
PHYSICAL REVIEW E 105, 034116 (2022)

Joint statistics of space and time exploration of one-dimensional random walks
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The statistics of first-passage times of random walks to target sites has proved to play a key role in determining
the kinetics of space exploration in various contexts. In parallel, the number of distinct sites visited by a random
walker and related observables has been introduced to characterize the geometry of space exploration. Here,
we address the question of the joint distribution of the first-passage time to a target and the number of distinct
sites visited when the target is reached, which fully quantifies the coupling between the kinetics and geometry
of search trajectories. Focusing on one-dimensional systems, we present a general method and derive explicit
expressions of this joint distribution for several representative examples of Markovian search processes. In
addition, we obtain a general scaling form, which holds also for non-Markovian processes and captures the
general dependence of the joint distribution on its space and time variables. We argue that the joint distribution
has important applications to various problems, such as a conditional form of the Rosenstock trapping model,
and the persistence properties of self-interacting random walks.

DOI: 10.1103/PhysRevE.105.034116

I. INTRODUCTION

Quantifying the efficiency of space exploration by random
walkers is a key issue involved in a variety of situations.
Applications range from reactive particles diffusing in the
presence of catalytic sites, to living organisms looking for
resources, to robots cleaning or demining a given area [1–3].
In this context, two important classes of observables have been
considered.

First, the statistics of first-passage times (FPTs) to target
sites of interest has proved to play a key role in deter-
mining the kinetics of space exploration [4–6]. The case
of first-passage times in confined domains was found to be
particularly relevant to assess the efficiency of target search
processes, and it has led to an important activity [7–10]. Re-
lated observables, such as the cover time of a domain [11–13]
or the occupation time of a subdomain, have also been consid-
ered in this context [14–17].

A second class of observables has been introduced to char-
acterize the geometry of the territory explored by random
walkers. In particular, the number of distinct sites visited
(or the so called Wiener sausage in a continuous setting) by
a random walker after n steps, which quantifies the overall
territory swept by the random walker, has been the focus of
many studies with a broad range of applications [1,18–20].
Notable extensions include the number of distinct sites visited
by p independent walkers [19], the case of fractal geometries
[21,22], or the case of random stopping times [23–26].

Even if it is clear that both classes of observables are cou-
pled, the relation between the kinetic and geometric properties
of exploration remains largely unexplored. (For the specific
case of Brownian motion and biased Brownian motion, see
[27].) Qualitatively, the first-passage time to a target of a

generic stochastic process carries information about the ter-
ritory visited before hitting the target: large values of the
first-passage time imply large values of the visited territory.
However, the quantitative determination of this coupling for
general one-dimensional stochastic processes is still lacking.

Here, we address the question of the joint distribution of
the first-passage time to a target and the number of distinct
sites visited when the target is reached, which fully quantifies
this coupling and gives access to a refined characterization
of search trajectories. The joint law provides two conditional
distributions, which allow us to answer quantitatively the
following questions: (Q1) What is the territory visited by a
random walker knowing that it reached a target (and stopped
or exited the domain) after a given time? (Q2) How long does
it take a random walker to reach a target knowing that it has
visited a given number of distinct sites before? We antici-
pate that these quantities could have applications in various
situations where only partial information—either kinetic or
geometric—on trajectories is accessible.

II. SUMMARY OF THE RESULTS

We tackle this general question in the case of one-
dimensional (1D) processes, and we determine the joint
distribution σ (s, n|s0) of the FPT n at the target site 0 and the
number s of distinct sites visited by a random walker starting
from s0 before reaching 0 for the first time [see Fig. 1(a),
where x, t are the continuous counterparts of s, n]. (This
should not be confused with the joint distribution of the max-
imum and the time for reaching the maximum of a Brownian
motion derived in [28].) This 1D setting allows for a signifi-
cant simplification since the number of visited sites is simply
the farthest visited site s; in higher space dimensions, the
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(a) (b)

FIG. 1. (a) Starting from x0, the random walker crosses 0 for the first time at time t , having explored up to a distance x from the origin. The
joint law σ (x, t |x0) is the density probability function of such joint events. (b) Consider a random searcher evolving in a (grayed out) domain,
filled with Poisson distributed targets. Having as the only information the time t of exit from the domain, we display the probability Pt of an
encounter with at least one target in terms of the rescaled variable ρdw t in the case of a Brownian searcher of diffusion coefficient D = 1/2.
Numerical integration of the exact result (13) (symbols) and the asymptotic scaling form (15) (dashed line) is shown.

geometry of the visited territory is complex, and the analysis
requires dedicated methods that are left for further work. Our
approach applies to general (space and time) discrete or con-
tinuous random walkers, evolving in a semi-infinite or finite
domain, and it yields fully explicit expressions of σ (s, n|s0)
for several representative examples of Markovian processes,
such as simple symmetric and biased random walks, persis-
tent random walks [1,18], or resetting random walks [29,30],
whose definitions are recalled below. In addition, we derive
a general scaling form of σ (s, n|s0) in the large s, n regime,
which holds also for non-Markovian processes and captures
the general dependence on s0, s, n. Several applications of
these central results are then discussed. First, we determine the
efficiency of a schematic catalytic reaction [31] by deriving
the probability that a catalytic particle diffusing in an open
domain has activated at least one among Poisson distributed
reactive sites before exiting the domain, knowing the exit time
[see Fig. 1(b)]. Second, we show that knowledge of the joint
distribution σ (s, n|s0) for simple random walks is actually
required for determining first-passage properties of a class
of strongly non-Markovian processes, namely self-interacting
random walks [32–36]. More precisely, with the help of the
joint distribution, we derive exactly the full large-time behav-
ior of the FPT density of the so-called self-attracting walk
(SATW) [37], which has been studied in the context of random
search processes as a prototypical example of processes with
long-range memory [38–41] and has important applications in
the theoretical description of the trajectories of living organ-
isms such as cells [42].

III. DISCRETE PROCESSES

We first consider the case of a general Markovian discrete
(in space and time) process, which leaves no holes in its
trajectory; in other words, the set of visited sites is assumed to
be at all times the finite range �smin, smax� defined by the min
(smin) and max (smax) values of the random walker’s positions.
This last hypothesis will hold for all processes presented in
what follows. Denoting by s0 > 0 the starting site, n the step

at which the walker reaches the target 0 for the first time, and s
the number of distinct sites visited up to this random stopping
time, we derive a systematic procedure to obtain the joint
law σ (s, n|s0). In turn, this joint law gives immediate access
to the conditional probabilities mentioned above, i.e., (i) the
distribution of the number s of distinct sites visited before
reaching 0 knowing that the random walker has reached 0 at
step n:

Gsp(s|n, s0) = σ (s, n|s0)∑∞
s′=s0

σ (s′, n|s0)
≡ σ (s, n|s0)

F0(n|s0)
, (1)

where F0(n|s0) is the usual FPT distribution to 0, and (ii) the
distribution of the FPT to 0 knowing that s distinct sites have
been visited before reaching 0:

Gtm(n|s, s0) = σ (s, n|s0)∑∞
n′=0 σ (s, n′|s0)

≡ σ (s, n|s0)

μ0(s|s0)
, (2)

where μ0(s|s0) is the distribution of the maximum s before
reaching 0.

