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Reliability and entropy production in nonequilibrium electronic memories
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We find the relation between reliability and entropy production in a realistic model of electronic memory (low-
power metal-oxide-semiconductor-based SRAM) where logical values are encoded as metastable nonequilibrium
states. We employ large deviation techniques to obtain an analytical expression for the bistable quasipotential
describing the nonequilibrium steady state and use it to derive an explicit expression bounding the error rate of
the memory. Our results go beyond the dominant contribution given by classical instanton theory and provide
accurate estimates of the error rate as confirmed by comparison with stochastic simulations.
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I. INTRODUCTION

A common strategy to reduce the energy consumption of
electronic computing devices is to reduce the voltage at which
they are powered. However, this strategy is limited by the fact
that as the operation voltage is reduced, different sources of
electrical noise start to play an increasingly important role
[1-4]. The most fundamental and unavoidable one is given
by the thermal fluctuations intrinsic to any device. It origi-
nates from the interaction with degrees of freedom that are
not explicitly described, but that can be normally assumed to
be at thermal equilibrium. A rigorous description of intrinsic
thermal noise in complex and non-linear electronic circuits
is thus a fundamental problem in modern engineering, of
great importance for the search of new efficient computing
schemes [3—7]. However, it is also a hard problem that is usu-
ally given approximate treatments involving different kinds
of approximations that are difficult to control, and that in
general compromise thermodynamic consistency [8,9]. This
issue was recently addressed by the development of a general
theoretical framework to construct thermodynamically consis-
tent stochastic models of nonlinear electronic circuits [9].

In this paper, we make use of that framework to analyze the
trade-off between reliability and dissipation (i.e., entropy pro-
duction) of low-power static random access memory (SRAM)
cells. Due to their speed and low-energy consumption, SRAM
cells are employed as internal memory in virtually all modern
processors. The occurrence of errors induced by thermal noise
in low-power implementations has been mainly studied using
numerical methods based on stochastic simulations [4,10].
The reason is that in low-power regimes, current fluctuations
are Poissonian and cannot be faithfully described as Gaus-
sian noise [11], which considerably complicates analytical
treatments. However, since one is typically interested in de-
termining the rate of errors in regimes where errors are rare,
the amount of computational time demanded by the stochastic
simulations can be extremely large [4]. In this contribution,
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we report two main results. First, we obtain an analytical de-
scription of the steady-state fluctuations of the memory, fully
capturing the nonequilibrium transition from a monostable
phase into the bistable phase that allows the representation
of a bit. Second, we show how to employ the previous result
to analytically estimate the error rate of the memory. By
comparing with exact stochastic simulations, we show that
our analytical estimation correctly describes the scaling of
the error rate with the voltage that powers the memory. Then,
we show that the error rate is exponentially suppressed as the
square of the dissipation (for large dissipation). To get there,
we make use of advanced methods from stochastic thermody-
namics [9], large deviations theory [12—-16], and first-passage
time statistics [17-19].

II. BASIC MODEL

We consider the usual model of a SRAM memory cell
core: two inverters, or NOT gates, connected in a loop [see
Fig. 1(a)]. In particular, we consider the implementation
based on complementary metal-oxide-semiconductor (MOS)
transistors. In this case, each inverter is itself composed of
an nMOS transistor and a pMOS transistor. The circuit is
powered by applying a voltage bias AV = Vyg — V4. The
deterministic and linear stability analysis of the circuit (see
Appendix A) shows that for low values of AV, the circuit
has a unique fixed point, but when AV is above a critical
value there is a transition into bistability, which is employed to
encode a single bit of information. The transistors are modeled
as externally controlled conduction channels with associated
capacitances [see Fig. 1(b)]. The charge conduction through
each transistor channel is modelled as a bidirectional Poisson
process. Thus, to each (n/p)MOS transistor we associate two
Poisson rates )L'jt/p (Vis, Vbs), where the subindices = corre-
spond to the forward and backward conduction directions,
and Vs and Vpg are the gate-source and drain-source voltage
drops, respectively. For fixed voltages Vgq and Vi the circuit
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FIG. 1. (a) A bistable logical circuit constructed with two NOT
gates, representing a bit, and its CMOS implementation, where each
NOT gate is constructed with one pMOS (top) and one nMOS (bot-
tom) transistor. (b) Each transistor (in this example an nMOS one) is
modeled as a conduction channel between drain (D) and source (S)
terminals, with associated rates A’,. The gate-body (G-B) interface is
represented as a capacitor C,, and another capacitor C, takes into ac-
count the output capacitance. Other parasitic capacitances could also
be taken into account; for example, between drain and gate. With this
model and taking Vi, = —Vjq, the total electrostatic energy of the full
circuit is ®(vy, v2) = (C/2)(v + v3) + CV, with C = 2(C, + Cy).

