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Two-species totally asymmetric simple exclusion process model: From a simple
description to intermittency and traveling traffic jams
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We extend the paradigmatic and versatile totally asymmetric simple exclusion process (TASEP) for stochastic
1D transport to allow for two different particle species, each having specific entry and exit rates. We offer a
complete mean-field analysis, including a phase diagram, by mapping this model onto an effective one-species
TASEP. Stochastic simulations confirm the results, but indicate deviations when the particle species have very
different exit rates. We illustrate that this is due to a phenomenon of intermittency, and formulate a refined
“intermittent” mean-field theory for this regime. We discuss how nonstationary effects may further enrich the
phenomenology.
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I. INTRODUCTION

Transport processes are ubiquitous in nature and technol-
ogy. Modeling them mathematically aims at describing and
predicting flow of the entity of interest, as well as provid-
ing insight into key mechanisms of the process. Different
approaches in physics and mathematics have been applied,
according to the type of transport phenomena. The case of
vehicular traffic is a good example of a phenomenon where a
broad range of such mathematical models have been applied.
They range from macroscopic descriptions, where traffic
is described as a compressible fluid [1,2], to microscopic
approaches, where the movement of individual vehicles is
described in terms of interacting particles far from equilib-
rium [3–8]. Also, statistical physics approaches have been
applied to describe vehicular traffic. They have put emphasis
on describing the fundamental, general features, by develop-
ing models that incorporate only the most essential features.
This allows one to unveil the key mechanisms and thus deepen
our understanding [9].

The totally asymmetric simple exclusion process (TASEP)
is such a model, which has become a paradigmatic process for
studying directed stochastic transport in constrained, quasi-
1D geometries subject to excluded volume interactions. One
may argue that the force of the model lies in its simplicity,
which allows it to shed light generically, with implications
for many different transport processes. At the same time, it
has been successfully adapted to account for the complexity
of many specific transport situations. In this paper we study
an extension of the TASEP, exploring the additional features
which arise when different kinds of transported particles are
discriminated by the rates with which they enter, and then
ultimately leave the system.

The TASEP model has been studied extensively in the liter-
ature. It has become a key model of nonequilibrium statistical
physics, exhibiting a rich phenomenology, such as boundary-
induced phase transitions [10] and shock waves [11], to cite
but two examples. In fact, the TASEP was originally intro-
duced to describe the process of protein synthesis [12], and it
is still the basis of a large number of models of translation
of mRNA into proteins [13–16]. At the same time it has
found applications in many other fields, such as transcrip-
tion [17,18], intracellular transport of molecular motors [19],
molecular transport across membrane channels [20,21], and
fungal growth [22] as well as vehicular and pedestrian traffic
[9,23].

In the majority of considered models all particles behave
identically, i.e., they all share the same microscopic rates at
which the enter the system, hop from one site to the next,
and finally exit the system. In some of these setups, however,
it is more realistic to distinguish different types of particles
traveling through the lattice. One straightforward example is
vehicular transport, where clearly motorbikes, cars and lorries
would be expected to enter a main road with very different
dynamics, would travel at different speeds, and might also
differ in the process by which they exit onto a side road.
In pedestrian traffic, different age groups may be described.
Similar considerations are expected to hold, on a microscopic
scale, for molecular motors: for example, the rates governing
their dynamics may vary between different types of motors
advancing along microtubules [24]. On a yet smaller scale, in
mRNA translation, it is known that two types of ribosomes
can be distinguished, the dynamics of which differ according
to whether they have bound certain protein complexes (RAC
and NAC complexes) that assist in the process of polypeptide
folding [25].
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Multispecies TASEP models have been considered previ-
ously. Most such models have been constructed with “classes”
of particles in mind, which do not simply differ in their dy-
namics but also weaken the excluded volume interactions.
In these models, particles pertaining to a class of a higher
“rank” in the class hierarchy are allowed to “overtake” those
of a lower rank, and it is this distinction which leads to dif-
ferent particle dynamics [26–28]. These systems have great
fundamental interest, as they lead to a rich stochastic process;
tracing a small number of such particles of a different class
has furthermore proven a useful approach for dynamically
locating the edges of high- and low-density zones in a TASEP
transport process [29].

A more direct distinction in terms of microscopic dynam-
ics has been studied in [30], where two different types of
particles share a 1D lattice on which they advance, while
overtaking is not permitted. This model has been introduced
to describe the traffic of different types of molecular motors
along microtubules. In this work, the two types of particles
are considered to differ in their entry and bulk hopping rates,
which complexifies the transport dynamics with respect to a
single-species TASEP model. Their exit rates, however, were
assumed to be identical.

In this paper we focus on the opposite, complementary
scenario. We take the bulk hopping rates of all particles to
be the same, but distinguish two particle species through
particle-specific entry and exit rates. Although this does not
complexify the bulk dynamics, we show that in particular
the specificity in exit rates is a fundamentally new ingre-
dient, which leads to rich behavior. We first elaborate a
full mean-field description for this system, by mapping it
onto an effective simple-species model. We construct a com-
prehensive phase diagram accounting for various scenarios,
according to the values of the four input and exit rates. We
show, based on stochastic simulations, that this description
correctly reproduces simulation results as long as entry and
exit rates are of the same order of magnitude.

In the second part of the paper, we analyze the limiting case
where the exit rates differ greatly between particle species. We
show that this regime can lead to intermittent dynamics, for
which the mean-field approach fails to predict both the particle
current and the profile of particle density along the lattice.
We then introduce a modified mean-field approach for this
intermittent dynamics and show that it yields a good match
to numerical simulations when intermittency is present. We
end the paper by discussing the results and the scope of the
proposed approach, pointing out further interesting features
which the model exhibits in the intermittent regime, as per-
spectives for further studies.

II. MODEL AND APPROACH

To represent transport of two different types of objects
along a 1D track, with two subpopulations of particles, we
build on the totally asymmetric simple exclusion process
model. The standard, single-species TASEP consists of a 1D
lattice of L sites, along which particles of a single type are
transported [31]. Particles attempt to enter the lattice at site
i = 1 with rate α and they leave the lattice at site i = L

FIG. 1. Sketch illustrating the model. Particles are injected onto
the first site with an entry rate depending on the species (αA and αB,
respectively). Particles stochastically advance one site at a time, with
rate γ , subject only to the next site being free. The “‘bulk” hopping
rate γ is the same for both types of particles. The exit rates (βA and
βB) on the last site are again specific to the species.

with rate β. At the bulk sites (i = 2, . . . , L − 1) particles hop
stochastically from site i to site i + 1 with rate γ , provided
that site i + 1 is not occupied.

One way to summarize the key features of the TASEP in
a condensed way is by thinking in terms of which process
limits the flow. The hopping process in the bulk sets an upper
limit to the current. Indeed, a simple mean-field argument
suggests a bulk current of γ ρ (1 − ρ), where ρ is the bulk
density. The maximum current (MC) phase therefore corre-
sponds to a current of JMC = γ /4, achieved at a bulk density
of ρMC = 1/2, whenever the limiting rate is the bulk hopping
rate. In contrast, when particles enter at a small rate, then
this process limits the current. In this case, a low-density
(LD) phase arises with a density set as ρLD = α/γ , with a
corresponding current of JLD = α (1 − α/γ ). The opposite
case arises when the exit rate limits the transport. In that
case, we are dealing with a high-density (HD) phase, for
which a bulk density of ρHD = 1 − β/γ leads to a current
of JHD = β (1 − β/γ ). The beauty of the TASEP model is
underpinned by two observations. First, this straightforward
analysis is indeed key to understanding the transport features,
or at least so once a “phase diagram” is established, which
we return to in the following. Second, somewhat surprisingly,
the simplified mean-field arguments sketched above turn out
to reproduce the exact results in the limit of an infinite lat-
tice (L → ∞), as has been shown by a variety of arguments
[32–34].