Let us denote F0,s(n|s0) the probability that the walker
reaches zero for the first time at step n, without ever reach-
ing s, and make a partition over the rightmost site s′ visited
before reaching zero. Because the walker reaches 0 before s,
one necessarily has s′ ∈ �s0, s − 1�, which yields F0,s(n|s0) =∑s−1

s′=s0
σ (s′, n|s0). Note that this relation still holds for non-

Markovian processes. Equivalently, we obtain the key relation

σ (s, n|s0) = F0,s+1(n|s0) − F0,s(n|s0) ≡ DsF0,s(n|s0), (3)

which allows one to write the joint law σ explicitly in terms
of the quantity F0,s(n|s0).

We next provide a procedure based on backward equa-
tions to derive the probability F0,s(n|s0) in the presence of
two absorbing sites 0 and s for a given Markovian stochas-
tic process. In this case, the propagator P(s, n|s0), i.e., the
probability for the walker to be at site s after n steps,
obeys the backward equation P(s, n + 1|s0) = Ls0 [P(s, n|s0)]
[1,43], obtained by partitioning over the first step of the walk,
where Ls0 is a linear operator acting on s0. For instance, in the
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case of a simple random walk, Ls0 [P(s, n|s0)] = 1
2 P(s, n|s0 +

1) + 1
2 P(s, n|s0 − 1). It is easily seen that F0,s(n|s0) obeys the

same backward equation for 0 < s0 < s, and, introducing the
generating function F̃0,s(ξ |s0) = ∑∞

n=0 ξ nF0,s(n|s0), we obtain

F̃0,s(ξ |s0) = ξLs0 [F̃0,s(ξ |s0)]. (4)

Recalling that both 0 and s are absorbing boundaries, we have
that, for any n > 0, F0,s(n|0 or s) = 0, whereas F0,s(0|0) = 1
and F0,s(0|s) = 0. In terms of generating functions, we obtain
the following boundary conditions:

F̃0,s(ξ |0) = 1, F̃0,s(ξ |s) = 0. (5)

Equation (4), completed by (5), fully determines F̃0,s(ξ |s0).
Making use of (3), we then derive the generating function of
the joint law σ .

As an illustration, we obtain in the case of a simple random
walk (see Appendix A 1),

σ̃ (s, ξ |s0) = r+ − r−
rs+ − rs−

rs0+ − rs0−
rs+1
+ − rs+1

−
, (6)

where r± = 1
ξ

(1 ±
√

1 − ξ 2). Further illustration is provided
in Appendixes B 1 and B 2, where explicit expressions of
σ̃ (s, ξ |s0) are determined for the important examples of biased
random walks (for which a step is taken to the right with
probability p, and to the left with probability 1 − p), persistent
random walks (for which each step is taken identical to the
previous one with probability p) [44,45], and resetting random
walks (for which at each step the walker has a probability λ

to jump back to its initial position) [29,30,46,47]. Finally, in
each case, a series expansion with respect to ξ gives access
to an exact determination of σ (s, n|s0) (see Appendix A 5
for validation by numerical simulations), which constitutes
the main result of this section; its physical implications are
commented on below (see Secs. VI and VII).

IV. CONTINUOUS SPACE AND TIME

This method is easily adapted to continuous space and
time (x, t ) Markovian processes. Defining F0,x(t |x0) as the
probability density to reach 0 before x at time t , the continuous
counterpart of Eq. (3) reads

σ (x, t |x0) = DxF0,x(t |x0), (7)

where here Dx is the differential operator with respect to x,
and the Laplace transform F̃0,x(p|x0) = ∫∞

0 e−pt F0,x(t |x0)dt
satisfies the continuous counterpart of Eqs. (4) and (5) (see
Appendix B 1). As an explicit example, for Brownian diffu-
sion with diffusion coefficient D, it is found that the joint law
is given by

σ (x, t |x0) = 2Dπ

x3

∞∑
k=1

e−(kπ )2Dτ k sin(kπ x̃0)

×
[

2(kπ )2Dτ − 2 − kπ x̃0

tan(kπ x̃0)

]
, (8)

where x̃0 = x0
x and τ = t

x2 . Note that an alternative expres-
sion for this joint distribution can be found in [27]. Explicit
expressions of σ̃ for other continuous Markov processes
(biased diffusion and continuous resetting) are presented in

Appendixes B 2 and B 3. Importantly, it is also shown in
Appendixes B 3-C that our approach can be further extended
to the case of continuous space but discrete time processes,
also known as jump processes, as well as Markovian processes
in confined domains.

V. GENERAL SCALING FORM

Beyond the case of Markovian processes, we now show
that the joint law σ assumes a general scaling form for sym-
metric processes, which holds even in the non-Markovian
case and elucidates its dependence on the parameters s, s0, n.
Because we are interested only in the large time and space
limit, we adopt a continuous formalism and make use of the
variables x, x0, t . Extending an approach given in [48,49], we
derive below a general scaling form for F0,x(t |x0), which leads
to the asymptotic behavior of σ (x, t, x0).

First, note that walkers reaching x before 0 do not con-
tribute to the probability F0,x(t |x0). Hence, for times shorter
than the typical time Ttyp ∝ xdw needed to reach x (which
defines the walk dimension dw of the process), F0,x(t |x0)
behaves as the first-passage time density F0(t |x0) in a semi-
infinite domain, with a single target in 0. We now assume
that this quantity has an algebraic decay with time for t →
∞, quantified by the persistence exponent θ of the process:
F0(t |x0) ∼ k(x0)t−(θ+1), where k(x0) ∝ xdwθ

0 for x0 	 1 [6].
Because almost all random walkers have either reached 0 or x
at times t 	 xdw , we write

F0,x(t |x0) ∼ F0(t |x0)g

(
t

xdw

)
∼ k(x0)t−(θ+1)g

(
t

xdw

)
, (9)

where g is a smooth cutoff function with g(0) = 1 and g(y)
vanishes for large y. Finally, with the help of (7), we obtain
the general scaling form for the joint law in the scaling limit
defined by x → ∞, t → ∞ with τ = t/xdw fixed:

σ (x, t |x0) ∼ h(x0)

xdw (θ+1)+1
f (τ ), (10)

where, defining f1(τ ) = −dwg′(τ )τ−θ and N = ∫∞
0 f1(τ )dτ ,

we have h(x0) = k(x0)N and f = f1/N . In addition, h(x0) ∝
xdwθ

0 for x0 	 1, and f (τ ) is a normalized process-dependent
function.

Of note, integrating Eq. (10) over t recovers the distribution
of the maximum μ0(x|x0) = h(x0)x−(dwθ+1) before reaching 0,
in agreement with known results [48]. In turn, this provides a
simple physical interpretation of f (τ ). Making use of (2), we
obtain the conditional density Gtm(t |x, x0) ∼ 1

xdw
f (τ ). Thus,

f (τ ) is the density of the rescaled variable τ conditioned by
the value of the maximum x. In particular, we stress that f is
independent of x0.

The general relation (10) is confirmed in Fig. 2 by numeri-
cal simulations for representative examples of both Markovian
processes (simple random walks and Riemann walks, i.e.,
discrete space and time Levy flights [1]), and non-Markovian
processes (fractional Brownian motion [50] and the random
acceleration process [51]; see Appendixes D 1 and D 2 for
definitions). Indeed, we find that the conditional density of the
FPT knowing the territory covered, which a priori depends on
the variables t, x, x0, can in fact be rewritten as the distribution
f (τ ) of the single reduced variable τ , as shown by the data
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(a) (b)

(c) (d)

FIG. 2. Conditional distribution f (τ ) of the rescaled variable τ (see the text). Distributions are drawn for fixed s (discrete space) or x
(continuous space) and collapse. (a),(b) Markovian processes; (c),(d) non-Markovian processes. See Appendixes D 1 and D 2 for details on
simulations.

collapse in the figure. Next, thanks to the exact Eq. (2), and
the exact scaling of the distribution μ0 of the maximum men-
tioned above [48], this observed scaling of f directly confirms
(10).