has two independent degrees of freedom: the voltages v; and
v, at the outputs of each inverter. These are discrete stochastic
quantities, that in principle can only take the values muv,,
where m is any integer and v, = ¢q./C [g. is the positive
electron charge and C a value of capacitance characterizing
the device, see Fig. 1(b)].

At any given time the state of the system is described by
a probability distribution P(v;, vy, ¢) over the state space. Its
evolution is given by the following master equation:

dtP(vlv U29 t) = PA|vl—U(,,U2 +PB|U|+UL,,U2
+ PA*|v],uz7v,, + PB*|U1,U2+UP
—PAA+B+A"+ B0, (1)
where we are using the compact notation PA[, ,, =
P(vy, vy, 1)A(vy, v2), and A*(vy, v2) = A(v, v1). The transi-
tion rates A(vy, vy) and B(vy, vy) are combinations of the
Poisson rates assigned to the transistors:
A(vr, v2) = AL (v, v2) + A% (01, V),
B(vy, v2) = A (v1, v2) + A (v, v2). 2

To guarantee thermodynamic consistency, the Poisson rates

)\l/”(vl, vp) must satisfy the so-called local detailed balance
(LDB) conditions. As an example, for the pMOS transistor in

the first inverter, this condition reads

M (vr, v2)

AL (1 + ve, 02)

where 8Q = Py + v, v2) — P(v1, v2) — geVaas
®(vy, vy) is the electrostatic energy of the system, and
we have considered the environment of the transistor to
be in equilibrium at temperature 7. For Vi = —Vyq, as
we will consider in the following, the electrostatic energy is
D(vy, 1p) = (C/2)(v% + v%) + Cded. Thus the LDB condition
of Eq. (1) relates the rates of the transitions v; = v; + v, to
the difference in internal energy between those states, and the
work g,Vyq realized by the voltage sources during the forward
transition. Then, §Q is the total energy change associated
to that transition, and since by energy conservation it must
be provided by the environment of the device, it is the heat
interchanged with it. A condition analogous to Eq. (3) is
imposed to all the transistors present in the circuit. A general
procedure to construct thermodynamically consistent rates
based on the I-V curve characterization of a given device was
recently identified in Ref. [9]. For the case of MOS transistors
in subthreshold operation, one obtains

)"ﬁ(vls v) = (I/q.) e(Vdd_UZ_V(h)/(nVT)’

)Lli(vl’ vy) = )L'i(vl, v3) e~ Vaa—v)/Vr e—(ve/Z)/VT, 4)

— e—aQ/(ka)’ (3)

and A%(vy, v2) = AL (—vy, —v2). In the previous equation,
Vr = kT /q. is the thermal voltage and Iy, Vi, and n are
parameters characterizing the transistor (respectively known
as specific current, threshold voltage, and slope factor). An
incorrect procedure to construct transition rates, which is how-
ever used in some numerical simulations [4,10], is to employ
the rates directly obtained from the I-V curve characterization,
without enforcing the LDB conditions. In that way, one finds
rates that are obtained from the ones of Eq. (4) by removing
the factor e=*/2/V1 appearing in A”/". Although this factor
is in many situations very close to 1, it can become relevant
for small devices or at low temperatures, and it is in fact
responsible for the charging effects in single-electron devices
[20-22]. Also, neglecting that factor leads to systematic er-
rors in the determination of the steady state. For example, in
modern CMOS fabrication processes, capacitance values as
low as C ~ 50 aF can be attained [23], which correspond to
elementary voltages as high as v, >~ 3 mV. At room temper-
ature, we have Vy >~ 26 mV and therefore v,/Vr >~ 0.1 and
e~ We/DIVr ~ .95,

For mathematical simplicity, the parameters Iy, Vi, and
n are considered to be the same for all the four transistors
involved in the circuit. That is, we are not taking into account
any variability associated with the fabrication process [24].
It should be possible to extend our results to systems with
asymmetric parameters.