Here we study an extension of the TASEP model. We
consider two categories of particles, which we label A and
B, to which a given particle belongs for its entire journey
along the segment. Both types of particle step along the lattice
stochastically, at the same rate γ , according to the exclusion
process. Thus particles have excluded volume interactions,
implying they can neither occupy the same site nor over-
take one another. However, particle species are distinguished
by their entry rates (αA and αB) as well as their exit rates
(βA and βB). This is illustrated schematically in terms of
a two-population TASEP model in Fig. 1. The model may
alternatively be viewed as a non-Markovian single-species
TASEP, in which the waiting time at the exit site is drawn from
two different exponential distributions, the choice of which
has been attributed to each particle as it enters the system.
As the notion of particle species is natural for the biological
situation of mRNA translation, we will adopt the language of
the two-species model in the following.
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III. TWO-SPECIES TASEP: MEAN-FIELD APPROACH

Essentially we are dealing with a TASEP in which two dif-
ferent species compete on a given segment. As both hopping
rates are identical, we can thus think of an effective single-
species TASEP, for which the mean-field approach makes it
possible to establish the corresponding effective entry and
exit rates. We follow up this simple approach, showing that
it captures the process in many cases, before addressing its
failure when the effective rates differ greatly between species.

A. Effective entry and exit rates

We take the bulk hopping rate, which is the same to both
species, to be equal to one (γ = 1). Both species contribute
indifferently to the bulk dynamics. The total density of parti-
cles ρ is therefore

ρ = ρA + ρB, (1)

which is a sum of the partial densities of each species, i.e.,
ρA = NA/L for NA particles of type A on a lattice of length L,
and similar for particles of type B. The total current can be
written as

J = JA + JB (2)

in a similar fashion. It is important to note that, since particles
do not drop off the lattice, currents for both populations are
preserved along the segment, from the first to the last site:

J (0)
A = J (L)

A = JA and J (0)
B = J (L)

B = JB. (3)

Here JA,B denote the bulk currents (crossing any site on the lat-
tice), which are thus also equal to their corresponding currents
entering the segment J (0)

A,B and to their corresponding currents

leaving the segment J (L)
A,B.

At any given site, the mean-field expression for either of
the partial currents is the product of two probabilities: the
probability of having a particle of the considered species and
the probability of having an empty site ahead:

JA,B = ρA,B (1 − ρ), (4)

where we have taken the density profile ρi to be flat, as is
known to be justified in the bulk region [10]. By writing this
relation, as well as the following ones, we make the same
mean-field hypothesis as in the standard TASEP model, i.e.,
we neglect correlations in the occupancy of successive sites.

The expression (4) for the partial currents directly implies
that, irrespective of what happens at the boundaries, their ratio
is simply identical to that of the partial densities: JA

JB
= ρA

ρB
.

Summing the partial currents furthermore shows that the total
current obeys the classical expression for TASEP:

J = JA + JB = ρ (1 − ρ). (5)

Now, equating the expressions for the partial in-currents
and out-currents,

J (0)
A,B = αA,B (1 − ρ (1) ) and J (L)

A,B = βA,B ρ
(L)
A,B, (6)

leads to the observation that the ratio of partial densities ρ
(L)
A,B

at the exit site is directly set by the partial entry and exit rates

αA and αB:

αA

αB
= βA ρ

(L)
A

βB ρ
(L)
B

. (7)

This relation will prove central in the following.
We now turn to establishing the effective entry and exit

rates. Writing the total current at the first site as

J (0) = J (0)
A + J (0)

B = (αA + αB)(1 − ρ (1) ) (8)

directly arises in the form of an inflowing current, J (0) =
αeff (1 − ρ (1) ), where the effective entry rate αeff is thus given
as

αeff = αA + αB. (9)

To derive an expression for the effective exit rate βeff we
start from Eq. (7) and obtain

ρ
(L)
A

ρ
(L)
B

= βB αA

βA αB
. (10)

Eliminating ρ
(L)
A via Eq. (1) yields an en explicit expression

for the density of B particles at the exit site ρ
(L)
B :

ρ
(L)
B = βA αB

βBαA + βAαB
ρ (L). (11)

Analogously, we have

ρ
(L)
A = βB αA

βBαA + βAαB
ρ (L), (12)

as is seen either from applying Eq. (1) to the last lattice site,
or simply from symmetry permuting indices A and B.

The exit current can now be written, from Eq. (5) evaluated
at the last site,

J (L) = βA ρ
(L)
A + βB ρ

(L)
B = (αA + αB)

βA βB

βB αA + βA αB
ρ (L).

(13)
By doing so, we assume that the mean-field hypothesis of
uncorrelated site occupancies remains valid, despite the new
feature introduced by the species-dependent distribution of
waiting times. Again, by analogy to the TASEP mean-field
expression, the effective exit rate is thus

βeff = (αA + αB)
βAβB

βBαA + βAαB
. (14)

Note that Eqs. (9) and (14) imply a simple relation for the
ratio between the effective rates:

αeff

βeff
= αA

βA
+ αB

βB
. (15)

It will also be useful to underline that the relations setting
the effective rates, Eqs. (9) and (14), have direct physical sig-
nificance. Indeed, the abundance of each type of particles can
be characterized by the partial densities χA and χB = 1 − χA,
defined as

χA = ρA

ρA + ρB
and χB = ρB

ρA + ρB
. (16)
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FIG. 2. Single-species TASEP. The phase diagram (a) is constructed based on three conditions (b): α = β (blue) at the boundary between
LD and HD, α = 1/2 (green) at the boundary between LD and MC, and β = 1/2 (red) between HD and MC. The dashed lines extrapolate these
conditions into regions where they do not discriminate phases. The same color code is preserved later, in order to clarify how the two-species
phase diagram can be constructed. (c) Phases can be determined by cumulating two conditions, with the common ground of them identifying
the corresponding zone in the phase plane. The same argument is used below for the model with two species.

Using successively Eqs. (4) and (3), as well as current
conservation, these can be expressed as

χA = JA

JA + JB
= J (0)

A

J (0)
A + J (0)

B

, (17)

and similar for χB. From Eq. (6) we then have

χA = αA

αA + αB
∈ [0, 1] and χB = αB

αA + αB
∈ [0, 1],

(18)
and therefore the partial density of each species is set directly
by the percentage with which it contributes to the total input
rate, as it is of course expected.

Regarding the effective exit rate, we can now rewrite
Eq. (15) by dividing out αeff = αA + αB to obtain

1

βeff
= χA

1

βA
+ χB

1

βB
. (19)

Since an inverse exit rate corresponds to the average time
required for a particle of a given type to exit from the last
site, the effective exit rate thus corresponds to the population-
weighted average of these exit rates.

Note that all results stated so far are valid for any choice of
parameters, to the extent that the mean-field approach holds.
We will first explore this mean-field behavior, and then show
how it breaks down under specific conditions.

B. Mean-field phase diagram

Based on the expressions for the effective rates in the
mean-field approximation we can now establish the phase
diagram for the model with two types of particles. For any
given set of entry and exit rates, the mean-field behavior of
the model is therefore characterized by mapping it onto a

corresponding standard single-species model with the appro-
priate effective rates. However, changing any of the entry and
exit rates modifies this mapping and therefore may potentially
drive the system across a phase boundary. Ideally one would
like to be able to establish how modifying a single rate, or
modifying several rates simultaneously, affects the phases to
be observed in the system. This is what we set out to do here.

We label the phases, just as in the standard, single-species
TASEP, as LD, HD, or MD, according to whether their (total)
density in the bulk is inferior, superior or equal to 1/2. The
conditions fixing the well-established single-species phase di-
agram, summarized in Fig. 2(a), are

(LD) (i) α < β and (ii) α < 1/2
(HD) (i) β < α and (ii) β < 1/2
(MC) (i) α > 1/2 and (ii) β > 1/2

. (20)

We thus need to exploit these criteria in terms of the ef-
fective rates for the two-species model, Eqs. (9) and (14). As
these depend on all four in- and out-rates, it might appear
necessary to consider many cases separately, with different
scenarios for the phase diagram. However, the discussion can
be largely simplified by introducing rescaled rates, which we
define as the ratio, for each species, of entry and exit rates:

α̃A = αA

βA
and α̃B = αB

βB
. (21)

Phases can now be delimited by the transition lines of the
phase diagram, as each condition in Eq. (20) excludes a cer-
tain phase for a particular zone. For the purpose of illustration,
consider the standard TASEP, as represented in Fig. 2(a), and
focus on identifying the HD phase. We proceed in two steps.
First, according to condition (20-LD-i) the LD phase cannot
be present if α > β, and therefore the region below the line
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FIG. 3. Mean-field diagram representing two-population TASEP in three different scenarios depending the rescaled parameters α̃A and α̃B

when βB < βA. Scenarios for the phase boundaries are determined by first positioning the critical point [seen in Eq. (25)]. We therefore have
three cases, which lead to the following phases: (a) LD and HD arise where βB < βA < 1/2, (b) LD, MC and HD arise where βB < 1/2 < βA

and (c) LD and MC arise where 1/2 < βB < βA.

