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Modern equations of state for real nonspherical molecules are often based on Wertheim’s first-order thermody-
namic perturbation theory (TPT1). A major drawback of TPT1 is that it assumes tangentially bonded spheres. In
this work, we develop a Helmholtz energy functional for systems comprising hard heterosegmented chains with
arbitrary bond lengths. This is achieved by using hard-sphere fragments (i.e., hard spheres with spherical caps
removed at the intersection to their neighbors) as monomers as opposed to full hard spheres. The model is written
as a Helmholtz energy functional for inhomogeneous systems and the equation of state for a homogeneous
system is determined as a special case. We thereby obtain an equation of state that can be used as a reference to
develop statistical associating fluid theory models that more accurately describe the thermodynamic properties
of nonspherical molecules. The model is validated against molecular simulation results of bulk pressures and
density profiles in slit pores. For the bulk pressures, we show that the equation of state is in excellent agreement
with results from molecular simulation for dimers, trimers, and chains of up to 20 segments. The density profiles
of individual segments of the chains are regarded in slit pores. Some deviations of the theory from results of
molecular simulations are observed for strongly fused chains. Overall, however, good agreement is found for
inhomogeneous systems.
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I. INTRODUCTION

Perturbation theories are powerful tools for the develop-
ment of accurate models that can describe the fluid-phase
properties of real components based on molecular properties.
As a prerequisite for the application of a perturbation theory, a
reference fluid with well-known properties and preferably no
fluid-fluid phase transition has to be defined. Reference fluids
of purely repulsive molecules, such as hard spheres or chains
of hard spheres, have proven particularly useful in that respect.
The description of strongly elongated or chain-like molecules,
is commonly done using the first-order thermodynamic pertur-
bation theory (TPT1) by Wertheim [1–4]. A detailed review
of Wertheim’s theory has recently been published [5]. The
combination of Wertheim’s perturbation theory for chain for-
mation and a perturbation theory for describing the attractive
intermolecular interactions lead to equation-of-state models
referred to as statistical associating fluid theory (SAFT) [6].
There are two versions of SAFT, depending on which per-
turbation theory is applied first. Traditional SAFT models
(e.g., SAFT-VR [7], soft-SAFT [8], and SAFT-VR-Mie [9])
treat the effect of the attractive interactions at the level of the
monomeric fluid, and subsequently use Wertheim’s theory to
account for the bonding of these monomers to chains. The PC-
SAFT model [10] first applies Wertheim’s theory, at the level
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of the repulsive reference fluid, and then applies a perturbation
theory to describe the attractive interactions between chains.

Common for all SAFT versions is that the underlying TPT1
is a model for chains of tangentially bonded spheres. This is
in conflict with the molecular understanding and force fields
used in molecular simulations, which indicate a significant
overlap between the repulsive parts of the potentials of neigh-
boring interaction sites. In molecular equations of state like
PC-SAFT this is compensated by allowing the chain-length
parameters from TPT1 to have noninteger values. When these
parameters are fitted to experimental data, they tend to at-
tain values lower than the actual number of segments in
the molecule, which can be interpreted as a measure for the
discrepancy between the molecular model assumed by the
equation of state for tangent-sphere chains and the geometry
of the actual molecule. For (heterosegmented) group contribu-
tion methods, in which the number of segments is based on to
the actual number of functional groups within the molecules,
this disparity needs to be resolved. In the heterosegmented
group contribution method for the PC-SAFT equation of state
[11,12], properties of individual segments are scaled with the
parameter mα , representing a fraction of a spherical segment.
In practice, this parameters tends to attain values smaller than
unity to obtain physically meaningful packing fractions. In
the SAFT-γ -Mie group contribution equation of state [13] the
corresponding parameter is referred to as shape factor Sk . To
incorporate the actual shape of the molecules more rigorously
in a SAFT equation of state, a fused-sphere chain reference
model is required.
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Models for fused dimers (so-called hard dumbbells)
and fused chains were proposed already before Wertheim’s
groundbreaking work. Earlier models were based on pertur-
bation theories following the blip-function approach [14] or
the reference average Mayer function theory [15,16]. An em-
pirical equation, fitted to results of Monte Carlo simulations
was proposed by Tildesley and Streett [17]. In a series of pub-
lications, Boublík presents models for dumbbells and fused
chains within the framework of scaled particle theory [18,19],
later in combination with a chain contribution from TPT1
[20,21]. Based on the success of TPT1 as a core ingredient
of the family of SAFT equations of state, more attempts at ex-
tending the approach to fused chains were published [22–26].
Generally speaking, reasonable results are obtained, but for
strongly fused chains the model predictions deteriorate. Ex-
ceptions exist, but those theories are either difficult to apply
to chains longer than dimers [26] or require Monte Carlo
simulations to generate certain model inputs [22].

