6 63.6/79 1.972 183 20(7) −1.65(4) −2.1(6) −4.9(2)
8 62.6/76 1.972 183 20(7) −1.65(4) −2.2(30) −4.9(6)
4 83.8/88 1.972 183 20(7) −1.65(4) −2.2(25) −4.9(4) 0.3(53) −6
2 84.8/91 1.972 183 21(7) −1.65(4) −3.7(2) −5.11(4) 9.2(5) −7
4 83.8/88 1.972 183 20(7) −1.65(4) −2.2(13) −4.9(3) 0.5(85) −7
2 84.3/91 1.972 183 21(7) −1.65(4) −2.7(1) −4.97(3) 13.0(6) −8
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TABLE II. Percolation thresholds χc of patchy particles on Archimedean lattices. The site-percolation thresholds pc for these lattices are
also included for comparison.

Lattice Triangular Frieze Snub square Snub hexagonal

One-patch 0.627 765 41(3) 0.672 338 8(1) 0.672 346 35(4) 0.688 526 01(4)
Two-patch 0.554 469 9(4) 0.624 383 7(6) 0.622 832 9(4) 0.625 385 2(6)

Disk Three-patch 0.558 806 6(7) 0.623 505 (1) 0.620 411 9(5) 0.617 753 2(7)
Four-patch 0.554 469 2(4) 0.645 671 6(5) 0.670 484 3(5) 0.625 384 5(6)
Five-patch 0.627 765 6(4) 0.658 762 8(6) 0.627 557 4(8) 0.688 525 6(5)
Six-patch 0.500 000 1(5) 0.692 899 0(9) 0.756 361 (1) 0.579 497 9(9)

Sphere One-patch 0.631 475 6(3) 0.676 869 4(4) 0.676 877 1(3) 0.694 042 7(3)
Two-patch 0.532 379 5(7) 0.606 503 6(4) 0.605 554 2(5) 0.611 814 2(6)

pc 1/2 0.550 213 (3) [40] 0.550 806 (3) [40] 0.579 498 (3) [40]

Lattice Square Ruby Kagome Honeycomb

One-patch 0.713 444 50(3) 0.734 894 0(1) 0.745 229 66(5) 0.815 301 86(3)
Two-patch 0.676 345 5(3) 0.717 490 7(3) 0.687 495 0(2) 0.815 301 6(3)

Disk Three-patch 0.713 444 6(3) 0.712 619 8(6) 0.725 743 3(6) 0.697 040 4(9)
Four-patch 0.592 746 5(4) 0.775 605 0(8) 0.687 494 9(4) 0.815 301 9(3)
Five-patch 0.713 444 4(8) 0.726 257 4(7) 0.745 229 4(8) 0.815 301 8(5)
Six-patch 0.676 345 4(3) 0.764 013 5(7) 0.652 701 (2) 0.697 040 3(8)

Sphere One-patch 0.718 297 8(6) 0.740 310 8(3) 0.753 481 7(3) 0.815 301 9(3)
Two-patch 0.657 338 0(3) 0.706 489 1(8) 0.670 797 2(7) 0.806 134 8(4)

pc 0.592 746 050 0.621 812 07(7) [34] 1 − 2 sin(π/18) 0.697 040 230(5) [34]
792 10(2) [35] = 0.652 703 644 . . . [46]

Lattice Four-eight Cross Three-twelve

One-patch 0.827 011 22(3) 0.835 468 95(7) 0.859 494 83(5)
Two-patch 0.827 010 8(2) 0.835 469 0(4) 0.859 495 2(4)

Disk Three-patch 0.815 649 0(4) 0.839 888 2(5) 0.859 495 3(5)
Four-patch 0.856 560 1(4) 0.865 225 2(7) 0.859 494 7(5)
Five-patch 0.815 649 6(4) 0.821 517 4(7) 0.843 143 7(8)
Six-patch 0.827 011 3(3) 0.839 888 4(5) 0.903 950 3(5)

Sphere One-patch 0.827 533 2(2) 0.835 822 4(4) 0.867 995 5(3)
Two-patch 0.818 019 5(4) 0.826 182 5(5) 0.852 055 5(5)

pc 0.729 723 2(5) [34] 0.747 800 2(2) [34] [1 − 2 sin (π/18)]1/2

= 0.807 900 764 . . . [40]

PB � b1Ly1 at θc, the estimate of y1 � −4.9 is illustrated in
Fig. 4(b) as the slope of the straight line.