α = β can pertain only to an HD or an MC phase. Second,
from condition (20-HD-ii) the HD phase cannot occur when
β > 1/2, and therefore below the line β = 1/2 we must be
dealing with either an LD or a MC phase. Combining these
conditions thus identifies the zone in the (α, β ) plane which
corresponds to the HD phase. This way of constructing the
phase diagram is graphically represented in Fig. 2(b).

For the full model we can proceed similarly in the
(αeff , βeff ) plane, as we know that the transitions between
phases fall onto (part of) the following relations (colors refer
to Fig. 3):

(1) LD-HD: αeff = βeff (blue line), which in terms of the
rescaled rates is given by

α̃B = 1 − α̃A. (22)

(2) LD-MC: αeff = 1
2 (green line) or, equivalently,

α̃B = 1

2βB
− βA

βB
α̃A. (23)

(3) HD-MC: βeff = 1
2 (red line), or equivalently

α̃B = −1 − 2βA

1 − 2βB
α̃A. (24)

As a direct conclusion, all phase boundaries are straight
lines in the (α̃A, α̃B) plane. Figure 3 shows how by combin-
ing these conditions we can assign a zone to each phase in
the (α̃A, α̃B) plane. First of all, the LD-HD line is fixed in
this representation, and goes through (0,1) and (1,0). Next,
the LD-MC boundary intersects the axes at (1/(2βA), 0) and
(0, 1/(2βB)). Finally, the point where all these lines cross is
located at

(α̃∗
A, α̃∗

B) =
(1/2 − βB

βA − βB
,
βA − 1/2

βA − βB

)
. (25)

In the following we assume the B particles to be the ones
with a slow exit rate, i.e., we take βB < βA (without restricting
generality, as the opposite case would be covered by exchang-
ing particle species). Three different scenarios can now easily
be identified, according to how the exit rates compare to the
threshold of 1/2. This yields three cases:

(a) LD: α < β and α < 1/2
(b) HD: β < α and β < 1/2
(c) MD: α > 1/2 and β > 1/2.

These cases differ in the relative positions at which the LD-
HD and LD-MC separation lines intersect the α̃B axis, while
the LD-HD line remains fixed. The construction of the phase
diagram can be visualized most clearly if one first admits
negative values for the rates α̃A and α̃A before restricting
our interpretation to the physically relevant area. With this in
mind, the triple point (α∗

A, α∗
B) may be localized in various

quandrants of the plane, and it is this which distinguishes the
three scenarios. The three cases are illustrated respectively in
Figs. 3(a)–3(c).

From this construction it follows that the LD phase is
assigned to the area which is both below the blue and the
green lines, and this can be achieved in all three scenarios.
HD is delimited by the blue and the red lines. In scenarios (a)
and (b) it corresponds to the zone above both the blue and the
red line. In scenario (c), however, it corresponds to the one
above the blue and below the red line: these conditions cannot
be met in the physical domain (positive rates), such that there
is no HD phase whenever 1/2 < βB < βA. Finally, the area
corresponding to MC is delimited by the green and the red
lines. In scenarios (a) and (b) this is the zone above the
green line and below the red line. In case (a), however, this
zone is not part of the physical region, and so there is no
MC phase whenever βB < βA < 1/2. In scenario (c), the area
corresponding to MC is above the green and the red lines.
These results are compared to numerical simulations in Fig. 4,
as discussed in the next subsection.

C. Interpretation

Figures 3(a), 3(b), and 3(c) illustrate the different scenar-
ios of the mean-field diagram representing two-population
TASEP. The arguments that follow are generic, no correspon-
dence with data is sought at this stage. The scenarios can
be distinguished based on the location of the critical point
[Eq. (25)] in the plane of rescaled in-rates (α̃A, β̃B): this es-
sentially fixes all the phase boundaries meeting here, all of
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FIG. 4. Scenarios for the phase diagram from numerical data, plotted in the same rescaled parameter plane (α̃A, α̃B) as used in Fig. 3. The
color gradient plot represents the average density throughout the lattice, calculated on a grid (α̃A, α̃B ) ∈ [0.01, 1.5] × [0.01, 1.5] with a step of
0.01. The black lines in panels (a), (b), and (c) correspond to the analytical expressions for the phase boundaries, as given by Eqs. (22), (23),
and (24). (a) βA = 0.4 and βB = 0.2, (b) βA = 0.625 and βB = 0.333, and (c) βA = 0.666 and βB = 0.625.

which are straight lines [see Eqs. (22), (23), and (24)]. The LD
phase is present in any scenario, as expected, since this is the
“default” phase which can always be reached by sufficiently
lowering all input rates. All three phases are observable if
the critical point falls into the physically accessible parameter
domain [i.e., into the first quadrant, Fig. 3(b)]. If it falls into
one of the adjacent quadrants, however, only two phases are
observable [LD and HD in Fig. 3(a), or LD and (MD) in
Fig. 3(c)]. The color code for the phase boundaries is that of
Fig. 2(b); the solid part of the lines indicate the actual phase
boundaries. Focusing on Fig. 3(a) first shows that an HD phase
is possible, and it is in fact the only other phase in the physical
region (positive rates), if the fast exit rate is sufficiently small
(βA < 1/2): this is necessary, and sufficient, to limit the out-
flow and to provoke a high density throughout the segment. In
this case the HD phase will be found in the system if the inflow
of particles is sufficiently large, and interestingly this criterion
is not given directly by the in-rates, but rather in terms the ratio
of in-rate to out-rate for each species [see Eq. (21)].

Conversely, Fig. 3(c) shows that an MC phase is present
in the phase diagram if the slower exit rate is sufficiently
large (βB > 1/2), as then the exit current is sufficient to keep
particles from building up in an HD zone.

Finally, there is an intermediate regime: if the slow exit rate
is sufficiently small (βB < 1/2) while the fast exit rate is suf-
ficiently large (1/2 < βA), both an HD and an MC phase are
possible; see Fig. 3(b). Indeed, increasing the proportion of
fast exiting particles (i.e. increasing αA) will push the system
into an MC phase, whereas having more slow particles (i.e.,
increasing αB) will favour an HD phase.

A slightly contrasting statement is to be made in terms
of which of the parameters are decisive. Indeed, within each
scenario (a, b, or c), the phase can be identified based solely on
the reduced entry rates α̃A and α̃B, as illustrated in the phase
diagrams. However, it is worth noting that all rates (αA and
αA as well as βA and βB) are required explicitly in order to
determine which regime the system finds itself in.

D. Numerical validation

Stochastic numerical simulations were performed with the
Gillespie algorithm [35]. This consists in picking, iterating

over time, one of all possible changes in the system which
may occur, with the appropriate statistical weights. Each
such “move”or “reaction” is attributed a timescale, which
is drawn from the corresponding waiting time distribution,
therefore implementing the time evolution of the system. A
lattice of length L = 500 sites was used and, unless stated
otherwise, measurements were cumulated over 108 Gille-
spie iterations, after having discarded a transient of 4 × 107

iterations.
In order to confront the analytical mean-field characteriza-

tion of phases to data from simulations we plot in Fig. 4 the
numerically obtained density (averaged both over time and the
segment), from which the phases can be deduced (ρ = 1/2 for
MC, below or above this value for LD and MC, respectively).
Analytical expressions for the boundaries between the phases
are superposed, showing a very good correspondence. For the
chosen set of parameters the theoretical analysis is therefore
validated.