In the meantime Helmholtz energy functionals for hard
bodies were developed. The functionals are used in classical
density functional theory (DFT) [27] to model the proper-
ties of inhomogeneous systems like fluids in confined media.
A major breakthrough was the fundamental measure theory
(FMT) by Rosenfeld [28], that allows an accurate description
of hard-sphere mixtures. For bulk systems, the original FMT
by Rosenfeld simplifies to Wertheim’s solution of the Percus-
Yevick integral equation [29]. To improve the description of
the bulk limit, Roth et al. [30] and Yu and Wu [31] simultane-
ously published a modified fundamental measure theory that
reduces to the Boublík-Mansoori-Carnahan-Starling-Leland
(BMCSL) [32,33] equation of state for hard-sphere mixtures
for bulk systems. This equation of state is typically used
as the hard-sphere reference contribution in equation-of-state
models such as SAFT. Rosenfeld later generalized his theory
to general convex bodies [34] but the model showed short-
comings in the description of nematic phases, that were later
alleviated by Hansen-Goos and Mecke [35,36]. That approach
was applied to model the position and orientation of hard
dumbbells in confinement by Marechal et al. [37]. A gener-
alization of the theory to longer chains is challenging due to
the increasing number of orientational degrees of freedom of
the chains. Instead, for chains of tangentially bonded spheres,
Jain et al. [38] use the inhomogeneous version of Wertheim’s
TPT1 [39] to model the density distribution of individual seg-
ments. Our work is a generalization of this modeling approach
to fused chain molecules.

We present a Helmholtz energy functional for linear or
branched chains of fused, arbitrarily sized hard spheres. The
simplification to a heterosegmented group contribution equa-
tion of state and further to a simple equation of state for
homosegmented chains are shown explicitly because such
models can be useful in the context of perturbation theories.
The model is compared to simulation results for homogeneous
and heterogeneous systems.

II. MODEL

The molecular model considered in this study consists of
chains of arbitrarily sized, fused spheres (Fig. 1). The chain is
characterized by the individual segment diameters σα and the

lαα′

lαα′′

σα′ σα

σα
′′

FIG. 1. Geometry of a segment on a chain and its neighboring
segments.

bond lengths lαα′ . The index α runs over all segments (not nec-
essarily belonging to the same molecule) in the system. Since
the chains are flexible, the segments can form arbitrary bond
angles, as long as the overlap of nonneighboring segments is
entirely contained inside the segments in between.

A. Fragmented sphere reference fluid

To describe a system of fused chain molecules using the
framework of Wertheim’s TPT1 [1,2], the chain is cut into
spherical fragments, as shown in Fig. 2. The system of hard
spherical fragments then defines the reference fluid.

In the limit of tangent-sphere chains, the reference fluid of
spherical fragments reduces to a normal hard-sphere reference
fluid, which is accurately described by the fundamental mea-
sure theory (FMT) as proposed by Rosenfeld [28] and further
developed by Roth et al. [30] and Yu and Wu [31]. Therefore,
it is advisable to devise a model, that recovers the FMT in the
limit of no fusing.

In FMT, the Helmholtz energy density [30,31]

β f mono = −n0 ln (1 − n3) + n1n2 − �n1 · �n2

1 − n3

+ (
n3

2 − 3n2�n2 · �n2
)n3 + (1 − n3)2 ln(1 − n3)

36πn2
3(1 − n3)2

(1)

is given as a function of four scalar and two vector weighted
densities nk (r) and �nk (r). These weighted densities are

σα

δαα
δαα

FIG. 2. The volume and surface area of a single segment on the
chain are determined from the geometry of the spherical fragment
obtained by removing the spherical caps that overlap with neighbor-
ing segments.
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obtained by convolving the density profiles ρα (r) of segment
α with the corresponding weight function ωα

k (r), as

nk (r) =
∑

α

∫
ρα (r′)ωα

k (r − r′)dr′. (2)

In FMT, the four scalar weight functions correspond to the
so-called fundamental measures of the monomer [40]: the
volume (k = 3), the surface area (k = 2), the mean radius
of curvature (k = 1), and the Euler characteristic (k = 0).
Therefore, we scale the weight functions according to the
fundamental measures of the hard-sphere fragments, defined
in Fig. 2. The volume of segment α is

Vα = π

6
σ 3

α − π

12

∑
α′

(σα − 2δαα′ )2(σα + δαα′ ), (3)

where the index α′ runs over all neighboring segments of α

and δαα′ is that part of the distance lαα′ that lays inside segment
α as shown in Fig. 2:

δαα′ = σ 2
α − σ 2

α′ + 4l2
αα′

8lαα′
. (4)

The weight function ωα
3 is modified as

ωα
3 (r) = V ∗

α 


(
σα

2
− |r|

)
, (5)

with the Heaviside step function 
(x) and V ∗
α defined as

the ratio of the volume of the hard-sphere fragment and the
volume of the full hard sphere with diameter σα , as

V ∗
α = 1 − 1

2

∑
α′

[
1 − 3

δαα′

σα

+ 4

(
δαα′

σα

)3]
. (6)

For the surface area Aα , only the area of a hard-sphere
fragment that does not overlap with adjacent segments is
considered, leading to

Aα = πσ 2
α − π

2

∑
α′

σα (σα − 2δαα′ ) (7)

and the ratio of the surface of the hard-sphere fragment and
the full sphere

A∗
α = 1 − 1

2

∑
α′

(
1 − 2

δαα′

σα

)
. (8)

The corresponding weight function ωα
2 is thus

ωα
2 (r) = A∗

αδ

(
σα

2
− |r|

)
, (9)

with the Dirac δ function δ(x). For the radius of curvature,
only the spherical parts of the surface have a contribution
which is equal to the radius of curvature of the full sphere.
The correction factor is thus equal to the correction factor for
the surface area. The Euler characteristic is not changed by
the fusion, as for each edge a new face is added that cancels it
out. The final two scalar weight functions are thus