III. STEADY-STATE DISTRIBUTION AND LARGE
DEVIATIONS PRINCIPLE

To find the steady state of the memory, one option is to
construct the generator of the master equation in Eq. (1) and
compute its eigenvector of zero eigenvalue [see Fig. 1(a)].
Analytical progress is possible by considering a macroscopic
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limit and employing the principle of large deviations. This
limit consists of assuming that the elementary voltage v,
is negligible compared to all other voltage scales, which
in this case are the thermal voltage Vr and the powering
voltage Vyq (thus, the limit v, — O used in the following
must be interpreted as v,/Vy — 0 and v./Vyq — 0 for fixed
Vr and Vy). Physically, this corresponds to large devices,
for which the typical capacitance C is large and thus v, is
small. Also, from Eq. (4) we have that the Poisson rates
are proportional to (Ip/C)v; . As explained in Appendix B,
the specific current Iy can also be considered to be propor-
tional to the size of the device, and therefore we see that
the transition rates scale as v;l. Under these conditions, as
v, — 0, the deterministic equations of motion are recovered
from the master equation in Eq. (1) (see Appendices A and
B), and one also expects the distribution P (v, v2) to become
strongly peaked around the deterministic stationary values
[19,25]. In this context, the LD principle states that depart
from the deterministic values are suppressed exponentially in
v, L. This is expressed mathematically as the existence of the
limit f(vy, v2) = lim,,0 —v, In(Ps(v1, v2)), or, equivalently
[14],

Py (v, v2) = e~ v)tow))/ve (5)

Therefore, as v, — 0, the values of v; and v, will be perfectly
localized at a global minimum of the rate function f(vy, v2).
Indeed, the minima of f(v;, vy) correspond to the determin-
istic fixed points (see Appendices A and B). We will refer
to the function f(v;, vy) as a quasipotential describing the
steady-state distribution. This is in analogy to an equilibrium
situation, where the steady state must be the equilibrium
Boltzmann distribution Peg(vy, v2) o exp(—®(vy, v2)/kpT)
and thus, by Eq. (5), f(v1, v2) should match the true potential
energy @ (v, vy) scaled by the thermal voltage Vr. Also, the
interpretation of f(v;, v;) as a potential has a deeper justifica-
tion on the fact that it always is a Lyapunov function for the
deterministic dynamics [25], as the true potential energy is for
equilibrium settings.

Plugging Eq. (5) into Eq. (1), imposing d, Pi; = 0, and only
keeping the lower order terms in v,, we obtain the following
differential equation for f(v;, vy):

0= ("' — 1)a(vi, v2) + (™7 — 1)b(vy, v2)
+ (e — 1)a(vy, v1) + (€™ — 1)b(vy, v1),  (6)

where a(vy, v2) = limy,—,0 v.A(vy, v2) and the same for
b(vy, v2). The same equation can be obtained by more
general path integral methods in terms of a Hamiltonian
defining an action in the space of all possible stochas-
tic trajectories [15,25-27]. This equation cannot be solved
exactly. However, an approximate solution can be found
by exploiting the fact that the variables x = (v; — v2)/2
and y = (v +vp)/2 are, except for some trivial correla-
tions discussed below, approximately independent. Thus,
as explained in Appendix B, from Eq. (6) the rate
functions g(x) and h(y) corresponding to the partial dis-
tributions P(x) = Y Py (y +x,y — x) < exp(—g(x)/v,) and
00) =, Ps(y +x,y — x) < exp(—h(y)/v.) can be found