In the case of diffusive random walks, f (τ ) can be deter-
mined explicitly by taking x → ∞ and t → ∞ with τ fixed
in Eq. (8):

fBM(τ ) = 2Dπ2
∞∑

k=1

e−(kπ )2Dτ k2[2(kπ )2Dτ − 3]. (11)

Of note, this asymptotic conditional distribution holds for
any symmetric Markovian random walk satisfying the central
limit theorem.

Similarly (see Appendix D 3), the other conditional
distribution defined in (1) can be written from (10) as
Gsp(x|t, x0) ∼ 1

t1/dw
φ(χ ), where the density of the rescaled

variable χ = x/t1/dw is given in terms of f by

φ(χ ) = χ−dw (θ+1)−1 f (χ−dw )∫∞
0 u−dw (θ+1)−1 f (u−dw )du

. (12)

The agreement of this result with numerical simulations is
shown in Appendix D.

VI. DISCUSSION

The above results yield both exact expressions of the
joint law for Markovian processes and scaling forms for
general non Markovian processes, and they have important
implications. (i) The joint law, because it gives access to
all correlation functions 〈xntm〉, fully quantifies the coupling
between the kinetics of space exploration and the territory
explored by a random walker. This coupling manifests itself

in the dependence of σ on the rescaled variable τ = t/xdw .
(ii) The joint law yields the conditional distributions Gsp [see
(1)] and Gtm [see (2)], which provide new insights into the
quantification of space exploration, and in particular explicit
answers to the questions Q1, Q2 raised in the Introduction.
Below, we further illustrate the importance of the joint law
and turn to examples of applications of our results.

Application—Conditional Rosenstock problem. The above
results provide as a by-product an explicit solution to a con-
ditional version of the celebrated Rosenstock problem [1,31].
We consider a catalytic diffusing particle that enters a one-
dimensional chemical reactor at x0 and leaves it at 0; it is
assumed that the time t spent in the reactor is observed. The
reactor contains Poisson-distributed pointlike reactive sites of
density ρ, which trigger a reaction upon encounter with the
catalytic particle, whose diffusive dynamics is assumed to re-
main unchanged upon reaction [see Fig. 1(b)]. The efficiency
of such a schematic catalytic reaction can be quantified by the
probability Pt that the catalytic particle has activated at least
one reactive site before exiting the domain, knowing the exit
time t . This is readily obtained as

Pt =
∫ ∞

0
(1 − e−ρx )Gsp(x|t, x0)dx. (13)

The determination of Pt thus requires Gsp, and therefore the
joint law. Making use of the general scaling (10), we obtain
the large-time scaling behavior:

Pt ∼
t→∞

∫ ∞

0
(1 − e−ρt1/dw u)φ(u)du; (14)

this shows that Pt is asymptotically a function of the reduced
variable ρt1/dw only, with Pt ∝ ρt1/dw for ρt1/dw → 0. Equa-
tion (14) provides, thanks to (12), an explicit determination of
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Pt for all processes for which σ (and thus f ) is known, and in
particular elucidates its dependence on the exit time t from the
domain [see Fig. 1(b)]. On the example of Brownian motion,
one obtains [for x2

0/D � t � 1/(Dρ2)]

Pt ∼ √
πρ(Dt )

1
2 . (15)

VII. APPLICATION—SELF-INTERACTING WALKERS

Next, we show that the joint law can be needed to obtain
the first-passage time distribution. This is the case of self-
interacting random walks, which are defined generically as
random walks whose jump probabilities at time n depend on
the full set of visited sites at earlier times n′ < n. We focus
on the example of the one-dimensional self-attracting walk
(SATW) [37], which has been studied in the context of random
search processes as a prototypical example of process with
long-range memory, and has recently proved to be relevant
to describe the dynamics of motile cells [42]. At each time
step, if both its neighboring sites have already been visited,
the random walker hops on either of them with probability
1/2. However, if one of them has never been visited, it is
chosen with probability β. Note that this can either be an
attractive effect (β < 1/2) or a repulsive one (β > 1/2). Since
the dynamics of the walk is completely determined by the lo-
cation of unvisited sites, the determination of the first-passage
time distribution requires the knowledge of all times at which
unvisited sites have been discovered. Denoting here F0,s(n|s0)
the probability to reach s before 0 for the first time at step n,
knowing that the sites �1, s − 1� have already been visited, the
generating function of σ (s, n|1) can be written as

σ̃ (s, ξ |1) = ξ

2

(
s∏

s′=3

F̃0,s′ (ξ |s′ − 1)

)
F̃0,s+1(ξ |s). (16)

Solving for F̃0,s(ξ |s0) yields an explicit expression of σ̃ (see
Appendixes E 1 and E 2). For large s and n, with τ = n

s2 fixed,

this yields σ (s, n|s0) = h(s0)s− 1−β

β
−3 fSATW(τ ), where h(1) =

�(−2+2/β )
�(−1+1/β )

(1−β )
β

and h(s0) ∝ s
1−β

β

0 for large s0. [Since for the

SATW dw = 2 and θ = 1−β

2β
[52], the joint law obeys the gen-

eral scaling form (10).] Finally, the conditional distribution
fSATW is defined by its strikingly simple Laplace transform:

f̃SATW(p) =
∫ ∞

0
e−pu fSATW(u)du =

( √
2p

sinh(
√

2p)

) 1
β

. (17)

The FPT distribution is finally deduced from σ (s, n|1) and
yields the following exact asymptotics (see Appendix E 6):

F0(n|s0 = 1) ∼
n→∞

�
(

2
β

− 1
)

�
(

1
2β

− 1
2

)2− 1+β

2β n− 1−β

2β
−1

. (18)

While the n decay is in agreement with the recent determi-
nation of the persistent exponent of the SATW relying on a
different approach [52], this formalism based on the joint law
gives access to the explicit expression of the prefactor for this
strongly non-Markovian process.

VIII. CONCLUSION

We have proposed a general method to derive explicit ex-
pressions of the joint distribution of the first-passage time to a
target and the number of distinct sites visited when the target
is reached for one-dimensional random walks. This method
yields explicit expressions for several representative examples
of Markovian search processes. Furthermore, we showed that
the dependence of the joint distribution on its space and time
variables is captured by a general scaling form, which holds
even for non-Markovian processes. We argue that the joint dis-
tribution could have applications in various situations where
only partial information—either kinetic or geometric—on tra-
jectories is accessible; in addition, it appears to be a useful
technical tool that for instance can give access to persistence
properties of self interacting random walks.
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APPENDIX A: DISCRETE SPACE AND TIME
PROCESSES—JOINT LAWS

1. Normal diffusion

In this Appendix, we present the derivation of the joint law
for the discrete symmetric diffusion process. Following the
main notations, we obtain the backward equation:

F0,s(n + 1, s0) = 1
2 [F0,s(n, s0 + 1) + F0,s(n, s0 − 1)] (A1)

and going into the generating function formalism with
F̃0,s(ξ, s0) = ∑∞

n=0 ξ nF0,s(n, s0),

1

ξ
F̃0,s(ξ, s0) = 1

2
[F̃0,s(ξ, s0 + 1) + F̃0,s(ξ, s0 − 1)]. (A2)