ωα
1 (r) = A∗

α

2πσα

δ

(
σα

2
− |r|

)
(10)

and

ωα
0 (r) = 1

πσ 2
α

δ

(
σα

2
− |r|

)
. (11)

The vector weighted densities defined by Rosenfeld [28] can-
not be adjusted in a similar manner as the scalar weighted
densities because they are equal to zero for a homogeneous
system. To choose an appropriate scaling factor, we propose
the same relations as used in the FMT for hard spheres,

�ωα
2 (r) = −∇ωα

3 (r) and �ωα
1 (r) = �ωα

2 (r)
2πσα

, leading to

�ωα
2 (r) = V ∗

α

r
|r|δ

(
σα

2
− |r|

)
, (12)

�ωα
1 (r) = V ∗

α

2πσα

r
|r|δ

(
σα

2
− |r|

)
. (13)

B. Chain functional

The development of the chain functional for heteroseg-
mented fused chains follows previous work by Jain et al.
[38] and Rehner et al. [41] which is based on the application
of Wertheim’s thermodynamic perturbation theory [1–4] to
inhomogeneous systems of tangent-sphere chains. For fused
chains, the model needs to be modified accordingly.

First, we define a chain contribution

β f chain = −1

2

∑
α

∑
α′

ρα ln yαα′ , (14)

where the index α′ sums over all segments bonded to seg-
ment α and yαα′ is an effective cavity correlation function.
For tangent-sphere chains, yαα′ denotes the cavity-correlation
function of two hard spheres at contact, which in SAFT equa-
tions of state, is usually modeled based on the expression
following from the BMCSL equation of state [6,10,32]. Here
we apply the BMCSL model to fused chains by replacing
the diameters σα and σα′ with lαα′ + σα−σα′

2 and lαα′ + σα′−σα

2 ,
respectively. With these expressions, the correct limits for
tangent spheres and for entirely fused spheres are obtained
(see Secs. II C 2, and II C 3). The expression for yαα′ can then
be written compactly as

yαα′ = 1

1 − ζ3
+ 3bαα′ζ2

2(1 − ζ3)2 + (bαα′ζ2)2

2(1 − ζ3)3 , (15)

with

bαα′ = 4l2
αα′ − (σα − σα′ )2

4lαα′
. (16)

The shape of the hard-sphere fragments is accounted for in
the weighted densities ζ2 and ζ3. These are calculated anal-
ogously to the weighted densities in fundamental measure
theory [Eq. (2)], using the weight functions [42]

ωα
ζ2

(r) = A∗
α

8σα


(σα − |r|), (17)

ωα
ζ3

(r) = V ∗
α

8

(σα − |r|). (18)

The monomer and chain contributions define the residual
Helmholtz energy, according to

F res =
∫

[ f mono(r) + f chain(r)]dr. (19)
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At this point, the above functional does not yet contain the full
information about intramolecular bonds in inhomogeneous
systems captured by TPT1. As shown in Appendix A, the
structure of the molecules can be captured by defining bond
integrals Iαα′ (r) that are included in the Euler-Lagrange equa-
tion as

ρα (r) = �−3
i eβ

[
μi− δF res

δρα (r) −V ext
α (r)

] ∏
α′

Iαα′ (r). (20)

The version shown here is more general than previously pub-
lished expressions [38,41] because it also applies to branched
molecules. In Eq. (20) the chemical potentials μi and thermal
de Broglie wavelengths �i correspond to molecules (index i)
rather than segments, whereas the external potential V ext

α (r)
acts on individual segments. The bond integrals Iαα′ (r) �=
Iα′α (r) are calculated recursively from

Iαα′ (r) =
∫

e
−β

[
δF res

δρ
α′ (r′ )

+V ext
α′ (r′ )

][ ∏
α′′ �=α

Iα′α′′ (r′)

]
ωαα′

chain(r − r′)dr′,

(21)

where the index α′′ runs over all the neighbors of segment α′
excluding segment α. The weight function ωαα′

chain(r) is defined
as

ωαα′
chain(r) = 1

4π l2
αα′

δ(lαα′ − |r|). (22)

This expression is the same as in the previous publication on
tangent-sphere chains [41] except for the bond-length lαα′ re-
placing the center of mass distance of two tangentially bonded
spheres 1

2 (σα + σα′ ).

C. Equation of state

With the Helmholtz energy functional in place, the equa-
tion of state of a bulk system is obtained by evaluating the
functional for a system with constant densities. For conve-
nience, we here list the relevant simplified expressions for
this special case. For bulk systems, the bond integrals Iαα′

cancel, and the residual Helmholtz energy density f res can
simply be expressed as a sum of the monomer and the chain
contributions

f res = f mono + f chain. (23)

The reference contribution simplifies to a modified Boublík-
Mansoori-Carnahan-Starling-Leland [32,33] equation of state

β f mono = 6

π

[
3ζ1ζ2

1 − ζ3
+ ζ 3

2

ζ3(1 − ζ3)2

+
(

ζ 3
2

ζ 2
3

− ζ0

)
ln (1 − ζ3)

]
, (24)

with the modification stemming from the inclusion of the ge-
ometry coefficients A∗

α and V ∗
α [Eqs. (6) and (8), respectively]

in the calculation of the weighted densities

ζ0 = π

6

∑
α

ρα, ζ1 = π

6

∑
α

ραA∗
ασα,

ζ2 = π

6

∑
α

ραA∗
ασ 2

α , ζ3 = π

6

∑
α

ραV ∗
α σ 3

α . (25)

In a bulk system, the density ρα of segment α is equal to the
molecular density of the component that segment α is part of.
The chain contribution is calculated using Eqs. (14) and (15)
together with ζ2 and ζ3 from Eq. (25).