to be

dyg(x) = 21n (“(_x’ 0+ b, 0)>

a(x, 0) 4+ b(—x, 0)
b(xmina y) + b(_xmins y))
a(Xmin, ¥) + a(—Xmin, ¥) )’

dyh(y) =21In ( (7)
where the change of variables in the functions a and b is
understood, and Xy, in the expression for dy/ is the minimum
of g(x). The given expression for d,g(x) is actually exact,
since it only relies on the fact that the most probable value of
y for any x is always y = 0 in the limit v, — O [as can be seen
from the symmetry of the exact steady state, see Fig. 1(a)],
and does not require x and y to be considered independent
variables.

The variables x and y will be always correlated because,
since v; /v, and vy /v, are integer random variables, their dif-
ference 2x /v, and sum 2y/v, will always have the same parity.
If, however, when restricted to a given parity, x and y can be
considered independent, and if both parities have the same
probability, then the full probability distribution P(vy, v2)
can be reconstructed from the partial distributions P(x) and

O(y) as
Py (y +x,y — x) = 2P(x)Q(y)Par(x, y), ®)

where Par(x, y) is one if 2x/v, and 2y/v, have the same parity
or zero if they do not. Equation (8) allows to approximately
reconstruct the full steady state distribution from the partial
rate functions g(x) and h(y). As shown in Appendix C, this
approximation becomes exact for typical fluctuations in the
low-noise regime v,/Vr < 1, and is extremely accurate in
general.

The results in Eq. (7) are in principle valid for any Pois-
son rates A'jt/p . Remarkably, for the particular MOS rates of
Eq. (4), the expression for d,g can be integrated exactly, re-
sulting in

x4 2Vaa x
Vr

where L(x, Vgq) = Lip(—exp((Vgg + x(1 +2/n))/Vr)), and
Liy(-) is the polylogarithm function of second order. This is
the first important result of this paper, and will allow us to
analytically estimate the error rate of a low-power SRAM
memory cell in the next section. In turn, the rate function
h(y) can be seen to satisfy h(y) = hy ¥*/Vy + O(y*) (an ex-
pression for A in terms of the circuit parameters is given in
Appendix B).

In Fig. 2(a), we show the exact steady-state distribu-
tion Pg(vy, vy) obtained by numerically evolving Eq. (1) for
v./Vr = 0.1, Vga/Vr = 1.2, and n = 1. We see that for these
parameters the most probable values are distributed around
v = —vy =~ £Vyq, i.e., the possible solutions to the deter-
ministic equations of motion (Appendix A). In Fig. 2(b), we
compare the exact partial distributions P(x) and Q(y) for the
variables x = (v} — v3)/2 and y = (v| + v2)/2, respectively,
with the ones obtained from the quasipotentials g(x)/v, and
h(y)/v.. We see that the agreement is remarkable despite
the value of v, being only one order of magnitude lower
than Vy and Vg (states with only a few tens of electrons are
occupied). Finally, in Fig. 2(c), we show the quasipotential

20V 1 (e Vi)~ Lx. -, 9
+n+2[ (x, Vao)—L(x, =Vaa)l, ()

glx) =

034107-3



FREITAS, PROESMANS, AND ESPOSITO

PHYSICAL REVIEW E 105, 034107 (2022)

P(x) o e=9@)/ve ©
B Exact

8 — Vaa/Vr =14
% =1n(2)

—V =

7 — Vaa/V

/p =02

(@) (b)
3 0.006 107!
2 0.005
1 0.004
$
~ 0
§ 0.003
1 101
0.002
-2
0.001
-3
3 —2 -1 0 1 2 3
v/ Vp 0.000

Q(y) x e=hw)/ve
EEE Exact 2

x/Vp

y/Vr

FIG. 2. (a) Exact steady state obtained by numerical integration of the master equation (Vyq/Vr = 1.2, v,/Vr = 0.1, n=1). (b) Partial
distributions for the variables x and y as obtained from the exact global distribution in (a), and from the analytical results of Eqgs. (7).