Enforcing the boundary conditions F̃0,s(ξ, s) = 1,
F̃0,s(ξ, 0) = 0, and denoting r± = 1

ξ
(1 ±

√
1 − ξ 2), we

obtain

F̃0,s(ξ, s0) = rs0+ − rs0−
rs+ − rs−

. (A3)

Note that F̃0,s(ξ |s0) = F̃0,s(ξ |s − s0). Applying the method,
we obtain

σ̃ (s, ξ |s0) = F̃0,s+1(ξ |s0) − F̃0,s(ξ |s0)

= r+ − r−
rs+ − rs−

rs0+ − rs0−
rs+1
+ − rs+1

−
(r+r−)s−s0

= r+ − r−
rs+ − rs−

rs0+ − rs0−
rs+1
+ − rs+1

−
. (A4)

2. Biased diffusion

In this section we only give the steps required to derive
F̃0,s(ξ |s0), as the joint law is directly obtained from differen-
tiation. Denoting p the probability to take a step to the right,
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the backward equation on F reads

pF̃0,s(ξ |s0 + 1) + 1

ξ
F̃0,s(ξ |s0) + (1 − p)F̃0,s(ξ |s0 − 1) = 0.

(A5)

Denoting the roots r± = 1
2pξ (1 ±

√
1 − 4pqξ 2), we obtain

F̃0,s(ξ, s0) = rs0+ − rs0−
rs+ − rs−

. (A6)

3. Persistent walk

Let us now turn to the case of the persistent walk, where
each step is taken identical to the previous one with proba-
bility p [44,45]. As in the case of the biased random walk,
we only present the derivation of F̃0,s(ξ |s0). Let us denote by
u and v the function F conditioned on the direction of the
previous step. Denoting a the probability of taking the first
step toward the right, we obtain our first equation:

F0,s(n + 1, s0) = au0,s(n, s0 + 1) + (1 − a)v0,s(n, s0 − 1).

(A7)

Going into the generating function formalism yields

ξ−1F̃0,s(ξ, s0) = aũ0,s(ξ, s0 + 1) + (1 − a)ṽ0,s(ξ, s0 − 1).

(A8)

Dropping the ξ dependence for brevity, we also obtain a set of
equations for ũ and ṽ:

ũ0,s(s0 + 2) −
1
ξ

− ξ + 2pξ

p
ũ0,s(s0 + 1) + ũ0,s(s0) = 0,

ṽ0,s(s0) = 1

1 − p

[
1

ξ
ũ0,s(s0 + 1) − pũ0,s(s0 + 2)

]
. (A9)

As expected, taking ξ to 0 yields back the governing equa-
tions for the splitting probability to reach s before 0. The
quantity ũ obeys a second-order difference equation whose
roots read

r± =
1
ξ

− ξ + 2pξ

2p
±
√(

1
ξ

− ξ + 2pξ
)2 − 4p2

2p
(A10)

yielding

ũ0,s(s0) = Ars0+ + Brs0− . (A11)

Imposing the two boundary conditions ũ0,s(s) = 1 and
ṽ0,s(0) = 0, one obtains the following result:

A = (pξr− − 1)r−
rs−r+ − pξrs−r2+ − r−rs+ + pξr2−rs+

,

B = − (pξr+ − 1)r+
rs−r+ − pξrs−r2+ − r−rs+ + pξr2−rs+

. (A12)

We are now in possession of all the terms required to
perform a series expansion of F̃ and thus obtain σ (s, n|s0).

4. Resetting walk

We finally turn to the discrete resetting process. At each
step, the walker either jumps back to its starting position with

probability λ or chooses one of its neighbors with probabil-
ity 1−λ

2 [29,30,46,47]. Denoting sp the starting point of the
walker, the backward equation for F reads, in the generating
function formalism,

F̃0,s(ξ |s0 + 1) − 2

ξ (1 − λ)
F̃0,s(ξ |s0)

+ F̃0,s(ξ |s0 − 1) = 2λ

(1 − λ)
F̃0,s(ξ |sp) (A13)

with the associated boundary conditions F̃0,s(ξ |0) = 0 and
F̃0,s(ξ |s) = 1. Denoting G(s1, s2) the Green function such that

G(s1 + 1, s2) − 2

ξ (1 − λ)
G(s1, s2) + G(s1 − 1, s2) = δs1,s2 ,

(A14)
one can show that

G(s1, s2) = 1s1�s2 G−(s1, s2) + 1s1>s2 G+(s1, s2), (A15)

where

G−(s1, s2) = A(s2)−1(rs1+ − rs1− ),

G+(s1, s2) = A(s2)−1 rs2+ − rs2−
rs2+ − rs2−

rs+
rs−

(
rs1+ − rs1−

rs
+

rs−

)
, (A16)

with

r± = 1

ξ (1 − λ)
±
√[

1

ξ (1 − λ)

]2

− 1,

A(s2) = (rs2+ − rs2− )

(
rs2+ − rs2−

rs
+

rs−

)−1(
rs2+1
+ − rs2+1

−
rs
+

rs−

)
− 2

ξ (1 − λ)
(rs2+ − rs2− ) + (rs2−1

+ − rs2−1
− ). (A17)

Introducing the homogeneous solution

h0,s(s0) = rs0+ − rs0−
rs+ − rs−

, (A18)

we finally obtain, with sp the starting point,

F̃0,s(ξ |s0) = h0,s(s0) − h(sp)2λ
∑

s2
G(s0, s2)

1 − λ + 2λ
∑

s2
G(sp, s2)

. (A19)

5. Numerical validation

We display in Fig. 3 the agreement between the theoretical
expressions of the joint law derived in Appendixes A 1–A 4
and numerical simulations.

For each random process, the generating function of the
joint law is derived from the expressions of F̃0,s(ξ |s0) given
above, according to σ̃ (s, ξ |s0) = F̃0,s+1(ξ |s0) − F̃0,s(ξ |s0).
Since σ̃ (s, ξ |s0) = ∑∞

k=0 σ (s, n|s0)ξ n, for given s and n, we
perform a series expansion in ξ up to order n and read off
the desired coefficient. Although σ (s, n|s0) is only defined for
discrete values of n, we choose to represent the theory with
continuous lines to increase readability and help differentiate
from the simulated data.
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(a) (b)

(c) (d)

FIG. 3. Space and time joint law for various discrete stochastic one-dimensional processes—one can show that the biased case is exactly
proportional to the isotropic case. For each s and n we estimate the quantity σ (s, n|s0) by averaging over 106 random walks. (a) Symmetric
nearest-neighbor random walk. (b) Biased random walk: each step is taken rightward with probability p. (c) Persistent random walk: each step
is taken identical to the previous one with probability p. The first step is taken rightward with probability a. (d) Resetting walk: at each time
step, the walker resets to its initial position with probability λ or hops symmetrically on one of its nearest neighbors.