For a finer comparison we also contrast the density profiles
along the segment to the analytical mean-field prediction.
Figure 5 shows numerical data for three sets of parameters,
which correspond to examples for LD, MC, and HD phases.
We compare to mean field where the predictions are based on
the mapping onto a single-species TASEP via the appropri-
ate effective rates [see Eqs. (9) and (14)]. Again, we obtain
good correspondence in that the value of the bulk density is
well predicted. Deviations occur only at the boundaries, as
is indeed expected: such boundary layers are known to arise
for the regular TASEP model, and therefore do not constitute
a new feature of the two-species model. Thus the LD phase
presents a boundary layer close to the exit point, the HD
phase close to the entry point, and the MC phase at both
ends, while preserving a slight overall slope in the density
profile, which is known to vanish in the limit of infinite system
size [36].

E. Mean-field discrepancies

However, as illustrated in Fig. 6, this agreement is not
fully general: density profiles can differ significantly from
the prediction of the effective single-species TASEP model.
The two-species model can therefore display new features,
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FIG. 5. Numerically acquired density profiles (colored lines),
contrasted to the mean-field predictions (black dashed line). The
following phases are shown: LD (αA = 0.1, βA = 0.4; αB = 0.05,
βB = 0.2) (blue line); MC (αA = 1, βA = 2./3; α = 0.9375, βB =
0.625) (red line); HD (αA = 0.0625, βA = 0.625; αB = 0.5, βB =
1/3) (green line). We obtain good agreement for these choices of
parameters, except for the boundary layers which are expected from
the regular single-species TASEP. For other parameter choices devia-
tions arise, which are discussed below and analyzed in the following
section.

which are not captured by the mean-field description in terms
of an effective single-species TASEP which we have elab-
orated so far, at least for certain choices of parameters. In
order to qualify these differences we focus again on density
profiles, rather than on the entire phase diagram, which will
also help to establish a strategy for improving the theoretical
approach.

In principle there are four independent parameters to the
model (two rates for each species), and therefore, the param-
eter space to be explored is vast. Varying any of these rates
may affect current and density, and may also push the system
across a phase boundary. However, the effective one-species
model suggests that it is exclusively the two effective rates αeff

and βeff which determine the behavior, or at least so long as
the mean-field analysis remains valid. We therefore choose, in
a first instance, to vary all independent rates, αA and βA as well
as αB and βB, jointly, such as to preserve the total effective
rates. In this way we can compare results from numerical
simulations to analytical mean-field predictions without mod-
ifying the position in the mean-field phase diagram, i.e., no
mean-field phase transition can be triggered by such a change.

We thus need to pick two additional parameters, in addition
to αeff and βeff , to define our system. Before choosing how to
do this, consider two limiting cases of our system, one where
αB = 0 (i.e., the case where we recover the single-species
model, since B particles are absent), and another one where
βB → βA (an equivalent scenario, since both particle species
behave identically). In both limits the single-species TASEP
model must hold. This suggests choosing the two remaining
parameters in such a way that they characterize (1) the fraction

FIG. 6. HD density profiles from numerical simulation, illus-
trating the breakdown of mean-field predictions in the case where
the exit rates βA and βB differ greatly. For all simulations pa-
rameters were chosen as to maintain identical effective rates, just
as the proportion of B particles (χB). The plots represent several
choices for the slowness parameter, s = 1 − βB/βA. The single-
species prediction is thus seen to break down as the species B
becomes increasingly slow to leave. (a) αeff = 1, βeff = 9.991 ×
10−3, χB = 1 × 10−4. (b) αeff = 1.001 × 10−1, βeff = 9.991 × 10−3,
χB = 1 × 10−3. In these simulations 105 fast particles (and therefore,
on average, 100 slow particles) entered the lattice. Average were
calculated over a time of 1 × 107, after a transient of 106 initiation
events (corresponding on average to a time of 7 × 104), which has
been discarded.

of (slow) B particles in the system and (2) the “slowness” of
B particles as compared to A particles.

A natural choice for the first parameter thus is the fraction
of B particles, χB ∈ [0, 1]. Recall that fixing χB directly im-
plies the individual input rates as [see Eq. (16)] as

αA = (1 − χB) αeff and αB = χB αeff . (26)

Varying χB ∈ [0, 1] maps out this degree of freedom at a fixed
total effective rate αeff , as desired.
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We now pick a second parameter, say s ∈ [0, 1], to play
a similar role for the exit rates. Specifically, we require s to
make B particles slower, by setting

βB = (1 − s)βA, (27)

while requiring that the effective exit rate βeff remain unaf-
fected. According to Eq. (19) this implies

1

βeff
= χA

βA
+ χB

(1 − s) βA
,

which can be solved to yield

βA = βeff

[
1 − χB s

1 − s

]
, (28)

βB = βeff [1 − (1 − χB) s]. (29)

In essence, we can thus use the parameters χB and s to
vary the abundance of B particles and their “slowness” in-
dependently, while leaving the effective entry and exit rates
unchanged.

Figure 6 shows density profiles for two examples for which
the mean-field prediction is an HD phase. For all graphs
in each panel, the effective in- and out-rates as well as the
particle distribution have been kept constant: the only param-
eter which is varied is s, which regulates the slowness of B
particles. Deviations from the mean-field prediction (black
dashed line) become increasingly significant as the slowness
s increases: since all other parameters have been maintained
constant, we can conclude that the mean-field theory fails as
B particles become too slow to exit.

Deviations concern not only the average density value, but
also the shape of the density profile can deviate significantly
from what is expected from an effective single-species de-
scription. In Fig. 6(a) the shape of the density profile for the
two largest values of s resembles a density profile in the maxi-
mal current (MC) phase, despite the lattice being in HD phase
(average density on the lattice is above 0.5). In Fig. 6(b) the
systematic positive slope in the profile makes it qualitatively
different from a single-species profile.

In essence, these examples show that the effective single-
species model is no longer appropriate as one of the particle
species becomes significantly slower to leave than its counter-
part. The intuition at this point is that those particles provoke
temporary blockages, leading to “intermittent” flow with en-
tirely new characteristics. We pursue this thought further in
the following section, and show how intermittency may be
used to construct an improvement to the mean-field predic-
tions.

IV. INTERMITTENCY

In the previous section numerical evidence has exposed the
fact that an effective single-species model no longer does jus-
tice to the traffic in our two-species model when one particle
species becomes very slow to leave. This suggests a consider-
able alteration of the traffic, the nature of which becomes clear
by considering the limiting case where B particles become
extremely slow to leave (slowness s � 1). One then antici-
pates having a blocked system whenever a B particle reaches
the last site of the lattice. As soon as the B particle exits the
lattice, a stretch of A particles will evacuate until the next B

particle reaches the exit. Rather than a process of continuous
flow, we are therefore looking at periods of flow of particles,
interrupted by periods during which the exit is fully blocked.
We will refer to this as intermittency in the following, and
show how mean-field arguments can be amended to account
for this phenomenon.

In order to better appreciate the phenomenon we show a
series of snapshots of density profiles in Fig. 7. Each of these
is a quasi-instantaneous density profile, obtained by averaging
the occupancy of each lattice site over 2600 Gillespie
iterations. The 12 graphs are presented in chronological order
(from left to right, top to bottom), thus illustrating the time
evolution of the density profile. Figure 7(a) shows a blockage
at the exit, with a “jammed” region (highlighted in green). As
time progresses, this “jammed” region “travels upstream,” i.e.,
to the left, as shown in Fig. 7(b). More precisely, it “grows”
to the left, as particles within the jammed region are of course
essentially stuck and therefore static, but further particles
join the jam from the left. In Fig. 7(c) the blocking particle
has finally exited the lattice; therefore the particles from the
right boundary of the jammed region can start moving ahead,
and eventually leave the lattice. Thus the jammed region
decreases in size from its right boundary. The net effect is that
the jammed region appears to travel upstream, as particles
join at its left boundary and others leave the jammed region
at its right boundary. Some more complicated effects can
occur, as shown in Fig. 7(c), where the jammed region breaks
into two parts as it “travels” upstream. In Figs. 7(d)–7(f) the
jammed region is dissolved as it reaches the left boundary of
the lattice, and the bulk density relaxes to the one determined
by the faster, nonblocking A particles. Ultimately, we can
see another jam forming in Fig. 7(h), caused by the arrival
of a B particle to the last site of the lattice (jammed region
highlighted again in green).