1. Homosegmented fused-sphere chains

We now consider mixtures of homosegmented chains (in-
dex i) consisting of si segments. On each chain, the segments
all have the same segment diameter σi and the same bond
length li. The weighted densities in Eq. (25) simplify to

ζ0 = π

6

∑
i

ρisi, ζ1 = π

6

∑
i

ρimiσi,

ζ2 = π

6

∑
i

ρimiσ
2
i , ζ3 = π

6

∑
i

ρim
∗
i σ

3
i ,

with the molecular density ρi of the chains. The chain lengths
mi and m∗

i are calculated from

mi = 1 + li
σi

(si − 1) (26)

and

m∗
i = 1 + 1

2

li
σi

[
3 −

(
li
σi

)2]
(si − 1), (27)

respectively. The monomer contribution is calculated using
Eq. (24) and the chain contribution simplifies to

β f chain = −
∑

i

ρi(si − 1) ln yii, (28)

with

yii = 1

1 − ζ3
+ 3liζ2

2(1 − ζ3)2 + (liζ2)2

2(1 − ζ3)3 . (29)

Although it appears an additional parameter si was introduced,
this is not the case because the number of segments can even-
tually be inferred from the molecular structure (i.e., functional
groups) of the real molecules that are being modeled.

2. Limiting behavior: Tangentially bonded spheres

In the limit of tangentially bonded spheres, the bond length
is set to the contact value lαα′ = 1

2 (σα + σα′ ). Then, A∗
α =

V ∗
α = 1 and bαα′ = 2σασα′

σα+σα′ . Therefore, the functional and equa-
tion of state for the fused chain model simplify to Wertheim’s
theory with a hard-sphere reference fluid.

3. Limiting behavior: Totally fused spheres

For dimers (σ1 > σ2), the limit of total fusion is reached
for l12 = 1

2 (σ1 − σ2). Then, the equation of state simplifies to
that of a hard-sphere fluid. In this case δ12 = σ1

2 and δ21 =
− σ2

2 and from Eqs. (6) and (8), A∗
1 = V ∗

1 = 1 and A∗
2 = V ∗

2 =
0. Therefore, the weighted densities ζ1, ζ2 and ζ3 simplify to
those of a pure system of hard spheres of diameter σ1. This is
not the case for ζ0 which remains at double the value of a hard-
sphere system. Using these weighted densities in Eq. (24) thus
leads to

β f mono = β f hs − ρ ln (1 − ζ3). (30)
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FIG. 3. Reduced pressure p∗ of (a) symmetric and (b) asymmetric dimers (σ ∗
1 = 1.0) as function of the reduced density ρ∗. Comparison

of equation of state results (lines) and N pT -MC simulations (crosses).

However, since b12 = 0 in the limit of total fusion, the chain
contribution simplifies to β f chain = ρ ln(1 − ζ3) exactly what
is needed to give the desired result f res = f mono + f chain =
f hs, for this case.

For chains with more than two segments, this line of argu-
mentation is only valid, if terminal segments can subsequently
be fused fully into their only neighbor. This is not the case
if one segment has two neighbors that both have a larger di-
ameters than itself. For homosegmented chains, however, the
limit of total fusion is correct: for li = 0, we find mi = m∗

i = 1
and therefore ζ1, ζ2 and ζ3 simplify to those of a hard-sphere
system. That part of the monomer contribution stemming from
the difference between ζ0 of the reference fluid and the hard-
sphere system again cancels with the chain contribution that
simplifies to

β f chain =
∑

i

ρi(si − 1) ln (1 − ζ3). (31)

III. RESULTS AND DISCUSSION

In the following paragraphs, we compare the predic-
tions of the fused chain functional developed in Sec. II to
molecular simulation results. Bulk pressures were calculated
using isobaric-isothermal N pT Monte Carlo (MC) simula-
tions, while the density profiles in slit pores were obtained

from grand-canonical μV T MC simulations. Details of the
molecular simulations are given in Sec. B1 and the full simu-
lation results are available as Supplemental Material [43]. The
source code (Rust with Python bindings) for the fused chain
Helmholtz energy functional used to calculate both homoge-
neous and inhomogeneous systems is published as part of the
FeOs project [44].

All results are given in reduced units ρ∗ = ρx3, p∗ = px3

kBT ,
μ∗ = μ

kBT , and z∗ = z
x , where x is an arbitrary reference length

(for all practical purposes x = 1 Å). Since we consider hard
particles, the temperature T has no effect on reduced prop-
erties. The reduced thermal de Broglie wavelength �∗ that
contributes to the ideal gas chemical potential is set to unity
as its value has no effect on the pressure or the density
profiles.

A. Bulk pressure

To validate the bulk limit of the fused chain functional de-
veloped in Sec. II, reduced pressures are compared to results
obtained from N pT -MC simulations. In Fig. 3 we show the
results for symmetric and asymmetric dimers with varying
degree of fusion. For the full range of bond lengths the model
predictions are in excellent quantitative agreement to simula-
tion data, even for highly asymmetrical dimers.
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FIG. 4. Reduced pressure p∗ of (a) homosegmented and (b) heterosegmented trimers as function of the reduced density ρ∗. Comparison of
equation of state results (lines) and N pT -MC simulations (crosses). The parameters of the trimers are given in Table I.
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TABLE I. Segment diameters and bond lenghts of the trimers
studied in Fig. 4. We also include the minimum bond angle used in
the Monte Carlo simulations to avoid overlapping between the outer
segments.