For one-patch disks on other 10 Archimedean lattices, we
also conduct similar analyses for the simulation data. Plots
of PB vs θ are shown in Fig. S12 [41]. Fits of the data also
yield precise values of the percolation threshold χc for these
lattices, as summarized in Table II. By observing the above
χc values for one-patch disks on all 11 Archimedean lattices
and pc values for site percolation on these lattices, we find
that the two sets of values follow the same order, as plotted
in Fig. 5. The order can be regarded as from lattices with
large coordination numbers to those with small coordination
numbers, and when the coordination numbers are the same,
it is from lattices with small variances of angles (around a
vertex) to those with large variances. Thus, similar to pc

for site percolation, χc for one-patch disks on Archimedean
lattices are mainly influenced by the lattice geometry.

The threshold values of one-patch disks on the frieze and
snub square lattices are very close since the two lattices share
the same coordination number and variance of angles. We find

that their order can also be understood from geometry as fol-
lows. The patch of a disk can cover several neighboring edges
connecting to the disk center, and various patch-covering
structures occur with different probabilities, which can be
obtained by analyzing the configurations as exemplified by
the calculations for the frieze lattice in the Supplemental
Material [41]. In Table III, we show these probabilities for
patch sizes χ near χc of the two lattices. From the table, it
is observed that three-edge patch covering occurs with same
probabilities on the two lattices, as well as four-edge patch
covering. However, for three-edge patch covering, the frieze
lattice has a structure with two adjacent π/2 angles; and for
four-edge covering, the frieze lattice has two structures (both
occurring with probability χ − 2/3) with two adjacent π/2
angles, while the snub square lattice has only one structure
(occurring with probability χ − 2/3) with two π/2 angles.
Since structures with two adjacent π/2 angles are more open
than other structures, the frieze lattice has a slightly lower
percolation threshold than the snub square lattice, which is
confirmed by our numerical estimates in Table II.
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Besides χc, we also get estimates of the leading irrele-
vant exponent y1 for one-patch disks on other Archimedean
lattices. The results of y1 are summarized in Table IV. For
lattices whose values of y1 are absent in the table, the finite
corrections are also small, but the current data are not suf-
ficient for determining y1. The presented estimates of y1 are
close to y1 = yt − �1 = −3.25 or −5.25 for unsolved bond
percolation models on Archimedean lattices [37]. Besides

TABLE III. Probabilities of different patch-covering structures
of a particle, for one-patch disks on the frieze and snub square
lattices, as a function of χ near estimated χc of the two lattices. Bold
lines indicate that corresponding edges are covered by the patch of a
disk placed on the central vertex. Some details for calculating these
probabilities are given in the Supplemental Material [41].

TABLE IV. Results of y1 from fitting the data of the critical poly-
nomial PB, for one-patch disks or spheres on different Archimedean
lattices. Dashed entries indicate that the values cannot be determined
with the current data.

Lattice y1(disk) y1(sphere)

Triangular −4.9(3) −3.1(1)
Frieze −3.3(1) −3.3(1)
Snub square −3.7(1) −3.9(1)
Snub hexagonal — —
Square −3.3(4) −3.5(2)
Ruby — —
Kagome −5.2(4) −5.4(1)
Honeycomb −3.7(1) −4.2(1)
Four-eight −4.7(4) −3.9(1)
Cross — —
Three-twelve −3.1(2) —

the triangular lattice, we also make plots of PB vs L at the
estimated thresholds for one-patch disks on other lattices,
as shown in Fig. S20 [41], which demonstrate the scaling
PB(θc, L) � b1Ly1 with the estimated values of y1.

2. One-patch spheres

To observe the effect of particle shape on the percolation
threshold, we also conduct simulations for one-patch spheres
on Archimedean lattices. Similar analyses are performed for
the simulation data. The resulting threshold values χc are also
summarized in Table II and plotted in Fig. 5. It can be seen
that, except on the honeycomb lattice, χc values for one-patch
spheres are slightly larger than those for one-patch disks, and
the calculated differences [(χ sphere

c − χdisk
c )/χdisk

c ] are at most
1.1%. On the honeycomb lattice, within error bars, one-patch
disks and spheres are found to share the same threshold. The
thresholds χc for one-patch spheres on different lattices also
follow the same order as that for one-patch disks, implying
that for one-patch spheres χc are also mainly influenced by
the lattice geometry.