These figures illustrate that the presence of intermittency
in the two-population model is the root cause of discrepancy
with respect to the effective single-population model, as we
will show now.

The simplest case to think about when developing the
argument is when the B particles are both very slow to leave
(s � 1) and sparse (χB � 1). In this case there will be a simple
TASEP current of A particles almost always, except when one
of the rare B particles reaches the exit site. Then a jam is
created at the exit, corresponding to a stretch of density 1 in
front of the exit. However, as soon as the blockage is resolved,
the jam evacuates and the system returns to its original phase.
As B particles are very sparse, this is essentially a process
involving A particles only, and thus the flow phase is in fact
characterized by the underlying “pure” single-species phase
(obtained asymptotically as χB → 0 while maintaining all
other parameters). For example, in Fig. 7 we are dealing what
appears to be an HD phase which falls back to an MC phase
during the periods of continuous flow: we refer to this as a
MC → HD∗ phase. What we mean by this notation is that the
underlying “pure” system of A particles would be found in
an MC phase, as is indeed seen during the periods without
blockage. However, due to the presence of slow-to-leave B
particles, the resulting phase is more apparent of an HD phase.
The star thus labels those phases which already are the result
of intermittent behavior.
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FIG. 7. Time evolution of the density profiles for the MC → HD∗ scenario, showing a temporary blockage of the exit site and its evolution
for a lattice of N = 1000 sites. Panels (a) to (h) represent the succession of instantaneous-like density profiles along the same simulation.
Parameters are αA = 1; αB = 0.007; βA = 1; βB = 0.003. Each snapshot has been calculated by averaging over 2600 Gillespie iterations (each
iteration corresponding to one reaction occurring in the system, i.e., the movement of one particle on the lattice). The number of Gillespie
iterations separating successive snapshots is equal to 20 800. The green dots are representing an average density equal to 1 over the 2600
Gillespie iterations and thereby highlighting the blockage created by the B particle. Successive snapshots are ordered in time but are not
separated by identical time intervals: they have been selected to illustrate the essence of the process with only a few snapshots.

With this picture in mind we now focus on the effect
of intermittency in the density profile for three different
scenarios, corresponding to three different choices for the

underlying “pure” single-species phase. These are LD →
HD∗ [Fig. 8(a)], MC → HD∗ [Fig. 8(c)], and HD → HD∗

[Fig. 8(e)]. For each of these scenarios we fix the entry and
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FIG. 8. Effect of intermittency on the density profile ρ (i) (a), (c), (e) and on the current (b), (d), (f), as the proportion χB of slow particles is
progressively increased. The parameters used in the panels are as follows: (a), (b) LD → HD∗ phase, with αA = 0.1, βA = 1, βB = 1 × 10−5;
(c), (d) MC → HD∗ phase, with αA = 1;, βA = 1, βB = 1 × 10−5; and (e), (f) HD → HD∗ phase, with αA = 1, βA = 0.1, βB = 1 × 10−5.
The insets show the results from the numerical simulations (solid line), MF approach (dashed line) and iMF approach (dotted line) for χB =
2 × 10−4 (a); χB = 1 × 10−5 (c); and χB = 2 × 10−5 (e). The plots of current J (b), (d), (f) show numerical results (red), MF prediction (blue),
and iMF prediction (black) as a function of χB. The insets show the relative error of the current for both the MF and iMF predictions.
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exit rates of the A particles, as well as the exit rate of the B
particles, but we vary the proportion χB of particles of type B
by changing αB.1

Remarkably, in both the LD → HD∗ and MC → HD∗

cases, the density profiles are qualitatively different from the
ones of an effective single species TASEP in an HD phase.
In the LD → HD∗ scenario, the density profiles exhibit a
positive slope from the left to the right boundary of the lat-
tice. In the MC → HD∗ scenario the shape of the density
profiles resembles the ones of an MC single-species TASEP,
but with an average density higher than 0.5. The only density
profiles that remain qualitatively the same are the ones in the
HD → HD∗ scenario, although they are quantitatively differ-
ent from the mean-field predictions. In the next subsection
we introduce an extended mean-field approach that accounts
some extent for the results obtained in this intermittent
regime.

Intermittent mean-field (iMF) approximation

We propose to pursue the picture established above to
propose an “intermittent mean-field theory” (iMF) as an
extension to the mean-field arguments presented above, de-
signed to account for intermittency in the case where B
particles are very slow (βB � βA) and very sparse (χB � χA).
We are thus dealing with entire stretches of A particles, say,
nA of them on average, separated by isolated B particles. The
average number nA of A particles in each stretch can be then
estimated as αA/αB. To a first approximation we can therefore
think of the current as being the one corresponding to the
underlying “pure” phase (i.e., the phase which corresponds
to vanishing χB). It is interrupted every so often, for the time
it takes for the occasional slow B particle to free the exit site.
During this period the exit current is zero. As long as these
intermittent jams persist, and as an HD-like stretch builds up
close to the exit site, we can estimate this average “blockage”
time interval as

τbl = 1

βB
. (30)

Clearly, for this to be valid, we must require that transient
periods are short-lived, such that the “pure” blocked and
unblocked phases dominate the transport. Formulating this
precisely requires further insight into the switching process,
and we reserve this discussion for the following section: here
we shall simply formulate the arguments assuming transients
to be “sufficiently fast.”

In this case, a prediction for the total current follows for
each of the three different scenarios introduced above:

LD → HD∗: in this scenario, the single-phase current is
JLD = αA(1 − αA). Using Eq. (30) for the “blockage time,”
τbl, and introducing τunbl for the “unblocked” time dur-
ing which there is free flow, we therefore have JLD→HD∗ =

1Notice that, consequently, here we are not fixing the effective
entry and exit rates for this comparison: although this might have
been desirable, it turns out to lead to transitions in the underlying
“‘pure” phase, e.g., from LD to HD, and therefore complicates the
interpretation.

JLD
τunbl

τbl+τunbl
. This is essentially a weighted average of the cur-

rent, since we expect to have current JLD during the time
interval τunbl and zero current the rest of the time, with τunbl =
nA
JLD

. Thus we have

JLD→HD∗ = αA βB
αAβB

αA(1−αA ) + αB

. (31)

MC → HD∗: following the same approach as above, we
obtain

JMC→HD∗ = 1

4

4αA
αB

4αA
αB

+ 1
βB

. (32)

HD → HD∗: in this case, we obtain

JHD→HD∗ = αA βB
αA βB

βA(1−βA ) + αB

. (33)

Notice that in Eq. (33), as both exit rates βA and βB vanish,
JHD−HD ≈ βeff , in agreement with the conventional TASEP
current in HD:

JHD = β(1 − β ) ≈ β. (34)

Predictions from this “intermittent” mean-field (iMF) the-
ory for the current are shown in Figs. 8(b), 8(d), and 8(f)
(black circles), superposed onto the standard mean-field re-
sults (blue circles) as well as data from simulations (red
circles). The latter correspond to Gillespie simulations which
were run until 105 slow B particles had entered the system,
thus leading to roughly that number of blockage events at
the exit. The insets show the relative error of the current for
both the MF (blue circles) and iMF approaches (black circles).
They clearly show that in the LD → HD∗ and MC → HD∗

scenarios the iMF approach performs better than MF in the
limit of very small values of χB. For intermediate χB values,
both approaches are comparable. For larger values of χB, the
MF performs better than the iMF: this is as expected, since for
larger values of χB, where the proportions of A and B parti-
cles are comparable, there should be no intermittent behavior.
A special case is the HD → HD∗ scenario, for which iMF
and MF perform indistinguishably well for both small and
intermediate values of χB. This is because in the HD → HD∗

scenario both βA and βB are very similar, and therefore the
difference in the MF and iMF expressions is very small, as
pointed out in Eq. (34).