(c) Quasipotential g(x)/v, for different values of Vg (v./Vr = 0.1, n=1).

g(x) for different values of the powering voltage V4. We see
that there is a transition between a unimodal steady state and
the bimodal distribution compatible with bistability, that for
n = 1 happens at Vgg = In(2)Vr (the data-retention voltage),
as can also be seen from the analysis of the deterministic
equations (Appendix A).

IV. ERROR RATE

If the initial state of the system is close to one of the two
possible metastable Non-Equilibrium Steady State (NESSs),
letus say v} = —v, =~ Vqyq, the ensuing dynamics will be char-
acterized by two different timescales. First, a fast relaxation
on the local basin of attraction will take place. Indeed, from
the deterministic equations (Appendix A), we see that this
relaxation develops at a rate heq = 75 ' (vo/Vr) €24/V7 that
increases exponentially with Vyq, where 1y = (g./Iy) e/ V1)
is a natural timescale for this problem. After this local
metastable NESS has been reached, a slow dynamics consist-
ing of rare transitions to the other possible metastable NESS
follows. Since the metastable NESSs are associated to the
values of the stored bit, these rare transitions are considered
errors. We are interested in computing the error rate Aey in
terms of the circuit parameters. This is a hard problem that
has been mainly treated numerically [4,10], and for which a
rigorous stochastic treatment is crucial. It is possible to see
that, to leading order in ve_l, the rate of escape out of NESSs
centered around Vi, = (™", v") can be obtained from the
quasipotential f thanks to the following result [25,28]:

1}111130 Ve In(ToAer) = _(f(V*) — f(Vmin)), (10)

where v* is a saddle point of the quasipotential [which in this
case is v* = (0, 0)]. The factor exp(—(f(v*) — f(Vmin))/Ve)
is also the dominant contribution to the probability of a tra-
jectory, or instanton, going from vy, to v* [25]. This result
can be considered a generalization to NESSs of the classical
Arrhenius’s law [29], and in this case leads to the dominant
estimate of the error rate

)‘eDrr — .L-O—le—(g(())—g(xmm))/ve , (11)

that can be readily evaluated from Eq. (9). However, this
estimate misses any contribution to A that is subexponen-
tial in v;!, but that might be anyway relevant for finite
values of v,. For equilibrium systems, some subexponential
factors are provided by the classic Eyring-Kramers formula
[30-32] in terms of the curvature of the energy surface at the
fixed and saddle points. For out-of-equilibrium systems with
Gaussian noise, subexponential corrections are discussed in
Refs. [28,33]. In our case, since we are dealing with a discrete
out-of-equilibrium system subjected to shot noise, we resort
to the general method explained in the following.

The first step to compute A is to provide an operational
definition of what an error is. We consider that the state of the
memory is read by monitoring the output of the first inverter,
i.e., the voltage v;. A zero or positive value of v is identified
with the logical state H (high), and a negative value with the
logical state L (low). This logical encoding induces natural
projection operations in the state space that we construct
as follows. Each microscopic state (vy, vp) is mapped to a
vector |vy, v2). A given probability distribution P(vy, vp) is
represented as the vector |P) = Zvl’vz P(vy, vp)|v1, v2), while
the generator of the master equation in Eq. (1) is repre-
sented as a matrix W acting over these vectors. Thus, the
steady-state distribution |Py) satisfies 0 = W|P). The or-
thogonal projectors corresponding to the logical states H and
L are, respectively, [Ty = Zv1>0.v2 |vr, v2){v1, v2] and T, =
Zv1<0,v2 [vi, v2)(vy, v2| (Where (a| is just the transpose of
|a)). Note that IT;IT; = §;4I1; and I1y + IT; = 1. Then we
can consider the projections of the steady state to each of the
logical subspaces: |PH) = Iy |Py)/(1|T1y|Ps) and |PL) =
I |Pss)/(1|TIL|Pss) (1) is just the vector with unit compo-
nents). Now we give the following operational definition of an
error: At time t = 0, we prepare the system at a state drawn
from the metastable distribution |PSFS' ) (for which the voltage
vy is always positive or zero), and monitor its evolution until
v; becomes negative. This event is considered an error, and
the random time t at which it takes place is recorded. We are
interested in the distribution of t, which can be considered a
first-passage problem [18,19]. As explained in Ref. [19], one
possible approach to obtain the statistics of 7 is to consider an
alternative dynamics with absorbing boundary conditions at
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the interface between the logical subspaces. Thus, the survival
probability of not observing any error up to time 7 is given by