APPENDIX B: CONTINUOUS SPACE AND TIME
PROCESSES—JOINT LAWS

1. Backward equation for F0,x(t|x0) in Brownian diffusion

For classical continuous diffusion, denoting the propagator
c(x, t |x0) as the probability for the walker to be at position
x at time t starting from x0, one has the following backward
equation:

∂

∂t
c(x, t |x0) = D

∂2

∂2x0
c(x, t |x0), (B1)

where D is the diffusive coefficient. Denoting the Laplace
transform F̃0,x(p|x0) = ∫∞

0 e−pt F0,x(t |x0)dt , we have

pF̃0,x (p|x0) = D
∂2

∂2x0
F̃0,x(p|x0). (B2)

Solving for F with F̃0,x(p|0) = 0 and F̃0,x(p|x) = 1, we obtain

F̃0,x(p|x0) =
sinh

[√ p
D x0

]
sinh

[√ p
D x
] . (B3)

Once again, F̃0,x(p|x0) = F̃0,x (p|x − x0) and, partitioning over
the maximum reached during a trajectory exiting at 0 before
x, one obtains

F̃0,x(t |x0) =
∫ x

x0

σ (x′, t |x0)dx′ (B4)

and thus the desired relation

σ (x, t |x0) = DxF0,x(t |x0). (B5)

2. Biased diffusion

For biased diffusion with diffusive coefficient D and right-
ward drift coefficient v, we obtain, in the Laplace formalism,

σ̃ v (x, s|x0) = e
−vx0

2D
|v|
2D

√
1 + 4sD

v2

sinh
( x0|v|

2D

√
1 + 4sD

v2

)
sinh

( x|v|
2D

√
1 + 4sD

v2

)2 .

(B6)
Once inverted, this expression takes the following form:

σ v (x, t |x0) = e− vx0
2D − v2t

4D
2Dπ

x3

∞∑
k=1

e−(kπ )2τ k

×
[

2(kπ )2τ − 2 − kπ x̃0

tan(kπ x̃0)

]
sin(kπ x̃0)

(B7)

or, in a simpler manner,

σ v (x, t |x0) = e− vx0
2D e− v2t

4D σ 0(x, t |x0), (B8)

where σ 0 denotes the joint-law for symmetric diffusion.
Note that this expression can be found in [27] in the form of
another infinite series.

3. Continuous resetting

We consider here the continuous resetting diffusion pro-
cess, which diffuses with coefficient D and resets to its initial
position xp with resetting rate λ [29,30,46,47]. The backward
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equation for the propagator c(x, t ) reads

∂

∂t
c(x, t |x0) = D

∂2

∂2x0
c(x, t |x0) + λ(c(x, t |xp) − c(x, t |x0)).

(B9)
The same equation holds for F0,x(t |x0), and, going into the

Laplace domain, we obtain

∂2

∂2x0
F̃0,x(p|x0) − ω2F̃0,x(p|x0) = − λ

D
F̃0,x (p|xp), (B10)

where ω2 = λ+p
D . Using the Green’s function method, we are

able to solve for F̃ , and derivation with respect to x finally
yields the joint law in the Laplace domain,

σ̃ (x, p|x0)

= Dω3[p + λ cosh (ω(x − x0))]

× sinh(ωx0)

sinh2(ωx)[p+λ cosh(ωx)][sinh (ω(x−x0))+ sinh(ωx0)]2
.

(B11)

4. Bounded domains

Let us consider a continuous walker evolving in a bounded
domain [0, L] with an absorbing boundary at x = 0 and
a reflective one at x = L. Let us denote σbounded(x, t |x0)
as the associated joint distribution. For x < L, one has
σbounded(x, t |x0) = σfree(x, t |x0), since the walker never sees
the reflecting boundary. However, when one inquires specifi-
cally about x = L, the joint law has to be modified. Defining
F bounded

0,L (t |x0) as the probability for the walker in the interval
to reach 0 for the first time at time t , one has

σbounded(L, t |x0) = F bounded
0,L (t |x0) − F0,L(t |x0). (B12)

In the particular case of symmetric diffusion in an interval,
F bounded

0,L (t |x0) can be computed and the joint law reads, in the
Laplace domain,

σ̃bounded(L, p|x0) =
2 sinh

[√ p
D x0

]
sinh

[√ p
D 2L

] , (B13)

which can be inverted in real space:

σbounded(L, t |x0) = Dπ

L2

∞∑
k=1

e−(kπ )2τ (−1)k+1k sin(kπ x̃),

(B14)
where τ = Dt

4L2 and x̃ = x0
2L .

APPENDIX C: DISCRETE TIME AND CONTINUOUS
SPACE PROCESSES—JOINT LAWS

1. General derivation of the joint law

For any jump process defined as a process performing a
random jump at every discrete time n, the relation between F
and σ can always be written as

F0,x(n|x0) =
∫ x

x0

σ (y, n|x0)dy, (C1)

which simply reflects the fact that the maximum of the trajec-
tory necessarily lies in the interval [x0, x]. However, F0,x(n|x)

can have nonzero values for jump processes, since we require
the walker to strictly cross 0 or x in order to terminate its
trajectory. Writing

DxF0,x(n|x0) = σ (x, n|x0) (C2)

would yield

F0,x(n|x0) − F0,x0 (n|x0) =
∫ x

x0

σ (y, n|x0)dy. (C3)

Hence the need to correct the previous equation with the
Heaviside and δ function in the following way to recover
Eq. (C1):

H (x − x0)DxF0,x(n|x0) + δ(x − x0)F0,x0 (n|x0) = σ (x, n|x0).

(C4)

2. Example of the Laplace distributed jump process

As an example, we provide the exact result in the generat-
ing function formalism for a jump process whose jumps are
distributed according to p(l ) ∝ e−γ |l| [43]:

F̃x,0(ξ |x0) = [sinh(γ
√

1 − ξx0)

+
√

1 − ξ cosh(γ
√

1 − ξx0)]

× xξ ((2 − ξ ) sinh(γ
√

1 − ξx)

+ 2
√

1 − ξ cosh(γ
√

1 − ξx))−1 (C5)

from which the generating function of the joint law is obtained
with the help of Eq. (C4).

APPENDIX D: NON-MARKOVIAN PROCESSES

1. Fractional Brownian motion

a. Definition

The fractional Brownian motion is a Gaussian process with
a constant mean (here set at x0) and a correlation function
given by

〈[X (t ) − X0][X (t ′) − X0]〉 = K[t2H + t ′2H + |t − t ′|2H ],

(D1)

where H is the Hurst exponent and K here is set to 1. The FBM
is non-Markovian for H �= 1/2 (0 < H < 1) and by definition
of the correlations is anomalous since H �= 1/2. However,
the process performs stationary increments and displays a
persistent exponent shown to be equal to θ = 1 − H [6,53].

b. Numerical method

The algorithm used to sample the 1D FBM trajectories
is based on the circulant matrix method and is detailed in
[54–56]. This method allows generating exact trajectories
with a constant time step �t ≈ 1.2 × 10−4, until a maxi-
mal time, here taken to be tmax = 4000. By reason of the
scale-invariant property, we fixed x0 = 1 without loss of
generality. Since this process is defined in both continuum
space and time, the exact numerical measurement of the
conditional law evaluated at a fixed maximum x or FPT
t needed to be approximated. To evaluate f (τ ) at fixed t ,
we kept all the trajectories for which the FPT fell on the
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)b()a(

(c)

FIG. 4. (a) Data collapse of the joint law σ (s, n|s0) as predicted in the main text for a Riemann walk of Levy exponent 3
2 . (b) Conditional

law of the rescaled variable for a FBM process (H = 0.75) starting from x0 = 1. (c) Conditional law of the rescaled variable for a RAP process
starting from x0 = 4.

interval [t − dt, t + dt], where dt is chosen as minimal as
possible keeping a convenient realization number (>2000).
Similarly for �(χ ), we only kept the trajectories for which
x ∈ [x − dx, x + dx]. Here we recap the interval chosen for
each curve drawn in both the main text and the Appendix. Fig-
ure 2 in the main text shows H = 0.375: [(x = 10.11, dx =
0.674), (x = 13.0, dx = 0.867), (x = 16.8 dx = 1.12), (x =
22.0, dx = 1.46), (x = 29.0, dx = 1.9)]. Figure 4 in Ap-
pendix D shows H = 0.75: [(x = 22.8, dx = 1.52), (x =
34.8, dx = 2.38), (x = 53.5, dx = 3.57), (x = 82.6, dx =
5.51), (x = 128.0, dx = 8.53), (x = 198.0, dx = 13.2)].
Figure 5 in Appendix D shows H = 0.75: [(t = 145, dt = 4),
(t = 252, dt = 12), (t = 438, dt = 16)].