We also get the estimates of y1 for one-patch spheres on
the lattices, as summarized in Table IV. The values of y1 for
one-patch spheres and disks are very close for most lattices.
Plots of PB vs θ or L for one-patch spheres are presented in
Figs. S13 and S21 [41], which demonstrate our estimates of
χc and y1.

B. Numerical results for particles with two to six patches

We also conduct MC simulations for disks with two to six
patches and spheres with two patches, on all 11 Archimedean
lattices. Plots of PB vs θ are shown in Figs. S14 to S19 [41],
in which approximate intersections of lines for different sizes
can be observed. By fitting the data of PB near the intersection
points, we also obtain precise percolation thresholds for these
models, as summarized in Table II. These threshold values are
plotted together with those for site percolation, as in Fig. 6.
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FIG. 6. Plots of percolation thresholds χc for particles with two
to six patches, and pc for site percolation, on 11 Archimedean lat-
tices. The values of the thresholds are summarized in Table II, where
pc values come from the cited references. The lines are added to
guide the eye.

1. Two-patch particles

From plots for two-patch particles (disks or spheres) in
Fig. 6, comparing with plots for one-patch particles in Fig. 5,
an obvious feature is that the curves become nonmonotonic.
The local minimum appears at the kagome lattice, for which
the symmetry of the two triangles connected to a vertex
matches the symmetry of the two patches on a particle. Thus
symmetry become very important in determining χc values of
two-patch particles.

From Table II, if one compares the χc values for two-patch
particles with those for one-patch particles in more detail,
it can be found that, while models of one-patch particles
have slightly lower χc values on the frieze lattice than on the
snub square lattice, models of two-patch particle have slightly
higher χc values on the frieze lattice than on the snub square
lattice. This can also be understood by calculating probabili-
ties of different patch-covering structures of a particle, similar
to calculations leading to Table III. For two-patch particles on
the snub square lattice, the symmetry of two patches on the
particle approximately matches the symmetry of two squares
(or two triangles) connected to a vertex, which causes the χc

value on the snub square lattice to be slightly lower than that
on the frieze lattice.

In Sec. III A, for one-patch particles, it is found that dif-
ferences of χc between disks and spheres are very small.
However, for two-patch particles, in Fig. 6, it is seen that on
most Archimedean lattices the differences of χc between disks
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FIG. 7. Probabilities of different patch-covering structures pedge

of a particle for χ near χc, on the triangular, square, and honeycomb
lattices. Plots (a), (c), and (e) are for one-patch particles, and plots
(b), (d), and (f) are for two-patch particles. Vertical solid and dashed
lines indicate values of χc for the disks and spheres, respectively. For
one-patch disks and spheres on the honeycomb lattice, the probabil-
ities are the same, which leads to the equality of χc for spheres and
disks.

and spheres are significantly larger than those for one-patch
particles. And on a given lattice, while one-patch spheres
have slightly higher χc than one-patch disks (except that on
the honeycomb lattice one-patch disks and spheres share the
same χc), two-patch spheres have lower χc than two-patch
disks. Therefore, though not affecting the order of χc values
for different lattices, the particle shape is still important in
determining the values of χc.

To understand the change of χc values between one-patch
and two-patch particles, for three regular lattices (triangular,
square, and honeycomb), we plot the probabilities of different
patch-covering structures of a particle for χ near χc, as in
Fig. 7. From Figs. 7(a) and 7(c), it can be seen that, for
one-patch particles, the lower value of χc for disks (comparing
with that for spheres) is correlated with higher probabilities
of large-edge patch-covering structures, e.g., four-edge and
three-edge for the triangular and square lattices, respectively.
From Figs. 7(b), 7(d), and 7(f), one also sees that, for two-
patch particles, the lower value of χc for spheres (comparing
with that for disks) is also correlated with higher probabilities
of large-edge patch-covering structures, e.g., four- and six-
edge for the triangular lattice, four-edge for the square lattice,
and three-edge for the honeycomb lattice.
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2. Three-to-six-patch disks