Pg(t) = (1]e™'|PY). (12)

Here, the matrix Wyy is the partial generator [Ty WTIly re-
duced to the H subspace. The vectors |1) and |PS’Z ) are also
reduced to the same subspace. The probability to observe
an error between times ¢ and ¢t + dt is p(¢)dt, where p(t) =
—d,; Ps(t). Then the average time to an error (TTE) is

() = fm p(t)dtr = /ooPs(r)dr. (13)
0 0

At variance with the full generator W, the partial generator
Whyn does not conserve probability (since it continuously
leaks into the L subspace), and therefore its largest eigen-
value is strictly lower than 0. Indeed, we can write Ps(t) =
>, Cre ™, where —A; are the eigenvalues of Wyy (with
0<X <A <A< -+), and C; are constants that depend
on the initial state (with ), Cx = 1). Thus, for large times
we have Ps(t) >~ Cyexp(—Aot). From this, it follows that
for long times the distribution of t is approximately ex-
ponential with rate Ay. This already provides a method to
estimate the error rate: One should construct the generator
Wy and numerically compute the eigenvalue of smallest
absolute value, which can be done efficiently with several
routines since the matrix Wyy is sparse. Note that Ag is
independent of the initial state. It is possible to obtain an-
alytically another estimate of the error rate by exploiting
the metastability of the initial state |PZ). For this, we con-
sider an approximation in which the state |P(t)) = "V |PH)
evolving according to the generator Wyy is assumed to be
always proportional to |PX) (the initial distribution), but with
a time-dependent normalization. In that case, the survival
probability satisfies d,Ps(t) = (1|Wyn|PH)Ps(¢) and, there-
fore, we can write Pg(t) = e~*r! | with the metastable rate
AMS — —(1|Wyp|PH). This is equivalent to assume that the
error rate is constant and equal to the initial one, and conse-
quently depends explicitly on the initial state. Note that by the
conservation of probability of the full generator ((1|W = 0),
and the property I1; + 1y = 1, we have the alternative ex-
pression AMS = (1|Wyy|PH), where Wy is the reduction of
the matrix 1, WIIy to the appropriate subspaces. This last
expression for AMS can be evaluated using Eq. (8) for the

err
steady state, with the following result:

WS =43 B0, v) P(—12/2) Q(12/2).  (14)

v2

where B(vi, v2) is given in Egs. (2), and P(x) and Q(y)
are the LD approximations to the partial distributions, i.e.,
P(x) o exp(—g(x)/v.) and Q(y) o< exp(—h(y)/ve). It is in-
structive to see how Eq. (14) reduces to Eq. (11) for v, — 0.
First, we notice that Q(y) becomes strongly peaked around
y = 0 for v, — 0, and therefore we can approximate AM> ~
4B(0,0)P(0). In turn, we have P(0) = exp(—g(0)/v.)/N
with N = )" exp(—g(x)/v,), that for v, — 0 becomes N =~
exp(—g(xmin)/ve). Then, we recover the result of Eq. (11),
with 7, ! replaced by the factor 4B(0, 0) (which is subexpo-
nential, since the rates scale as v, !).

In general, there is no definite relation between the esti-
mates Ao and AMS, and the mean TTE (r). However, for the
particular protocol we are considering, in which the initial
state is |P7), the instantaneous decay rate of the survival prob-
ability A(r) = —d, In (Ps(t)) is a monotonously decreasing
function. This is easily understood: The steady-state distri-
bution has a nonzero value at the boundary v; = 0 between
logical subspaces. Then, the initial occupation of the states at
or close to the boundary will quickly leak into the L subspace,
with a rate that decreases as the occupation of those states
decrease, reaching its asymptotic value XAy for long times.
In that case, from Eq. (13) it follows that the inverse of the
average TTE is bounded by Ao and AM5:

err *

o < ()7 <y (15)
Thus, Agﬁf provides an upper bound to the inverse mean TTE.