2. Random acceleration process

a. Definition

We consider here the one-dimensional process X (t ) de-
fined by

d2

dt2
X (t ) = ξ (t ), (D2)

where ξ (t ) is a Gaussian white noise with zero mean and
〈ξ (t )ξ (t ′)〉 = Kδ(t − t ′) with K an appropriate constant, here
set to 1. Obviously this process is non-Markovian, and it has
been shown that it performs a superdiffusive regime char-
acterized by 〈X 2(t )〉 ∼

t→∞ t3. Besides, the process is known

for performing a compact exploration characterized by a per-
sistent exponent θ = 1/4 [6]. Despite its aging properties

characterized by nonstationary increments defined by

〈[X (t + T ) − X (T )]2〉 ∝ t2T, (D3)

we argue that the scaling law of joint law, given in the main
text, still applies.

b. Numerical method

The stochastic trajectories of the random acceleration pro-
cesses are generated by means of the algorithm introduced
in [51], which generates the exact probability function with
a discrete time step. Since the velocity grows with t as

√
t ,

we reduce the time step at each iteration in order to keep the
discrete space interval covered small. To do so, we used �t =
0.05
n1/3 , where n is the number of steps. By reason of the scale-
invariant property, we fixed x0 = 1 without loss of generality.
Similarly to the FBM, we used the trajectories for which t
(similarly x) fell in a convenient interval. Here we recap the
interval chosen for each curve drawn in both the main text and
the Appendix. Figure 2 in the main text shows RAP: [(x =
26.8, dx = 5), (x = 1091.0, dx = 72.7), (x = 2961.2, dx =
197), (x = 8040.7, dx = 536), (x = 21836.0, dx = 1456)].
Figure 4 in Appendix D shows RAP: [(x = 155.0, dx =
10.3), (x = 415.0, dx = 27.7), (x = 1125.2, dx = 75.01),
(x = 3061.3, dx = 204.8), (x = 8341.0, dx = 556.1)]. Fig-
ure 5 in Appendix D shows RAP: [(t = 442, dt = 5), (t =
869.7, dt = 10), (t = 1711.26, dt = 50), (t = 3367.08, dt =
80)].
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(a) (b) (c)

(d) (e)

FIG. 5. Conditional law of the rescaled variable χ = s/n
1

dw for (a) Brownian motion of diffusive coefficient 1
2 , (b) Riemann walk of Levy

exponent 3
2 , and (c) Riemann walk of Levy exponent 1

2 . Each distribution is drawn for fixed n and collapses at large s to a process-dependent

but x0-independent function. Similarly the conditional law of the rescaled variable χ = x/t
1

dw at fixed FPT t collapses at large x for (d) a FBM
process (H = 0.75), and (e) a RAP.

3. From one conditional to another

In this section, we are interested in the other marginal,
namely the distribution of the maximum of the trajectory
knowing its return time, which we will denote as Gsp(x|t, x0).
Let us focus on the scaling form of such a marginal. Recall
that, in the large x and t limit,

σ (x, t |x0) ∼ h(x0)

xdw (θ+1)+1
f

(
t

xdw

)
, (D4)

where f is normalized to 1 and can be identified as the con-
ditional probability density function of the rescaled variable
τ = t/xdw , and “∼” stands for mathematical equivalence in
the large x and t limit. Let us now transform the above given
expression in the following way:

σ (x, t |s0) ∼ h(x0)

t θ+1+1/dw

(
t

xdw

)1+θ+1/dw

f

(
t

xdw

)
. (D5)

Defining now g(u) = u−[dw (θ+1)+1] f (u−dw ) and φ(u) =
g(u)∫∞

0 g(x)dx
, we obtain

σ (x, t |s0) ∼ h(x0)

t θ+1

[∫ ∞

0
g(u)du

]
1

t
1

dw

φ

(
x

t
1

dw

)
. (D6)

φ is normalized, so we immediately read off the desired
marginal:

Gsp(x|t, s0) ∼ 1

t
1

dw

φ

(
x

t
1

dw

)
(D7)

with

φ(χ ) = χ−dw (θ+1)−1 f (χ−dw )∫∞
0 u−dw (θ+1)−1 f (u−dw )du

, (D8)

whose scaling form is verified in Fig. 5. Note that the first-
passage time density reads

F0(t |x0) ∼ h(x0)

t θ+1

∫ ∞

0
g(u)du. (D9)

APPENDIX E: SATW WALK

1. Splitting probability of the SATW

Here we derive the splitting probability π0,s of the SATW
process starting at site 1 to hit site s before hitting site 0.
In view of determining π0,s, it is convenient to parametrize
its dynamics in terms of the number of distinct sites already
visited. To do so, we define π0,s(s′) as the splitting probability
of a walker currently at s′ with a set of already visited sites
Ds = [1, s − 1] to hit site s before hitting site 0. It is then clear
that π0,s verifies the following recurrence relation:

π0,s+1 = π0,sπ0,s+1(s). (E1)

Noticing that inside the visited territory Ds the walker per-
forms a classical symmetric nearest-neighbor random walk,
we have, for 0 < s′ < s,

π0,s(s
′) = 1

2π0,s(s
′ − 1) + 1

2π0,s(s
′ + 1). (E2)

The solution of (E2) can be written

π0,s(s
′) = λ + μs, (E3)
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where λ and μ can be deduced from the boundary conditions
at the extremities of the visited area,

π0,s(1) = (1 − β ) π0,s(2),

π0,s(s − 1) = β + (1 − β ) π0,s(s − 2). (E4)

This yields

π0,s+1(s) = 1 − 1 − β

2 + β(s − 3)
. (E5)

Combining the solution (E3) with (E4) and (E1) yields
finally the full splitting probability, :

π0,s =
s−1∏
s′=1

(
1 − 1 − β

2 + β(s′ − 3)

)
∼

s→∞
�(−2 + 2/β )

�(−1 + 1/β )
s− 1−β

β .

(E6)
Let us notice that the distribution of the maximum can be

deduced from the splitting probability:

μ(s|1) = π0,s(1 − π0,s+1(s)), (E7)

μ(s|1) ∼
s→∞

�(−2 + 2/β )

�(−1 + 1/β )

1 − β

β
s− 1−β

β
−1

. (E8)

2. Generative function of the joint law

Let us derive the generative function of the joint dis-
tribution σ (s, n|s0) of the maximum s reached during the
exploration and the FPT n to 0, starting from s0.