Trimer # σ ∗
1 σ ∗

2 σ ∗
3 l∗

12 l∗
23 θmin

0 1.0 1.0 1.0 1.0 1.0 60.000◦

1 0.8 0.8 77.364◦

2 0.6 0.6 106.26◦

3 0.4 0.4 132.84◦

4 0.2 0.2 156.93◦

5 0.6 0.8 1.0 0.7 0.9 58.412◦

6 0.5 0.7 81.787◦

7 0.5 0.5 103.29◦

8 0.8 1.0 0.8 0.9 0.9 52.776◦

9 0.5 0.7 81.204◦

10 0.5 0.5 94.313◦

Trimers are investigated in Fig. 4. For homosegmented
trimers with bond lengths as short as l∗ = 0.2 and also
heterosegmented trimers with various shapes, agreement be-
tween the equation of state and Monte Carlo simulations is
again excellent. The model parameters for the trimers are
shown in Table I. The minimum bond angle θmin is an im-
portant property of the underlying molecular model and is
thus required as an input to the MC simulations to capture the
molecular model accurately. It is not, however, a parameter in
the equation of state, because TPT1 only describes correla-
tions between nearest-neighbor segments within a chain. To
explicitly include the effect of the (minimum) bond angle,
at least a second order thermodynamic perturbation theory
(TPT2) is required. Details about the calculation of θmin can
be found in Sec. B1.

For longer molecules, we consider homosegmented chains
with 5, 10, and 20 segments (Fig. 5). For practical reasons
(see Sec. B1), we only consider chains with reduced bond
lengths l∗ > 0.5. While the agreement between simulations
and theory is again satisfying, we observe a shortcoming
of the underlying TPT1, which was shown to be unable to
accurately describe the low-density behavior of long chain
molecules [5,45]. To emphasize this, we show the absolute
value of percentage deviations of the predicted pressures with
respect to MC simulation results in the lower part of Fig. 5.
The error is highest for low densities and long chains. As a
reference, the errors for trimers and dimers are below 2.5%
and 1.2%, respectively. An important observation for this
study is, that going from tangent-sphere chains to fused-
sphere chains does not increase the error further. The reason
for the lower accuracy of TPT1 (and its higher-order variants,
TPT2, TPT3, and so on) can be attributed to the single-chain
approximation. The underlying assumption is that the change
in free energy due to chain formation can be described by
that of a single chain in a system of monomers [46]. While
for high densities, the local environment of a chain in a fluid
of chains is indeed very similar to that of a chain in a fluid
of monomers, that is not the case at low densities. This is
reflected by the pair-excluded volume of two chains and that
of a chain and monomers, which is significantly different.

0
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p
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r
(%
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FIG. 5. Reduced pressure p∗ and relative error of homoseg-
mented chains (σ ∗ = 1.0) with different numbers of segments s and
bond lengths l∗ as function of the reduced density ρ∗. Comparison of
equation of state results (lines) and N pT -MC simulations (symbols).

Therefore, to improve the description of the low-density be-
havior, one must go beyond the single-chain approximation
that underlies TPT1 [46], or devise some (empirical) proce-
dure that corrects the low-density limit of the chain functional
[47,48].

The capability of the fused-sphere chain equation of state
is further analyzed in a study of two sets of binary mix-
tures. In Fig. 6 mixtures of fused dimers with varying bond
lengths and a trimer with a large central segment is studied.
In Fig. 7, a mixture of fused homosegmented chains with
different lengths and a larger fused dimer is studied. In all
cases, the agreement between the equation of state predictions
and results from molecular simulations is excellent, showing

0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21

2

4

6

8 component 1

component 2

ρ∗

p
∗

FIG. 6. Reduced pressure p∗ of several equimolar binary mix-
tures as function of the reduced (total) density ρ∗. Comparison of
equation of state results (lines) and N pT -MC simulations (crosses).
Component 1 consists of homosegmented dimers with diameter
σ ∗ = 1 and varying bond lengths l∗ ∈ {0.2, 0.4, 0.6, 0.8, 1.0}. Com-
ponent 2 is a heterosegmented trimer with σ ∗

1 = σ ∗
3 = 1, σ ∗

2 = 2, and
l∗
12 = l∗

23 = 1.5.
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FIG. 7. Reduced pressure p∗ of several binary mixtures as func-
tion of the reduced (total) density ρ∗. Comparison of equation of state
results (lines) and N pT -MC simulations (crosses). Component 1
consists of N1 ∈ {300, 150, 100, 75} homosegmented chains with s ∈
{2, 4, 6, 8} segments, σ ∗ = 1 and l∗ = 0.8. Component 2 consists of
N2 = 300 homosegmented dimers with σ ∗ = 1.4 and l∗ = 0.7.

that the remarkable accuracy of the BMCSL equation of state
with TPT1 for mixtures of tangent-sphere chains is preserved
in our model.
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FIG. 8. Density profiles of dimers (σ ∗
1 = 1, μ∗ = 6) with

(a) σ ∗
2 = 1, (b) σ ∗

2 = 0.8, and (c) σ ∗
2 = 0.6 in a slit pore. Comparison

of density functional theory results (lines) with μV T -MC simula-
tions (dots).