In Figs. 8(a), 8(c), and 8(e) the insets show the comparison
of the average density predicted by the MF (dashed line),
iMF (dotted line), and the numerically obtained density profile
(solid line) for a fixed value of χB. Parameters are chosen to
be well within the intermittent regime, and the average density
in the iMF has been attributed by equating the current to the
mean-field expression ρ(1 − ρ) and solving for ρ. Comparing
the different approximations for the density and the corre-
sponding numerical simulations thus mirrors what is observed
for the currents.

The iMF approach therefore successfully takes over from
the standard MF description when B particles are very slow to
leave, as far as they are remain sparse compared to A particles.
The limitations of the approach lie in assuming that the current
of A particles is stationary.
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FIG. 9. Schematic illustration of the timescales in an iMF sce-
nario. The density and the current in the system stochastically switch
between two stationary phases, one during which the exit site is
blocked by a B particle, the other one is the time during which the
current flows freely: the corresponding timescales are τbl and τunbl,
respectively. The time for the transient towards the blocked state is
noted τ trans

bl , and τ trans
unbl denotes the equivalent time for the transient

towards the unblocked state. Also shown is the timescale τB, which
represents the (average) time between two blocking events. For iMF
arguments to be valid, the transients must be short-lived, so that
the stationary states characterize the system essentially all of the
time. The dashed vertical lines indicate the times of blocking and
unblocking events: a B particle arrives at the exit site at the green
lines and leaves the lattice at the red lines.

In reality, we know that whenever a slow B particle frees
the exit, a highly nonstationary process will ensue, during
which the density profile relax from a totally jammed state
at the exit to the stationary density profile corresponding to
a “pure” flow of A particles in the appropriate phase (LD,
MC, or HD). The iMF approach as outlined here therefore
assumes that these nonstationary phases remain sufficiently
short so that they do not affect the time-averaged density. This
assumption must fail when blockages become too frequent for
this to be true, or even too frequent for the density to return to
its stationary density before the next blockage: clearly, this is
the reason why iMF predictions perform poorly as the fraction
of B particles becomes significant.

V. MECHANISM OF TRANSIENTS AND VALIDITY
OF IMF PREDICTIONS

The question has been raised above to which extent the
iMF arguments can be expected to hold, as it assumes
switching between essentially two states, a “blocked” and
an “unblocked” one, the last one corresponding to a free-
flowing “pure” state of only A particles. These two states are
considered as stationary, whereby transitory states, which are
schematically shown in Fig. 9, are implicitly neglected. We
denote the timescales for the stationary states as τbl (the aver-
age time interval during which we have a stationary blocked
state) and τunbl (the average duration of the stationary un-
blocked, free-flowing state). Transient times are referred to as
τ trans

unbl (for the “unblocking” process, i.e., the switching from
the blocked to the free-flowing stationary state), and τ trans

unbl (for
the reverse transient).

For iMF to make correct predictions, the stationary states
must therefore be sufficiently long-lived to dominate the aver-
ages, i.e., we must have

τ trans
bl + τ trans

unbl � τB, (35)

where τB is the (average) time between two successive arrivals
of blocking B particles at the exit site. Note that τB thus
comprises both stationary and transient times (see Fig. 9), i.e.,
we have

τB = τ trans
bl + τbl + τ trans

unbl + τunbl. (36)

The approach here is to view the “blocking” event, where a
B particle arrives at the exit site, and the “unblocking” event,
when the B particle eventually leaves the system, as abrupt
changes of boundary conditions. It is known [37] that such
changes can be conveniently described as setting in motion a
domain wall, i.e. a singularity which separates two zones of
different densities. Due to the imbalance of currents on both
sides of this discontinuity, the position of the domain wall
evolves. Specifically, there is a straightforward expression
for the speed at which such a domain wall evolves, which
is [38]

VDW = J− − J+
ρ− − ρ+

, (37)

where “−” and “+” refer to the phases to the left and to the
right of the domain wall, respectively. We now exploit this
relation for the specific changes following the blocking and
unblocking events, in order to estimate the associated transient
times τ trans

bl and τ trans
unbl . This requires fixing the specific situation

one is interested in; here we shall discuss the LD → HD∗

scenario, where a B particle blocking the exit pushes the
system from an LD state into a HD-like state.

First, we estimate τ trans
bl . We thus consider the situation

where there is a free-flowing LD phase, and a slow-to-leave
B particle arrives at the exit site, where it remains for a
significant time to come. This effectively sets the exit rate for
the particles in the segment to 0, and the sites close to the exit
will progressively fill up to saturation (ρ+ = 1). The resulting
domain wall therefore separates a free-flowing LD phase, with
density ρ− = αA and current J− = αA (1 − αA), to its left, and
a fully blocked region with ρ+ = 1 and J+ = 0, to its right.
Applying relation (37) yields a domain wall velocity of

Vdw,blocking = αA (1 − αA) − 0

αA − 1
= −αA, (38)

i.e., the domain wall propagates towards the entry site, as
expected. From this we estimate the transient time for the
system of L sites to become fully blocked as

τ trans
bl ≈ L

αA
. (39)

This implicitly assumes that the entire segment saturates
before the B particle eventually leaves the exit site, and
τ trans

bl therefore constitutes an upper bound for the transient
time. A numerical observation of this process is illustrated in
Fig. 10(a), which quantitatively confirms the argument.

Next, we estimate τ trans
unbl . To this end we consider the sit-

uation when the blocking B particle ultimately frees the exit
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(a) (b)

FIG. 10. Numerical illustration of the domain wall propagation mechanisms involved in the transients. The average density (or, equiv-
alently, the total number of particles in the segment) directly reflects the position of the domain wall. (a) After a blocking event, as a B
particle arrives at the exit site, a domain wall propagates upstream. (b) After the following unblocking event, as the B particle frees the exit,
two successive domain walls cross the segment to take it to its new stationary state. All simulations have been performed with the following
parameters: αA = 0.1, βA = 1, αB = 1.e − 5, βB = 1.e − 5. The transient times predicted by Eqs. (39), (40), and (41) are also shown (double
arrows). Based on these, dashed lines (black, purple, and orange) are derived, invoking the density difference ρ+ − ρ− within those time
intervals.

site. This again amounts to a modification of the exit rate for
the particles in the segment, which now returns to βA, and
thus again sets off a domain wall which propagates upstream
to the entry site. This process establishes a new bulk density,
which is determined by the new exit rate βA, but still based
upon a zero input rate, since the entrance remains blocked
right until it is freed up by the arrival of the the domain
wall. Therefore, once the domain wall arrives at the first site
of the lattice, a second domain wall follows, triggered at
the entrance this time, and which needs to propagate back
to the exit before the definite steady state is reached. We
denote (transient) timescales for these two stages as τ trans

unbl
,I

and τ trans
unbl

,II , respectively.
Both phases of this two-stage process can be treated by

adapting the argument given above to calculate the domain
wall velocity. However, the specific values of the successive
densities in the intermediate phases depend not only on the
fact that we are dealing with a LD → HD∗ scenario, but
also on the actual values of the boundary rates αA,B and βA,B.
These calculations are a little lengthy but straightforward, and
they are therefore confined to the Appendix. Here we simply
refer to Fig. 10(b), which shows that the segment-averaged
particle density indeed evolves as predicted by the two-stage
picture.

The data presented so far illustrates that the transient mech-
anisms can indeed be understood in terms of propagating
domain walls. However, ideally one would like to be able
to formulate a criterion capturing to which extent the iMF
approach may be expected to be successful. To this end,
we recall that the main result of our calculations is an ex-
pression for the timescales required to unblock the system,
which we summarize, using the results from the Appendix,
as

τ trans
unbl

,I =
{ L

1−βA
(αA < βA < 1/2)

2L (αA < 1/2 < βA)
(40)

and

τ trans
unbl

,II =
{ L

βA−αA
(αA < βA < 1/2)

L
1
2 −αA

(αA < 1/2 < βA)
, (41)

all of which refer to the scenario LD → HD∗. With these
predictions, as well as equation (39) for the blocking process,
one can thus expect iMF predictions to work when the total
transient time τ trans � τB.