For disks with three to six patches, the role of symmetry
is more explicitly exhibited. From Fig. 6, it can be seen that
curves for these patchy particles are all nonmonotonic. Similar
to that for two-patch particles at the kagome lattice, the local
minimum of χc for four-patch disks at the kagome lattice
and for five-patch disks at the snub square lattice can also be
understood by the approximate matching of the symmetry of
patches on a particle and the symmetry of the lattice. From
Fig. 6 and Table II, it is interesting to find that χc values
of some models are numerically equal to pc values of site
percolation on these lattices, such as three-patch disks on the
honeycomb lattice, four-patch disks on the square lattice, and
six-patch disks on the triangular, snub hexagonal, kagome,
and honeycomb lattices. For each of these models, the symme-
try of the patches on a particle perfectly matches the symmetry
of the lattice, which leads to the fact that patches of a particle
either cover all edges connected to the particle center with
probability χ or cover no edge with probability 1 − χ . Thus
the models are exactly equivalent to the corresponding site
percolation models with χc = pc. For other models consid-
ered, at χ = pc, the probability of an all-edge patch-covering
structure is smaller than pc, and other patch-covering struc-
tures lead to lower connection. Therefore, their χc values
should be larger than pc for site percolation on these lattices,
which is supported by results in Table II and can be easily seen
in Figs. 5 and 6.

From Table II, it is also interesting to see that, within error
bars, χc of some different patchy particles on a given lattice
share the same value. These include the following:

(1) On the triangular (or snub hexagonal, or kagome) lat-
tice, χc of one- and five-patch disks, χc of two- and four-patch
disks

(2) On the square lattice, χc of one-, three-, and five-patch
disks, and χc of two- and six-patch disks

(3) On the honeycomb lattice, χc of one-, two-, four-, and
five-patch disks and of one-patch spheres, and χc of three- and
six-patch disks

(4) On the four-eight lattice, χc of one-, two-, and six-
patch disks, and χc of three- and five-patch disks

(5) On the cross lattice, χc of one- and two-patch disks,
and χc of three- and six-patch disks

(6) On the three-twelve lattice, χc of one- to four-patch
disks.

The above equalities of χc values can be understood by
calculating probabilities of different patch-covering structures
of a particle for χ near χc. For example, on the honeycomb
lattice, for one-patch spheres, it can be verified numerically
that the patch-covering probabilities are equal to those for
one-patch disks [e.g., see Fig. 7(e)]. For patchy disks, similar
to results in Table III, using analytical calculations we can
obtain the probabilities of different patch-covering structures
of a particle as a function of χ near χc, as presented in the
following section. Since percolation of patchy particles can
be understood as connection of patch-covering structures of
particles at the vertices, and there is only a single percolation
threshold for a given model, the same expressions (as func-
tions of χ ) for these probabilities near χc can prove that these
equalities of χc values hold exactly.

C. Results for disks with an arbitrary number of patches

In the previous subsection, it is found that several models
of patchy disks are equivalent with site percolation on the
lattices. This result can be generalized to disks with more
patches: n-patch (n > 0) disks with mod (n, 3) = 0 on the
honeycomb lattice, with mod (n, 4) = 0 on the square lat-
tice, with mod (n, 6) = 0 on the triangular, snub hexagonal,
and kagome lattices, with mod (n, 8) = 0 on the four-eight
lattice, with mod (n, 12) = 0 on the frieze, snub square,
ruby, cross, and three-twelve lattices. These models are equiv-
alent to site percolation since the patches on a disk either cover
all edges connecting to the disk center with probability χ or
cover no edge with probability 1 − χ .

It is also found in previous subsections that several models
of patchy disks can share the same χc value. Considering the
above equivalences with site percolation, and observing these
equalities of χc values [e.g. on the square lattice the equality of
χc for disks with one (two) and five (six) patches], we wonder
if χc values on a given lattice appear in a periodic way as the
number of patches n increases, and if there is any other rule
governing the χc values.

To explore possible periodic behaviors, we first try to cal-
culate probabilities of different patch-covering structures of a
disk as a function of χ for three regular lattices (honeycomb,
square, and triangular), near previously estimated values of
χc in Table II. Exemplary calculations for the triangular lattice
and some calculation details for other two lattices are included
in the Supplemental Material [41]. It is found that indeed
there are periodic behaviors for these probabilities of differ-
ent patch-covering structures, as summarized in Table V. As
mentioned in the previous subsection, the same expressions
as functions of χ for these probabilities near estimated χc

prove that the equality of χc values holds exactly. Thus, from
results in Table II, as the number of patches on a disk n
increases, χc values appear with a period n0 = 3, 4, and 6 for
the honeycomb, square, and triangular lattices, respectively.
Since the snub hexagonal and kagome lattices can be regarded
as sublattices of the triangular lattice, we then calculate proba-
bilities of different patch-covering structures of a disk on these
two lattices by making use of the triangular lattice, as shown in
Tables S5 and S6 [41]. The results for the snub hexagonal and
kagome are also summarized in Table V, which confirm that
on these two lattices χc values appear with a period n0 = 6.