B. Density in a slit pore

To assess the predictive capability of the Helmholtz energy
functional, the density profiles of fused chain molecules in slit
pores are compared to the results of grand canonical Monte
Carlo simulations. The external potential used to model the
interaction between the molecules and the hard wall is given
by

V ext
α (z) =

{∞ |z| � w−σα

2 ,

0 |z| < w−σα

2 .
(32)

The reduced pore width is set to w∗ = 10.
In Fig. 8, the results for symmetric and asymmetric dimers

are shown. The density functional theory model reproduces
all qualitative features of the molecular simulation results: the
accumulation of molecules in adsorbed layers, the effect of
the size of the segments on the locations of the first layer, and
the reduction of the contact density for the smaller segments.
As a caveat, the width of the adsorbed layers is slightly un-
derpredicted by the DFT results. This is not the case for the
almost entirely fused dimer (l∗

12 = 0.001), which proves that
this caveat is not due to incorrect limiting behavior but rather
a slight inaccuracy that occurs for strongly fused dimers.
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FIG. 9. Density profiles of (a) homosegmented and (b) het-
erosegmented trimers (μ∗ = 6) in a slit pore. Comparison of density
functional theory results (lines) with μV T -MC simulations (dots).
The parameters of the trimers are given in Table I. For trimer , the
μV T simulation results are additionally validated with independent
NV T simulations (black lines).
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FIG. 10. Density profiles of homosegmented pentamers (s = 5,
σ ∗ = 1, μ∗ = 10) and decamers (s = 10, σ ∗ = 1, μ∗ = 14) with
bond lengths l∗ = 1.0, l∗ = 0.8, and l∗ = 0.6. Comparison of den-
sity functional theory results (lines) with μV T -MC simulations
(dots).

The problem persists for the trimers we considered in
Fig. 9. In particular for the strongly fused trimers, the thick-
ness of the adsorbed layers is underestimated by the DFT
model. Further, we must concede, that the description of the
density of the central segment for the homosegmented trimers
deviates from the simulation results. This effect becomes
more pronounced for small bond lengths. To ensure the con-
sistency of the DFT implementation and the simulations, we
verified that the contact densities ρc

α of both the DFT model
and the simulations are in accordance with the sum rule [30]

βp =
∑

α

ρc
α. (33)

However, this exact relation unfortunately does not provide
any checks on the contact density of individual segments. Due
to the increasing minimal bond angle and the corresponding
increased stiffness, the strongly fused trimers and resemble
hard spherocylinders. In the Helmholtz energy functional for
hard spherocylinders by Hansen-Goos and Mecke [35], the
nonsphericity of the particles is accounted for by using an
additional rotational degree of freedom. As their model shows
an excellent agreement with simulation data for particles at
hard walls, it could be used to point towards improvements of
the present model in the limit of short bond lengths.

For homosegmented chains, Fig. 10 shows the density pro-
files of pentamers (s = 5, μ∗ = 10) and decamers (s = 10,
μ∗ = 14). As the calculations are done at low densities, the
agreement between DFT and simulations is impaired by the
deviation that TPT1 shows in the low density limit. Both, the
DFT and the molecular simulations predict that the density
profiles of inner segments become less distinguishable for
longer chains. However, this effect is somewhat overestimated
by the DFT model.

IV. CONCLUSION

In this work, we derived a Helmholtz energy functional for
fused hard chains by applying Wertheim’s TPT1 to a system

of hard-sphere fragments. The model describes the molecules
using the same parameters as would be required in molecular
simulations of fused chains; namely, the segment diameters
and bond-lengths. No adjustable parameters are involved. The
functional qualitatively captures the orientation and structure
of hard fused chains in a slit pore and leads to excellent pre-
dictions for the bulk equation of state. For longer chains, the
accuracy in the overall description of inhomogeneous phases
decreases somewhat. Part of these inaccuracies are caused by
TPT1, which is known to be inaccurate for low densities.

The equation of state presented in this work is sufficiently
simple to be applied as a reference for a perturbation theory,
such as statistical associating fluid theory (SAFT). Extending
SAFT approaches to a well-defined molecular model of fused-
sphere chains with bond lengths as a physical meaningful
parameter is of great benefit because the model is then in
better alignment with force fields used in molecular simula-
tions. In particular, this extension offers great perspectives for
developing group-contribution models. Further, for inhomo-
geneous systems, the proposed model allows a local resolution
of actual chemical groups. When comparing DFT results to
molecular simulations of real fluids, the comparison is typi-
cally impaired by the different molecular descriptions used in
the DFT and molecular simulations approaches. Force fields
that are used to parametrize real fluids, such as TraPPE [49]
or TAMie [50], describe molecules using bond lengths much
shorter than the tangential contact distance for any physically
meaningful definition of the segment radii. A heteroseg-
mented Helmholtz energy based on the fused chain model
presented here enables a more direct comparison between
DFT and simulation results of density profiles of individual
segments/interaction-sites in interfaces or porous media.