We also recall that τB is the (average) time lapse between
two blocking events. It can be estimated based on the entry
current, requiring that a single B particle enters the system.
For the LD → HD∗ scenario this reads

1 = Jin τB = αB (1 − ρ1) × τunbl + 0 × τbl, (42)

where ρ1 is the average density on the first site of the segment
during the unblocked phase. Using a self-consistent argument,
we assume the LD expression for the density during this
unblocked phase, ρ1 = αA, which yields

1 = αB (1 − αA) τunbl, (43)

and we can thus estimate

τunbl ≈ 1

αB (1 − αA)
. (44)

We now obtain τB by adding to this the time it takes for a
blocking B particle to exit, which is simply given by its exit
rate as τbl ≈ 1/βB, so that

τB ≈ 1

βB
+ 1

αB (1 − αA)
. (45)

Based on this expression, as well as the condition (35)
and the expressions for the transitory times Eqs. (39) and
(40), a criterion can thus be formulated for iMF to be valid.
This has to be done separately for cases (i) and (ii): iMF
works when the B particles are both “sufficiently slow” and
“sufficiently sparse,” in a system size dependent sense. Inter-
estingly, the criterion is seen to be more restrictive close to
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FIG. 11. Predictions based on iMF theory require the stationary states to dominate the system. Simulation data are shown for the average
density in the segment as a function of time. All plots sharing the parameters αA = 0.1, βA = 1, but rates for B particles vary as follows:
(a) αB = 1.e − 5, βB = 1.e − 5, (b) αB = 1e − 4, βB = 1e − 5, and (c) αB = 0.05, βB = 0.01. Whereas (a) corresponds to a case where iMF
is expected to apply, this is not the case for the other examples. In (b) the B particles are not sufficiently rare, so that the free-flowing regime
cannot develop. In (c) they are also not sufficiently slow to leave, so that no proper system-wide blockage can be observed. The lattice size
used for these simulations was L = 500.

the phase boundaries. The way in which iMF succeeds or fails
is illustrated in Fig. 11. Please refer to the Appendix for a
quantitative derivation of the corresponding criteria.

VI. DISCUSSION

In this paper we have analyzed an extension of the TASEP
model where we consider two different types of particles. No
overtaking is allowed, in contrast to most multispecies TASEP
previously introduced in the literature [26,27,29]. Hence, our
model is similar to the one introduced in [30], which de-
scribes different types of molecular motors moving along
microtubules. At the same time our model is complementary,
as we focus on an entirely different scenario, considering that
particle species have the same bulk hopping rate but differ in
both their entry and exit rates with which enter and leave the
lattice, respectively.

We have shown that a standard mean-field theory can be
formulated by mapping the two-species TASEP model onto
an effective single-species TASEP, via appropriately defined
effective entry and exit rates. A comprehensive phase dia-
gram can be established based on the ensemble of all entry
and exit rates for both particle species, according to which
different scenarios arise. In these several, but not necessarily
all, possible TASEP phases are present. For example, when
the exit rates of both particles are inferior to half of the bulk
hopping rate, then there cannot be a maximum current (MC)
phase. Comparison to stochastic simulations has shown that
this approach yields excellent results for the current and for
the density profile along the lattice as long as the entry and
exit rates of the different types of particles are of the same
order of magnitude.

The mapping onto an effective single-species mode fails,
however, when one type of particles is much rarer and has
a much slower exit rate than the other one. We have shown
that the origin of this discrepancy lies in the emergence of
intermittent dynamics caused by temporary blockages of the
exit by the slow-to-leave particles. The key to the intermittent
regime is to analyze the transport process in terms of traffic
jams which form close to the exit, whenever a slow-to-leave
particle arrives at the last lattice site. This picture constitutes
a valid representation, based on which we have introduced a

modified mean-field approach. This “intermittent mean-field”
(iMF) description takes into account the intermittent behavior,
and we have shown that it provides good predictions when
compared to simulations.

Dynamic features of traffic jams reveal additional ques-
tions in their own right. We have shown that viewing the
“jammed” region as being delimited by two abrupt changes,
and treating these discontinuities in the “domain wall” picture
[37,38], leads to a valid and useful description. In particular,
this has allowed us to establish the conditions under which
iMF is expected to hold: the slow-to-leave particles must be
both sufficiently slow and sufficiently rare, in a sense which
depends on the system size and on the proximity to the phase
boundaries of the fast particles.

Closer inspection shows, however, that there are yet more
subtle features to the dynamics. For example, since the size of
a jammed region evolves due to the motion of its delimiting
domain walls, a jam may reach the entrance of the lattice,
where it will then dissolve by shedding its remaining particles
into the system. But it may also cease to exist before reaching
the boundary, which again points to the importance of system
size. Further processes can arise: for example, we have ob-
served the traffic jam to split into two or more jams, through
a mechanism where holes penetrate into the jammed region
from its downstream side [see Fig. 7(c)].

According to the parameter regimes, a full description
of the transport process would thus have to account for the
simultaneous presence of several moving traffic jams (as is
indeed captured by the snapshot in Fig. 12). These evolve
and move, but also interact, presumably through processes
reminiscent of fission and coalescence. The interplay of all
these nonstationary processes promises rich behavior indeed,
which will again depend on system size the system size.

Another logical next step would be to analyze a model in
which two species are distinguished not only by their entry
and exit rates, but also by their bulk hopping rates. This would
effectively combine our model with that by Bottero et al.
[30]. The phenomenology in this six-parameter model may
be expected to be rich. Fully differentiating all microscopic
rates for the two particle species would then provide a solid
starting point for exploring applications, such as translation
by ribosomes from mRNA which may or may not have bound
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FIG. 12. Time evolution of the density profiles for the MC → HD∗ scenario, showing the evolution of three temporary blockages of the exit
site and their evolution. Panels (a) to (h) represent the succession of instantaneous-like density profiles along the same simulation. Parameters
are αA = 1; αB = 0.05; βA = 1; βB = 0.003. Each snapshot has been calculated by averaging over 1300 Gillespie iterations (each iteration
corresponding to one reaction occurring in the system, i.e., the movement of one particle on the lattice). The number of Gillespie iterations
separating successive snapshots is equal to 7800. The blockages created by B particles are highlighted in red, green, and pink, in order of
appearance. Successive snapshots are ordered in time but do not correspond separated by identical time intervals: they have been selected to
illustrate the essence of the process with only a few snapshots.

RAC and NAC proteins [25], or transport of different types of
ions through membrane channels [21].
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APPENDIX: TRANSITORY TIMESCALES
FOR THE LD → HD∗ SCENARIO

In Sec. V we have established that the transients can be
understood as domain walls propagating through the system.
With the understanding of these processes, we can then es-
tablish the timescales of these transients. It is these which
ultimately lead to conditions for the applicability of the
intermittent mean-field approach. Here we complete these
arguments presented for the LD → HD∗ scenario.

1. Blocking transient

For a first transient process, which takes the system from
an unblocked to a blocked state, the velocity of the domain
wall has been shown to be given by Eq. (38), from which we
have deduced an associated timescale of [see Eq. (39)]

τ trans
bl ≈ L

αA
(A1)

for a segment of L sites, assuming that the entire segment ends
up being jammed.

We now need to establish the equivalent for the unblocking
process. Before doing so, however, it is useful to formally state
conditions which we have already made when attempting to
apply iMF arguments to the entire segment.

First of all, it is intuitively clear that B particles must be
“sparse” in some sense. We can formalize this by requiring
that the fraction of B particles, which is given by Eq. (16),
must be small enough so that the average spacing between
them exceeds the lattice length. Therefore

χB = αB

αA + αB
� 1

L
(A2)
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is required. This condition can be simplified to

αB � αA

L
, (A3)

which means that the criterion for “sparseness” is system size
dependent.

Second, we can state that the transient must last for long
enough so the domain wall can move right up to the entrance
before the exit is unblocked. Using Eq. (A1) this yields

τ trans
bl = L

αA
� 1

βB
, (A4)

since 1/βB is the (average) time for a B particle to leave the
exit site. Writing this as

βB � αA

L
(A5)

makes it clear that this requires B particles to be “sufficiently
slow to leave,” again in a sense dependent on system size.