For calculating probabilities of different patch-covering
structures of a patchy disk at a vertex of the four-eight lat-
tice, we can first place the disk at the center of a regular
octagon and consider the patch-covering of edges connecting
the center and the vertices of the octagon, then use these
intermediate results to get the final results. Some details are
shown in Tables S7 and S8 [41], and the final results are also
summarized in Table V, which shows that on the four-eight
lattice χc values appear with a period n0 = 8. Similarly, we
can make use of the regular dodecagon to get probabilities of
different patch-covering structures of a patchy disk at a vertex
of other five Archimedean lattice in two dimensions. Some
details for these calculations are included in Tables S9 to
S23 [41]. Final results for these five lattices are summarized in
Table VI, which prove that χc values on these lattices appear
with a period n0 = 12.
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TABLE V. Probabilities of different patch-covering structures as a function of χ near χc, for n-patch disks on the honeycomb, square,
triangular, snub hexagonal, kagome, and four-eight lattices. For each lattice, the last row shows estimates of percolation thresholds χc by
combining numerical estimates in Table II. *Regarding two-edge structures on the kagome lattice, for n-patch disks with mod (n, 6) = 3, the
two edges have a 2π/3 angle, while for disks with mod (n, 6) = 2 or 4, the two edges are on the same straight line.

Type mod (n, 3)
1 2

Honeycomb Zero-edge
Two-edge 3 − 3χ 3 − 3χ

Three-edge 3χ − 2 3χ − 2

χc 0.815 301 8(3) 0.815 301 8(3)

Type mod (n, 4)
1 2 3

Square Zero-edge
Two-edge 3 − 4χ 2 − 2χ 3 − 4χ

Three-edge 4χ − 2 4χ − 2
Four-edge 2χ − 1

χc 0.713 444 5(4) 0.676 345 5(4) 0.713 444 5(4)

Type mod (n, 6)
1 2 3 4 5

Triangular Two-edge 2 − 3χ 2 − 3χ

Three-edge 4 − 6χ 2 − 2χ 4 − 6χ

Four-edge 6χ − 3 3χ − 1 3χ − 1 6χ − 3
Six-edge 2χ − 1

χc 0.627 765 5(2) 0.554 469 6(4) 0.558 806 6(7) 0.554 469 6(4) 0.627 765 5(2)

Type mod (n, 6)
1 2 3 4 5

One-edge 2/3 − χ 2/3 − χ

Snub hexagonal Two-edge 4/3 − 2χ 1 − χ 4/3 − 2χ

Three-edge 10/3 − 4χ 2χ − 2/3 1 − χ 2χ − 2/3 10/3 − 4χ

Four-edge 3χ − 5/3 χ − 1/3 χ − 1/3 3χ − 5/3
Five-edge χ − 2/3 2χ − 1 χ − 2/3

χc 0.688 525 8(3) 0.625 384 9(7) 0.617 753 2(7) 0.625 384 9(7) 0.688 525 8(3)

Type mod (n, 6)
1 2 3 4 5

Kagome Two-edge 5/3 − 2χ 2 − 2χ (2 − 2χ )∗ 2 − 2χ 5/3 − 2χ

Three-edge 2/3 2/3
Four-edge 2χ − 4/3 2χ − 1 2χ − 1 2χ − 1 2χ − 4/3

χc 0.745 229 5(5) 0.687 494 9(4) 0.725 743 3(6) 0.687 494 9(4) 0.745 229 5(5)

Type mod (n, 8)
1 or 7 2 or 6 3 or 5 4

Four-eight One-edge 7/4 − 2χ 1 − χ

Two-edge 3 − 3χ 3 − 3χ χ − 1/2 1 − χ

Three-edge 3χ − 2 3χ − 2 χ − 1/4 2χ − 1

χc 0.827 011 0(1) 0.827 011 0(1) 0.815 649 3(4) 0.856 560 1(4)

It should be noted that, for the lattices with periods n0 = 12
and 8, when performing the calculations for probabilities of
different patch-covering structures of a disk, we have made
use of an assumed symmetry from observing expressions of
other lattices. Namely, for the honeycomb, square, triangular,

snub hexagonal, and kagome lattices, it is found that there
is a symmetry between models with mod (n, n0) = m (0 <

m < n0/2) and mod (n, n0) = n0 − m. Our results confirm
that indeed this symmetry also holds for the lattices with
n0 = 8 and 12. This symmetry allows us to give the χc values
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TABLE VI. Probabilities of different patch-covering structures as a function of χ near χc, for n-patch disks on the frieze, snub square, ruby,
cross, and three-twelve lattices. For each lattice, the last row shows estimates of percolation thresholds χc by combining numerical estimates
in Table II. *On the cross lattice, the one- and two-edge structures for n-patch disks with mod (n, 12) = 4 are different from those for disks
with mod (n, 12) = 3 or 6.