Finally, we emphasize the benefit of starting the devel-
opment of the equation of state from the more general
inhomogeneous and heterosegmented system and proceed to-
wards a simplified case. With this approach, we obtain a
highly accurate bulk equation of state for homosegmented
chains as a corollary of the more general Helmholtz energy
functional.
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APPENDIX A: DERIVATION OF THE EULER-LAGRANGE
EQUATION FOR BRANCHED FUSED CHAINS

The derivation of Eqs. (20) and (21) follows the method
outlined by Jain et al. [38] and refined by Rehner et al.
[41]. The derivation is the same for fused-sphere chains and
tangent-sphere chains. The reason why it is presented here,
is that Eqs. (20) and (21) generalize the concept to branched
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molecules in a more concise and general way as compared to
the expressions published previously [51].

The starting point is the inhomogeneous version of
Wertheim’s TPT1 [39], that describes the Helmholtz energy
of systems of associating spheres as

βF bond =
∫ ∑

α

∑
α′

ρα (r)

(
ln χαα′ (r) − χαα′ (r)

2
+ 1

2

)
dr.

(A1)
The index α runs over all segments in the system and the sum
over α′ is over all segments bonded to α. The values of the
fractions of nonbonded segments χαα′ is determined implicitly
by

χαα′ (r) =
[

1 +
∫

ρα′ (r′)χα′α (r′)�αα′ (r, r′)dr′
]−1

. (A2)

The association strength �αα′ (r, r′) can be approximated by

�αα′ (r, r′) = Kωαα′
chain(r − r′)

√
yαα′ (r)yαα′ (r′) (A3)

with the weight function ωαα′
chain(r) as given in Eq. (22). The

constant K contains the energy parameter of the associa-
tion potential and goes to infinity for complete association.
The model for the cavity correlation function at contact yαα′

can differ for different applications. To be able to combine
all fluid-specific models in one residual Helmholtz energy
functional, the cavity correlation is contained in a chain
contribution,

βF chain = −1

2

∫ ∑
α

∑
α′

ρα (r) ln yαα′ (r)dr, (A4)

and the properties χ̂αα′ = χαα′
√

yαα′ and

βF̂ bond = βF bond − βF chain (A5)

=
∫ ∑

α

∑
α′

ρα (r)

[
ln χ̂αα′ (r) − χ̂αα′ (r)

2
√

yαα′(r)
+ 1

2

]
dr

(A6)

are defined. In the limit of complete association (χ̂αα′ → 0),
the functional derivative of this modified bond contribution
simplifies to [41]

δβF̂ bond

δρα (r)
=

∑
α′

ln χ̂αα′ . (A7)

The total Helmholtz energy now consists of an ideal gas
contribution, the modified bond contribution, the chain con-
tribution and the contribution from the monomers:

F = F ig + F̂ bond + F chain + F mono︸ ︷︷ ︸
F res

. (A8)

If additional contributions are present due to attractive in-
teractions, they can be included in the residual Helmholtz
energy F res without additional modifications to the frame-
work. Equations (A7) and (A8) can now be used in the general
Euler-Lagrange equation

δF

δρα (r)
= μα − V ext

α (r), (A9)

to give

ln
(
ρα (r)�3

α

) +
∑
α′

ln χ̂αα′ (r) + δβF res

δρα (r)
= β

[
μα − V ext

α (r)
]
.

(A10)
Equation (A10) has to be solved simultaneously with the
equation for χ̂αα′ ,

χ̂αα′ (r)−1 = K
∫

ρα′ (r′)χ̂α′α (r′)ωαα′
chain(r − r′)dr′, (A11)

which follows from Eqs. (A2) and (A3) in the limit of com-
plete association (K → ∞). Equation (A10) for segment α′
can be rewritten as

ρα′ (r)χ̂α′α (r) = �−3
α′ e

β(μα′ − δF res

δρ
α′ (r) −V ext

α′ (r)) ∏
α′′ �=α

χ̂α′α′′ (r)−1,

(A12)
where α is one of the neighbors of α′ and the product over
α′′ runs over all other neighbors of α′. Equation (A12) can be
used in Eq. (A11) resulting in

χ̂αα′ (r)−1 = K�−3
α′ eβμα′

∫
e
−β[ δF res

δρ
α′ (r′ )

+V ext
α′ (r′ )]

×
[ ∏

α′′ �=α

χ̂α′α′′ (r′)−1

]
ωαα′

chain(r − r′)dr′. (A13)

As long as there are no cycles in the molecule, this expres-
sion recursively defines the values of χ̂αα′ with the recursion
ending at the terminal segments for which the product over
α′′ vanishes. If Eq. (A13) is used in the Euler-Lagrange
Eq. (A10), then it can be observed that the expression
�−3

α eβμα appears exactly once for every segment of the
molecule. Therefore, it can be separated out from the values
of χ̂αα′ leaving behind the bond integrals Iαα′ . In the Euler-
Lagrange equation, the chemical potential of the molecule
μi = ∑

α∈i μα can be identified. In a similar expression for
the thermal de Broglie wavelength,

�3
i = K

∏
α∈i

�3
α

K
, (A14)

the reduction of the degrees of freedom of the molecule com-
pared to the degrees of freedom of free segments is reflected.
The simplified expressions for the Euler-Lagrange equation,

ρα (r) = �−3
i eβ(μi− δF res

δρα (r) −V ext
α (r))

∏
α′

Iαα′ (r), (A15)

and the bond integrals

Iαα′ (r) =
∫

e
−β

[
δF res

δρ
α′ (r′ )

+V ext
α′ (r′ )

][ ∏
α′′ �=α

Iα′α′′ (r′)

]
ωαα′

chain(r − r′)dr′

(A16)

follow. The notation that relies heavily on sums over all seg-
ments bonded to a specific segment can appear clumsy to
implement. However, by choosing an appropriate data struc-
ture like a directed graph with the bond integrals as edge
weights, the equations can be transformed to code straight-
forwardly.
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FIG. 11. Minimum bond angle θ for (a) slightly fused trimers
and (b) strongly fused trimers.