Note that, since we are interested in the LD → HD∗ sce-
nario here, we must have αA < βA for the pure A phase to be
in HD, and therefore Eq. (A5) implies

βB � βA

L
, (A6)

which thus provides a condition similar to that for “sparse-
ness.”

2. Unblocking transient

To estimate the unblocking transient time τ trans
unbl , we need

to consider two stages, each one corresponding to the prop-
agation of a domain wall, first upstream (stage I) and then
downstream (stage II). We now derive the corresponding
timescales, which have been stated without proof in the main
text.

In stage I, no particles enter from the left (J− = 0) as the
jam is dense (ρ− = 1) right up to the entrance site. The phase
to the right of the domain wall, however, carries particles to
the exit. This zone can be visualized as receiving particles
from the jam (in-rate α+ = 1), and having an out-rate β+ =
βA once the B particle blocking the exit site is gone. This
second zone therefore corresponds either to a HD zone [case
(i), if βA < 1/2], or to an MC zone [case (ii), if βA > 1/2].
Recall that we already have the condition αA < βA, as we
are dealing with an LD → HD∗ scenario. We can therefore
distinguish two cases:

a. Unblocking transient in case (i) αA < βA < 1/2: In this
case, at the beginning of stage I, the segment at the exit is
in an HD phase. We thus have ρ− = 1 and J− = 0, as well as
ρ+ = 1 − βA and J+ = βA (1 − βA). The domain wall velocity
is therefore

VDW,I = 0 − βA (1 − βA)

1 − (1 − βA)
= −(1 − βA) (case i). (A7)

This is negative, as expected, as the DW moves upstream
towards the entrance.

Therefore the time τ trans
unbl

,I required for this (transient) DW
to reach the entrance is

τ trans
unbl

,I = L

|VDW,I | = L

1 − βA
(case i). (A8)

After this time, on average, the entire system is in an HD
phase at density 1 − βA > 1/2.

Now stage II begins, as the in-rate αA acts at the freshly
unblocked entrance, thus initiating a new DW which travels
travel downstream. Therefore, the newly created zone at then
entrance is governed by an in-rate α− = αA < 1/2, according
to case (i), whereas the rate for exiting to the right of the DW, a
zone of density ρ+ = 1 − βA > 1/2, is β− = 1 − ρI = βA <

1/2, as established throughout the lattice by the previous stage
I. Since we also know αA < βA, from case (i), we thus know
that the initial segment is in an LD phase. Therefore ρ− =
α− = αA and J− = αA (1 − αA).

The zone to right of the DW being in HD, at density ρ+ =
ρI = 1 − βA > 1/2, we can thus deduce the velocity of this
second DWII as

VDW,II = αA(1 − αA) − βA (1 − βA)

αA − (1 − βA)
(case i), (A9)

which, after simplification, leads to

VDW,II = βA − αA (case i). (A10)

This is indeed positive, as expected, so we can affirm that this
domain wall will cross the system and impose a new density.

Based on this domain wall velocity, the second timescale
for returning to a stationary state is

τ trans
unbl

,II = L

βA − αA
(case i). (A11)

All in all, for case (i), the condition of validity for iMF
stated in Eq. (35) therefore reads

L

αA
+ L

1 − βA
+ L

βA − αA
� τB (case i). (A12)

Before exploiting this condition further, we now perform the
equivalent analysis for case (ii).

b. Unblocking transient in case (ii) αA < 1/2 < βA: In this
case, as soon as the blocking B particle leaves the exit site, a
depletion zone opens up into which particles enter from the
blocked zone with rate 1, and from which they exit at rate
βA. Since βA > 1/2, we are thus dealing with an MC phase,
and we have ρ+ = 1/2 and J+ = 1/4. From this we have the
domain wall velocity

VDW,I = 0 − 1/4

1 − 1/2
= −1/2 (case ii), (A13)

and the corresponding timescale is

τ trans
unbl

,I = L

|VDW,I | = 2 L (case ii). (A14)

In stage II, after the MC phase has filled the segment,
a zone develops at the entrance into which particles at-
tempt to enter at rate αA, and from which they leave at rate
1 − 1/2 = 1/2. Consequently, this is an LD zone, and we thus
have ρ− = αA and J− = αA (1 − αA). From this,

VDW,II = αA(1 − αA) − 1/4

αA − 1/2
= 1

2
− αA (case ii) (A15)

and therefore

τ trans
unbl

,II = L

1/2 − αA
(case ii). (A16)
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Condition (35) for iMF to hold becomes therefore

L

αA
+ 2 L + L

1/2 − αA
� τB (case ii). (A17)

3. Conditions of validity for iMF

The conditions for iMF to be valid have been stated, sep-
arately for cases (i) and (ii), in Eqs. (A12) and (A17). They
are based on establishing orders of magnitude, and we can
therefore simplify them further by involving the following
arguments:

As a first observation, the expression Eq. (45) for τB can be
adapted as

τB ≈ 1

βB
+ 1

αB (1 − αA)
� 1

βB
+ 1

αB
, (A18)

which is valid since αA < 1/2: the neglected factor is there-
fore of order unity and does not change our comparison of
orders of magnitudes. To simplify further, we remark that in
terms of orders of magnitude this is essentially equivalent to

τB � 1

min(αB, βB)
(A19)

since the term with the smaller denominator dominates
τB. This shows that τB characterizes the larger one of the
timescales associated to the entrance and exit rates of B parti-
cles. We will use this expression in the following.

Second, we observe that both conditions of validity
[Eq. (A12) for case (i) and Eq. (A17) for case (ii), respec-
tively], are based on a sum of three positive terms being
negligible compared to τB. The timescale separation expressed
by these two requirements can therefore only occur if each
of these terms is small compared to the right-hand side. We
are therefore dealing with three conditions. For case (i), for
example, we have

L

αA
� τB,

L

1 − βA
� τB and

L

βA − αA
� τB (case i),

(A20)

and all of these conditions must be satisfied. For case (ii) they
read

L

αA
� τB, 2 L � τB and

L

1/2 − αA
� τB (case ii).

(A21)

Third, note that the first one of these conditions is common
to both cases (i) and (ii), αA 	 LτB. It has in fact already been
evaluated above, leading to the requirement of “slowness,”
stated in Eq. (A5), and therefore there is no further consid-
eration to be had here.

All in all are thus left with last two requirements of
Eq. (A20) for case (i), and of Eq. (A21) for case (ii): we will
analyze these now.

a. Conditions of validity for iMF in case (i) αA < βA < 1/2:
Considering the remaining conditions for case (i), and using
Eq. (A20), a sufficient condition for iMF to hold is that we
have

L

1 − βA
� τB as well as

L

βA − αA
� τB. (A22)

To analyze which condition is more stringent, there are two
scenarios. If the terms on the left-hand sides are comparable,
either of the conditions is sufficient. Otherwise, the larger
one will lead to a more stringent condition. To this end, the
first condition is more restrictive when 1 − βA < βA − αA,
which can be expressed as βA > 1+αA

2 . Clearly this is never
true, as βA < 1/2 and αA > 0, and we must retain the second
condition. Therefore, for iMF to work in case (i) we require,
using Eq. (A19) for τB,

1

τB
� min(αB, βB) � βA − αA

L
(case i), (A23)

which completes the requirement of “sparseness,” Eq. (A6),
and of “slowness,” Eq. (A5). Rather interestingly, this is a
constraint on the rates for the slow-to-leave B particles, which
becomes stronger for large systems, and which is particulary
stringent in the vicinity of the phase boundary αA = βA of the
“pure” system.

b. Conditions of validity for iMF in case (ii) αA < 1/2 <

βA: This case can be analyzed in a similar fashion. From
Eq. (A17), the extra conditions are

2L � τB as well as
L

1
2 − αA

� τB. (A24)

The second condition is more stringent whenever 1/2 − αA <

1/2, which is always true since αA > 0. Therefore it is suffi-
cient to require that

1

τB
� min(αB, βB) �

1
2 − αA

L
(A25)

for iMF to work in case (ii), in addition to “sparseness” and
“slowness.” Again, this condition becomes impossible to meet
for large enough systems, and it is particularly restrictive close
to a phase boundary, here αA = 1/2.
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