Type mod (n, 12)
1 or 11 2 or 10 3 or 9 4 or 8 5 or 7 6

One-edge 4/3 − 2χ 4/3 − 2χ 1 − χ

Frieze Two-edge 2 − 3χ 3/2 − 2χ χ − 1/3 χ − 1/3
Three-edge 4 − 5χ χ 1/2 2/3 − χ 1/6
Four-edge 5χ − 3 2χ − 1 χ − 1/2 2χ − 2/3 1/3 1 − χ

Five-edge χ − 1/2 χ − 1/2 2χ − 1

χc 0.672 338 8(1) 0.624 383 7(6) 0.623 505 (1) 0.645 671 6(5) 0.658 762 8(6) 0.692 899 0(9)

Type mod (n, 12)
1 or 11 2 or 10 3 or 9 4 or 8 5 or 7 6

Zero-edge 2/3 − χ

One-edge 1/6
Two-edge 2 − 3χ 3/2 − 2χ 1/6 1 − χ

Snub square Three-edge 4 − 5χ χ 1 − χ 2 − 2χ 1/6 1 − χ

Four-edge 5χ − 3 2χ − 1 3χ − 3/2 1/3 1/6
Five-edge 2χ − 4/3 χ − 1/3 2χ − 1

χc 0.672 346 35(4) 0.622 832 9(4) 0.620 411 9(5) 0.670 484 3(5) 0.627 557 4(8) 0.756 361 (1)

Type mod (n, 12)
1 or 11 2 or 10 3 or 9 4 or 8 5 or 7 6

One-edge 3/2 − 2χ 3/2 − 2χ

Ruby Two-edge 7/3 − 3χ 5/3 − 2χ χ − 1/2 2 − 2χ χ − 1/3 2 − 2χ

Three-edge 2χ − 2/3 2/3 1/2 1/6
Four-edge χ − 2/3 2χ − 4/3 χ − 1/2 2χ − 1 χ − 1/3 2χ − 1

χc 0.734 894 0(1) 0.717 490 7(3) 0.712 619 8(6) 0.775 605 0(8) 0.726 257 4(7) 0.764 013 5(7)

Type mod (n, 12)
1 or 11 2 or 10 3 or 9 4 or 8 5 or 7 6

Cross One-edge 1 − χ (1 − χ )∗ 11/12 − χ 1 − χ

Two-edge 3 − 3χ 3 − 3χ 1 − χ (1 − χ )∗ 7/6 − χ 1 − χ

Three-edge 3χ − 2 3χ − 2 2χ − 1 2χ − 1 2χ − 13/12 2χ − 1

χc 0.835 469 0(2) 0.835 469 0(2) 0.839 888 3(5) 0.865 225 2(7) 0.821 517 4(7) 0.839 888 3(5)

Type mod (n, 12)
1 or 11 2 or 10 3 or 9 4 or 8 5 or 7 6

One-edge 11/6 − 2χ 1 − χ

Three-twelve Two-edge 3 − 3χ 3 − 3χ 3 − 3χ 3 − 3χ 1/6 1 − χ

Three-edge 3χ − 2 3χ − 2 3χ − 2 3χ − 2 2χ − 1 2χ − 1

χc 0.859 495 0(4) 0.859 495 0(4) 0.859 495 0(4) 0.859 495 0(4) 0.843 143 7(8) 0.903 950 3(5)

of patchy disks with mod (n, n0) > 6, without performing
additional numerical simulations. We have tried to understand
this symmetry by observing the patch-covering structures and
found that this symmetry is associated with some symmetries
of the structures, as shown in Fig. S25 [41], but we do not
have a simple explanation for why this symmetry exists.