To do so, we make a partition on the discovery times of the
first s sites. Denoting F0,s(n|s0) the probability to reach site s
before 0 for the first time at step n starting from s0 knowing
that the sites {1, . . . , s − 1} have already been visited, we
obtain in the generating function formalism:

σ̃ (s, ξ |1) = ξ

2

(
s∏

s′=3

F̃0,s′ (ξ |s′ − 1)

)
F̃0,s+1(ξ |s). (E9)

For 1 < s0 < n, notice that inside the bulk of visited sites
the walkers perform a simple random walk enforcing the
following recurrence relation for F0,s(n|s0):

F̃0,s(ξ |s0) = ξ

2
F̃0,s(ξ |s0 + 1) + ξ

2
F̃0,s(ξ |s0 − 1). (E10)

Solving the recurrence equation leads to

F̃0,s(ξ |s0) = λrs0
1 + μrs0

2 (E11)

with

r1 = 1

ξ
−
√

1 − ξ 2

ξ
,

r2 = 1

ξ
+
√

1 − ξ 2

ξ
. (E12)

We now deduce λ and μ using the boundary condition,

F̃0,s(ξ |1) = ξ (1 − β )F̃0,s(ξ |2),

F̃0,s(ξ |s − 1) = βξ + (1 − β )ξ F̃0,s(ξ |s − 2). (E13)

After a few lines of algebra, we finally get

F̃0,s(ξ |s − 1)

βξ

= rs−3
1 [r1 − (1 − β )ξ ] − rs−3

2 [r2 − (1 − β )ξ ]

rs−4
1 [r1 − (1 − β )ξ ]2 − rs−4

2 [r2 − (1 − β )ξ ]2
. (E14)

For completeness, we derive the specific cases s = 2, 3,

F̃0,2(ξ |1) = ξ

2
,

F̃0,3(ξ |2) = βξ

1 − (1 − β )2ξ 2
. (E15)

We finally derive the last excursion,

F̃0,s+1(ξ |s)

= βξ
[1 − (1 − β )r2ξ ] − [1 − (1 − β )r1ξ ]

rs−3
1 [r1 − (1 − β )ξ ]2 − rs−3

2 [r2 − (1 − β )ξ ]2
.

(E16)

Combining the different terms leads to

σ̃ (ξ, s|1) = βs−1ξ s

2[1 − (1 − β )2ξ 2]

×
(

s−4∏
i=0

ri+1
1 [r1−(1−β )ξ ] − ri+1

2 [r2 − (1−β )ξ ]

ri
1[r1 − (1 − β )ξ ]2 − ri

2[r2 − (1 − β )ξ ]2

)

× [1 − (1 − β )r2ξ ] − [1 − (1 − β )r1ξ ]

rs−3
1 [r1 − (1 − β )ξ ]2 − rs−3

2 [r2 − (1−β )ξ ]2
.

(E17)

3. Laplace transformed distribution of the rescaled variable τ

conditioned on the value of the maximum large time and large
distance asymptotic behavior

In this section, we aim to derive the asymptotic scaling of
the first-passage time distribution conditioned by the maxi-
mum value s. To do so, we need to determine the asymptotic
scaling of the different terms in (E17), divided by their asso-
ciated splitting probability obtained in (E6) and (E7).

Let us start by considering a given excursion of the joint
law (E14), from which we extract the conditional law of a sin-
gle excursion, dividing by the associated splitting probability,

π0,i+4(i + 3)−1F̃0,i+4(ξ |i + 3)

= 1

1 − 1−β

βi+2

βξ
ri+1

1 [r1 − (1 − β )ξ ] − ri+1
2 [r2 − (1 − β )ξ ]

ri
1[r1 − (1 − β )ξ ]2 − ri

2[r2 − (1 − β )ξ ]2

= 1

1 − 1−β

βi+2

⎛⎝βξ
r1[r1− (1− β )ξ ]− ri

2

ri
1
r2[r2− (1−β )ξ ]

[r1− (1− β )ξ ]2 − ri
2

ri
1
[r2−(1 − β )ξ ]2

⎞⎠.

(E18)

We now change ξ in e−u, taking the discrete Laplace
transform of the conditional law (E18) at fixed i. In view of
determining the asymptotic behavior at large times and space
of (E18), we first need to draw two observations:

(i) We are concerned with the joint limit u → 0, i → ∞.
Thus, we aim to extract the lowest dependency (i.e., minimal
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exponent a) on the coupled variable iua which will emerge,
because it will drive the asymptotic behavior of the condi-
tional law.

(ii) By definition of the conditional law, the series expan-
sion at large i of F̃0,i+4(ξ |i + 3) and π0,i+4(i + 3) cancels in
the limit u → 0 at fixed i.

Hence, we propose to rewrite (E18) as

F̃0,i+4(ξ |i + 3)

π0,i+4(i + 3)
=
(

1 −
∞∑

k=1

1 − β

β

(
− 2

β

)k−1

i−k

)−1

×
(

1 +
∞∑

k=1

ukaAk (iua)

)
, (E19)

with Ak (iua) ∼
u→0

− 1−β

β
(− 2

β
)k−1(iua)−k . We propose to derive

the exponent a by making an expansion at the lowest order in
u of ( r2

r1
)i which appears in (E18),

ri
2

ri
1

= exp[i ln(1 − 2
√

2u + 4u − 3
√

2u3/2)]

= exp ( − 2
√

2ui − iO(u3/2)). (E20)

Noticing that the dependency i only appears in the above ratio,
we conclude that a = 1/2. In the following, we will neglect
any term of the form O(iu3/2) since it will always be negligible
compared to i

√
u when u → 0, i → ∞. Injecting (E20) in

rightmost term of (E18), we obtain after a few lines of algebra,⎛⎝βe−u
r1[r1 − (1 − β )e−u] − ri

2

ri
1
r2[r2 − (1 − β )e−u]

[r1 − (1 − β )e−u]2 − ri
2

ri
1
[r2 − (1 − β )e−u]2

⎞⎠
= 1 − 1 − β

β

√
2u

tanh(i
√

2u)
+ O(u)H (i2u). (E21)

Injecting the expansion (E21) obtained above in (E19)
leads to

F̃0,i+4(ξ |i + 3)

π0,i+4(i + 3)
=
(

1 −
∞∑

k=1

1 − β

β

(
− 2

β

)k−1

i−k

)−1

×
(

1−1 − β

β

√
2u

tanh(i
√

2u)
+O(u)H (i2u)

)
.

(E22)

In the limit i
√

u → 0, the last term displays a series ex-
pansion along i which cancels each term of the splitting series
expansion. Finally, for i → ∞ with ui2 fixed, we note that the
last term is negligible compared to

√
u. We thus obtain

F̃0,i+4(ξ |i + 3)

π0,i+4(i + 3)
= 1 + 1 − β

βi

(
1 −

√
2ui

tanh(i
√

2u)

)
+ R(u, i),

(E23)
where we have included the additional terms of both series
expansion O(u)H1(ui2) + O(i−2) inside the variable noted
R(u, i) [H1(ui2) taking into account the cross product of the
first-order terms]. One should note that R(u, i) →

ui2→0
0 but also

R(u, i) →
ui2∼O(1)

O(i−2) + o(
√

u). In other words, the last term

is negligible for ui2 ∼ O(1) and i → ∞. Considering the full

product in (E17), we obtain in the large-time limit in Laplace,

P(S) =
(
β
∏s−4

i=0
ri+1

1 [r1−(1−β )e−u]−ri+1
2 [r2−(1−β )e−u]

ri
1[r1−(1−β )e−u]2−ri

2[r2−(1−β )e−u]2

)
∏s−4

i=0

(
1 − 1−β

2+βi

) ∼
us2∼O(1),u→0

exp

{∫ s

i=0
ln

[
1 + 1 − β

iβ

(
1 −

√
2ui

tanh(i
√

2u)

)]
di

}
,

(E24)

where we have legitimately expressed the sum as an integral
since all the terms with i2 � u are negligible. We also have
neglected R(u, i) in the summation since the contribution of
O(i−2) is the rest of a converging series starting at a typical
number given by O(u−1/2).