APPENDIX B: MOLECULAR SIMULATION DETAILS

1. Angle potential for fused hard-sphere chain molecules

Due to the fusing of the spheres, angle constraints have to
be implemented to generate valid configurations in a molecu-
lar simulation. For slightly fused trimers like the one shown
in Fig. 11(a), an overlap between segments α and γ can
be avoided by simply applying the normal hard-sphere in-
teraction potential. For strongly fused trimers as shown in
Fig. 11(b), an overlap between the outer segments is allowed
as long as the overlap is within the central segment. Therefore,
a hard-sphere pair potential can not be used between the outer
segments. We define a hard bond-angle potential that is 0 for
bond angles above the minimum angle θmin and infinite below.
For slightly fused trimers, the value for θmin follows from the
law of cosines as

cos θmin = 4
(
l2
αβ + l2

βγ

) − (σα + σγ )2

8lαβ lβγ

if 4
σαl2

βγ + σγ l2
αβ

σα + σγ

− σασγ � σ 2
β ⇔ slightly fused.

The distinction between a slightly and a strongly fused trimer
is that the distance between the point of contact between the
outer spheres to the center of the middle sphere is larger than
the radius of the middle sphere. For strongly fused trimers, the
minimum bond angle is

cos θmin =
4δβαδβγ −

√(
σ 2

β − 4δ2
βα

)(
σ 2

β − 4δ2
βγ

)
σ 2

β

if 4
σαl2

βγ + σγ l2
αβ

σα + σγ

− σασγ < σ 2
β ⇔ strongly fused.

For longer chains these expressions can be used for every
triplet individually, however, extra care has to be applied when
the fusion is strong enough that there can also be a permissable
overlap between further apart segments. For homosegmented
trimers, the minimum bond angle simplifies to

cos θmin =
{

2l2−σ 2

2l2 l � σ√
2
,

2l2−σ 2

σ 2 l < σ√
2
.

(B1)

The critical bond length, i.e., the bond length below which an
n-segment angle potential has to be implemented instead of

using hard-sphere pair potentials can be found as

l = σ sin
( π

2n − 2

)
. (B2)

Therefore, the shortest bond length for which angle po-
tentials for three consecutive segments and hard-sphere
interactions for all other interactions can be employed is
l = σ sin( π

6 ) = σ
2 .

2. N pT -MC simulations

The bulk density of hard-sphere chain fluids was calculated
for specified bulk pressures p∗, based on isobaric-isothermal
N pT -MC simulations [52] using an in-house MC code. The
code was validated to the molecular dynamics simulation re-
sults for the pressure of tangent hard-sphere chains by Zmpitas
[45] and to μV T -MC simulation results for the pressure of
fused dimers and trimers generated according to the procedure
outlined in the next section. The N pT -code and the μV T -code
were developed independently and can thus be used for cross
validation.

For generating the bulk density, we used a cubic box
containing between Ns = 1500 and Ns = 2000 segments. Pe-
riodic boundary conditions were applied. We employed at
least 106 MC cycles for equilibration, and 106 cycles for pro-
duction, with each cycle comprising N MC moves. The MC
moves considered were translation [52], rotation [52], config-
urational bias regrowth [53,54], crank-shaft moves [55,56],
and volume moves [52], with relative probabilities 0.4, 0.4,
0.18, 0, 0.02 (trimers); 0.286, 0.286, 0.129, 0.286, 0.0143
(5-mers and 10-mers), and 0.22, 0.22, 0.1, 0.44, 0.011 (20-
mers), respectively. During equilibration, the step-size for
translation, rotation and volume moves was adjusted to obtain
approximately 20% acceptance. For the configurational bias
regrowth move, we chose a random segment as the starting
segment and regrew the molecule in a random direction (for-
ward or backward) using six trial directions for each new
segment. The crank-shaft moves were combined with a con-
figurational bias scheme, using six trial angles for the rotated
segment. The standard error of the sampled density was esti-
mated by dividing the production part of the simulation into
five blocks and calculating the standard deviation of the block
averages with respect to the average over all five blocks.

3. μV T -MC simulations

Hard-sphere chain fluids between two parallel hard walls
were simulated based on grand-canonical μV T Monte Carlo
simulations. [52] The plates were placed parallel to the
z direction at a reduced distance w∗ = 10, while periodic
boundary conditions were applied in the other directions.
The box was cubic, with a volume V = w3. The types of
moves considered were translation, rotation, insertion, dele-
tion, and regrowth with relative probabilities 0.25, 0.25, 0.25,
0.25, 0 for dimers, 0.2, 0.2, 0.2, 0.2, 0.2 for trimers and
5-mers, and 0.15, 0.15, 0.2, 0.2, 0.3 for 10-mers. We applied
a configurational-bias scheme with 10 trial directions [53,54]
to improve the sampling of chain configurations. Equilibra-
tion was performed for 107 trial moves and production was
conducted for 4 × 107 trial moves.

The full simulation results are available as Supplemental
Material [43].
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