We also note that, for a fixed value of j, when probabilities
of j-edge patch covering are the same for different models,
the detailed structures with j-edge patch covering still can
be different. This can be clearly seen from Table III. Here,
for Table V, on the kagome lattice, though probabilities of

j-edge patch covering are the same for n-patch disks with
mod (n, 6) = 2, 3, and 4, the detailed structures of two-edge
patch covering for disks with mod (n, 6) = 3 are differ-
ent from those with mod (n, 6) = 2 and 4. Since two-edge
structures for disks with mod (n, 6) = 2 and 4 are more
open than those for disks with mod (n, 6) = 3, the χc value
of the latter is larger than that of the other two. Similarly, on
the cross lattice, since the two-edge structures for disks with
mod (n, 12) = 3 and 6 are more open than that for disks with
mod (n, 12) = 4, the χc value of the latter is larger than that
of the former two.
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IV. CONCLUSION AND DISCUSSION

To summarize, we study in this work the percolation
of patchy particles which are randomly rotating on 11
Archimedean lattices in two dimensions. We combine MC
simulations with the recently developed critical polynomial
method to give precise estimates of the threshold values χc for
88 models, including disks with one to six patches and spheres
with one to two patches, on the 11 lattices. These estimates are
summarized in Table II. For one-patch particles, it is found
that χc values on different lattices follow the same order as
pc values for site percolation on these lattices, which implies
that in this case χc is mainly influenced by the geometry of
the lattices. When there are more symmetrically distributed
patches on a particle, the symmetry of the patches plays an
important role, in addition to the geometry of the lattices. The
χc values on different lattices do not follow the same order as
those for one-patch particles.

Furthermore, to explore the role of symmetry, we consider
χc of disks with an arbitrary number (n > 0) of symmetrically
distributed patches. By analyzing probabilities of different
patch-covering structures of a patchy disk at a vertex as func-
tions of χ near the above estimates of χc, we give χc values
for these n-patch disks on all 11 Archimedean lattices in two
dimensions. The χc values are plotted in Fig. 8, in which the
following rules are summarized: (1) for a given lattice, χc

values appear in a periodic way, with the period n0 determined
by the symmetry of the lattice. We find that n0 = 3 for the
honeycomb lattice, n0 = 4 for the square lattice, n0 = 6 for
the triangular, snub hexagonal, and kagome lattices, n0 = 8
for the four-eight lattice, and n0 = 12 for the remaining five
lattices. (2) The minimum threshold value χmin of a lattice
presents when mod (n, n0) = 0. Actually, at this condition,
the model is equivalent to site percolation on the same lattice,
with χmin being equal to the site-percolation threshold pc,
whose value is given in Table II. (3) For each lattice, χc

for mod (n, n0) = m (0 < m < n0/2) is the same as that
for mod (n, n0) = n0 − m. In addition, we find that there
exist other equalities between χc values, such as χc values of
disks with mod (n, 8) = 1 and 2 on the four-eight lattice,
those of disks with mod (n, 12) = 1 and 2 and of disks
with mod (n, 12) = 3 and 6, both on the cross lattice, and
those of disks with mod (n, 12) = 1, 2, 3, and 4 on the
three-twelve lattice. The precise values of χc for n-patch disks
with mod (n, n0) 	= 0 are summarized in Tables V and VI.

Precise values of χc for one- and two-patch spheres are
also available in Table II. Comparing with one- and two-patch
disks, our numerical results for the spheres suggest that chang-
ing the shape from disk to sphere does not affect the order of
χc values for different lattices, but does affect the values of χc.
It may be interesting to investigate χc of spheres with more
patches, since more symmetries of patches are available on
the sphere surface. As well, the current work can also be ex-
tended to other lattices. One example is the Lieb lattice in two
dimensions. Percolation of four-patch disks on this lattice is
equivalent to site percolation on the same lattice. Similar to the
results in Sec. III B, this can be proved as the patches on a disk
either cover all neighboring edges with probability χ or cover
no edge with probability 1 − χ . Using MC simulations of site
percolation and the critical polynomial method, we determine
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FIG. 8. The percolation threshold χc vs the number of patches
on a disk n. As n increases, χc values appear in periodic ways,
with the period being n0 = 3 for the honeycomb lattice, n0 = 4 for
the square lattice, n0 = 6 for the triangular, snub hexagonal, and
kagome lattices, n0 = 8 for the four-eight lattice, and n0 = 12 for
the remaining five lattices. For each lattice, the minimum threshold
value χmin appears when mod (n, n0) = 0, and χmin is equal to
the threshold pc of site percolation on the same lattice. Moreover,
χc for mod (n, n0 ) = m (0 < m < n0/2) is the same as χc for
mod (n, n0 ) = n0 − m. Detailed values of χc (or pc) can be read
from Table II for mod (n, n0) = 0, and from Tables V and VI for
mod (n, n0 ) 	= 0.