Noticing the following simplification after expressing i =
i′/s:∫ 1

0

1

i′

(
1 − i′

√
2us2

tanh(i′
√

2us2)

)
di′ = ln

( √
2us2

sinh(2us2)

)
, (E25)

we finally find in the large-s limit, with s2u fixed,

P(S) ∼
us2∼O(1),u→0

( √
2us2

sinh(
√

2us2)

) 1−β

β

. (E26)

We finally consider the last excursion of (E17) when the
walker finds the target without discovering any other new site.
The asymptotic scaling of this last excursion normalized by
its own splitting probability reads

2 + β(s − 3)

1 − β

βe−u(1 − β )(r1e−u − r2e−u)

rs−3
1 [r1 − (1 − β )e−u]2 − rs−3

2 [r2 − (1 − β )e−u]2

∼
us2∼O(1),u→0

√
2us2

sinh(
√

2us2)
. (E27)

Lastly, we consider the first two excursions of (E17),
which, normalized by their own splitting probability, do not
express any dependency on the variable su2:

2
(1 − 1 − β )2

β

e−u

2

βe−u

1 − (1 − β )2e−2u
= 1 + O(u). (E28)

Combining (E28), (E27), and (E26) leads to the asymp-
totic expression of the Laplace transform of the conditional
distribution fSATW(τ ), which has been obtained in an another
context [57]:

f̃SATW(p) =
( √

2p

sinh(
√

2p)

)1/β

. (E29)

The numerical inverses of Laplace transform for the SATW
model are obtained using the Stehfest method [58]; see [59].
Several other numerical methods have also been tested and
were in complete agreement with our prediction.

4. Continuous limit of the conditional distribution
at large times and large distance

We wish here to give some precision on how to go from
the initial discrete setup to a large time/large distance limit.
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Recall that the discrete Laplace transform reads

σ̃ (u|s, 1) =
∑
n=0

e−unσ (n|s, 1)

=
∑
n=0

e−un φ(n/s2)

n

=
∫ ∞

0
e−unφ(n/s2)

dn

n

=
∫ ∞

0
e−us2τ φ(τ )

dτ

τ

= L
(

φ(τ )

τ

)
(us2). (E30)

Thus defining fSATW(τ ) as the inverse Laplace transform of

f̃SATW(u) =
( √

2u

sinh(
√

2u)

) 1
β

(E31)

we finally have for the conditional law

Gtm(n|s, 1) = fSATW(n/s2)s−2. (E32)

Or equivalently expressing the conditional distribution along
the rescaled variable τ = n/s2:

Gtm(τ |s, 1) = fSATW(τ ). (E33)

5. Exact inversion of fSATW(τ ) for some β values

When β = 1
n with n ∈ N∗, the standard residue method can

be used to invert f̃SATW. We provide here a few exact results:
β = 1

3 ,

fSATW(τ ) =
∞∑

k=1

e− k2π2τ
2

[
1

2
(−1)k+1k6π6τ 2−9

2
(−1)k+1k4π4τ

+ 1

2
(−1)k+1k4π4 + 6(−1)k+1k2π2

]
. (E34)

β = 1
4 ,

fSATW(τ ) =
∞∑

k=1

e− k2π2τ
2

[
k8π8τ 3

6
− 3k6π6τ 2 + 25k4π4τ

2

+ 2k6π6τ

3
− 10k4π4

3
− 10k2π2

]
. (E35)

6. Large-time asymptotics of the survival probability of the
SATW

Here we derive the scaling with n of the survival probabil-
ity F0(n|s0 = 1). We rewrite F0(n|s0 = 1) as a partition over
the number of distinct sites discovered before reaching the
target:

F0(n|s0 = 1) =
∞∑

s=1

σ (n, s|1) =
∞∑

s=1

μ(s|1)Gtm(n|s, 1).

(E36)

In the large-s limit, considering (E8) for μ(s|1) leads to

F0(n|s0 = 1) ∼ �(−2 + 2/β )

�(−1 + 1/β )

(1 − β )

β
n− 1−β

2β
−1

×
∞∑

s=1

Gtm(n|s, 1)
n

1−β

2β
+1

s
1−β

β
+1

. (E37)

Remembering that Gtm(n|s, 1) is scale-invariant in the
large-n limit, negligible for n 	 s2 and n � s2, we rewrite
Gtm(n|s, 1) = f (n/s2 )

s2 and, taking the continuum limit with
τ = n/s2, we obtain

F0(n|s0 = 1) ∼ �(−2 + 2/β )

�(−1 + 1/β )

(1 − β )

2β
A(β )n− 1−β

2β
−1

, (E38)

where we have defined A(β ) as

A(β ) =
∫ ∞

0
fSATW(τ )τ

1−β

2β dτ. (E39)

We now propose to compute the prefactor of the first-
passage time density in the case where n = 1

β
is an odd

integer. Let us observe that in this case, τ
1−β

2β = τm with m =
n−1

2 some integer. What is more, for any given function g,∫ ∞

0
g(τ )τmdτ = (−1)m dm

dms

∫ ∞

0
e−sτ g(τ )dτ

∣∣∣∣
s=0

= (−1)m dm

dms
L(g(τ ))(s)

∣∣∣∣
s=0

. (E40)

Injecting the expression of fSATW yields

A(β ) = (−1)m dm

dms
L
{
L−1

[( √
2s

sinh(
√

2s)

)n]
(τ )

}
(s)

∣∣∣∣∣
s=0

= (−1)m dm

dms

( √
2s

sinh(
√

2s)

)n∣∣∣∣∣
s=0

. (E41)

Defining now the Norlund polynomials or higher-order
Bernoulli polynomials by their generating function [60]:[ t

et − 1

]l

ext =
∞∑

n=0

Bl
n(x)

t n

n!
, (E42)

we obtain by identification

A

(
1

2m + 1

)
= B2m+1

2m

(
2m + 1

2

)
23nm!

2m!
, (E43)

and using known properties of the Norlund polynomials [60],
we finally obtain

A

(
1

2m + 1

)
= (2m − 1)!! (E44)

We now claim the result for arbitrary β,

A(β ) =
2

1−β

2β �
(

1
2β

)
√

π
, (E45)

yielding the final result,

F0(n|s0 = 1) ∼
n→∞

�
(

2
β

− 1
)

�
(

1
2β

− 1
2

)2− 1+β

2β n− 1−β

2β
−1

. (E46)

Consistency with simulations is displayed in Fig. 6.
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)b()a(

(c) (d)

FIG. 6. (a) β = 1
4 —conditional law of the rescaled variable τ , plotted against the analytical prediction of Eq. (E35). The convergence

for higher values of s is apparent. (b) β = 0.3—conditional law of the rescaled variable τ plotted against the numerical laplace inverse.
Each distribution is drawn for a fixed distance s and collapses at large times to a β-dependent scaling function. Importantly, this function is
independent of s0. (c) β = 1

3 —joint law collapse along the scaling predicted by Eq. (10). Note that the collapse is independent both of s and
s0. (d) β = 0.7—large-time survival probability for a walker starting at s0 = 1, plotted against the analytical prediction (E46).
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