the threshold value as χc = pc = 0.739 706 0(6) [41], which
is much more precise than a recent estimate 0.739 6(5) [47].
It should be noted that site percolation on the Lieb lattice
in two dimensions is equivalent to site-bond percolation on
the square lattice with the same site and bond occupation
probabilities, for which empirical formulas combined with
the latest threshold values of both pure bond and pure site
percolation lead to pc � 0.742 2 [48] or pc � 0.737 6 [49].
These values are quite close to our estimate above.

From the results in Table II and Sec. III C, it can be seen
that, due to equivalences with site percolation, the thresholds
of some models are exactly solvable, such as n-patch disks
satisfying mod (n, 6) = 0 on the triangular and kagome lat-
tices, and satisfying mod (n, 12) = 0 on the three-twelve
lattice. One may wonder if there is any other patchy particle
model whose percolation threshold can be exactly solved.
For systems of rotating patchy particles, a bond is open if
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patches on its two end particles contact, and the fact that
a given bond is open affects the opening probabilities of
neighboring bonds; thus one can regard these systems as
correlated bond percolation. Taking this view, one can get
an exactly solvable system by modifying the kagome lat-
tice [50]. For the above rotating patchy particle system on
the kagome lattice, one lets the bonds on each up-pointing
triangle to be open according to the same contacting-patch
rule as above, and declares the bonds on each down-pointing
triangle to be open with probability one. Then bonds in each
up-pointing triangle are correlated, but the up-pointing trian-
gles are independent of each other. Thus from Ref. [50], the
percolation threshold of this modified system can be exactly
solved by the rule P(A, B,C) = P(A, B,C), where P(A, B,C)
represents the probability that the three vertices (A, B,C) of
an up-pointing triangle are all connected, and P(A, B,C) is
the probability that none of the three vertices are connected.
For this modified system consisting of one-patch disks, the
method leads to that the percolation threshold is the root of
equation 216χ3 − 756χ2 + 18χ + 215 = 0 with χ ∈ (0, 1),
which gives χc = 0.600 451 160 625 . . .. This exact thresh-
old can also be obtained by solving the critical polynomial
PB(L) = R2 − R0 = 0 for the smallest block with the linear
size L = 2. Our MC calculations of PB(L) for larger L are
also consistent with this value. It is expected that the modified
kagome lattice consisting of disks with more patches can also
be exactly solved, which we leave for future work.

In the above models, we assume that each particle is ran-
domly rotating with its center being fixed at a vertex of the
lattice. For a system in which there are interactions between
patchy particles, this corresponds to the high-temperature
limit of the system at full occupancy of the lattice. Since there
is no correlation between different particles, the universality
class of the percolation transitions is the same as ordinary
percolation in two dimensions. It will be interesting to investi-
gate the interplay of percolation and different thermodynamic
phases for patchy particles at finite temperatures on lattices
in two dimensions [16–18], where universal properties might
be different. For example, for rigid rods of length k on the
square lattice, as k changes, it was found that the percolating

probability at the percolation threshold varies continuously for
the anisotropic (aligned) case, while it remains the same for
the isotropic case [51] (with fixed system shape and bound-
ary conditions, since dimensionless quantities such as the
percolating or wrapping probabilities depend on these fac-
tors [42–44]). On the square lattice, the self-assembled rigid
rods exhibit nematic phases, for which the average length of
assembled linear chains becomes longer as the temperature
decreases. Thus, if there was a line of percolation transition
in the ordered nematic phase, it should be expected that the
percolating probability along the line changes continuously.
Similar behaviors have been found in percolation of Janus
disks on the triangular lattice at finite temperatures, which
will be reported in the future [52]. Percolation and phase
transitions of patchy particles in continuum space in two di-
mensions also demand more investigations [53,54].

Finally, we note that our calculation of the probabilities
of different patch-covering structures of a particle implies an
alternative way to define the models: the “patch-covering”
structures of a particle can be regarded as discrete states of a
vertex, and various states of a vertex occur with different prob-
abilities. This transforms the continuously rotating particle
model into a discrete “spin” model on the lattices, for which
more efficient numerical simulations may be performed. New
models are obtained if one allows the states to be different
from those of the patchy particles.
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