In Fig. 3(a), we show a sample trajectory obtained by the
Gillespie algorithm, and the decay of the survival probability,
computed with two methods. The solid lines were obtained
from Eq. (12) by constructing the reduced generator Wyy.
The dots were obtained from Gillespie simulations in which
initial states were drawn from the steady-state distribution and
the time to an error was recorded. We see that the decay rate
decreases monotonously from the initial one to the asymptotic
one given by Ag. From the same data, we compute the mean
TTE (r). In Fig. 3(b), we compare (7)~! with the different
estimates of the error rate, as a function of Vygy. We see that
o is an excellent estimate of (t)~!. The metastable rate AMS
of Eq. (14) consistently overestimates the true error rate, but
displays the same scaling with Vgq4. In contrast, we see that the
dominant estimate of Eq. (11) largely overestimate the error
rate for low Vg4, while it underestimate it for large values of
Vaa. Figure 3(c) shows (r)~!, Ao and )»gﬂrs as a function of Vg
for different values of v,.

V. ENTROPY PRODUCTION

We now study the steady-state entropy production of the
memory. At the steady state, the average current / through
both inverters is the same. Thus, the rate at which heat is
dissipated in the environment is Q = 4V,4l, and the entropy
production rate is just ¥ = Q/T. From the deterministic
solution for n = 1, it follows that in the monostable phase
the electric current increases exponentially with Vyq, I =
(ge/T0)(€ /T — 1), while it is constant in the bistable phase,
I = q./7o (see Appendix A). In Fig. 4, we show that the same
constant value is also achieved for n # 1. In addition, we
show the average current obtained by computing the mean
value of I (v, v2) = g. (A (vi, v2) — A (vy, v2)) using the ex-
act steady state distribution Py (v, vy). This average current
also reaches a constant value for large Vyq that is above the
deterministic one due to finite-v, effects. Interestingly, it dis-
plays a bump right after the onset of bistability. The origin
of this maximum in the average current is precisely the oc-
currence of errors, since each switching event in which the
memory flips its state has an associated dissipation. As Vyq
increases, errors become rare and the average current tends to
the value corresponding to any of the metastable NESSs with
a definite logical value.
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FIG. 3. (a) Sample trajectory generated with the Gillespie simulation of the stochastic dynamics (top, Vaa/Vr = 1.2, v,/Vr = 0.1, n=1)
and decay of the survival probability Ps(#) for the protocol described in the text for different values of Vy4 (bottom). Solid lines were obtained
by Eq. (12) and the dots from data generated with the Gillespie algorithm (v./Vy = 0.1, n=1). (b) Different estimates of the error rate as a

function of Vyq4 for v,/Vy = 0.1 and n=1. The dots indicate the inverse of the mean TTE, (7)™

!, as obtained from Gillespie simulations. The

solid blue line corresponds to the minimum eigenvalue A, of the partial generator —Wiyy, and the violet line to the metastable rate AMS of
Eq. (14). The dashed grey line shows the dominant contribution in the v, /Vy — 0 limit of Eq. (11). (c) Estimates of the error rate as a function

of Vyq for different values of v, /Vr (n=1).

Thus, for large Vg4 the electrical current I is just con-
stant, and therefore the entropy production ¥ is proportional
to Vag. Also, from Eq. (9) it is possible to see that, to
dominant order in Vyq > Vr, Ag = g(0) — g(xmin) = [2/(n +
2)](ded /Vr). Then it follows that for large entropy production
rates the error rate scales as

2
_ 2 Vi
X e n+2 veVp

MS

)‘err
_2 kT (5 2

= ¢ 2 are P (16)

Here we have ignored terms in In(A.) that are constant or
linear in ¥ or, equivalently, Vyq, that can be easily included.
Indeed, the previous equation is compatible with what was ob-
tained in ad hoc treatments based on Gaussian noise [1], up to
model-dependent constant factors in the exponent. However,
in general, one must employ the result in Eq. (14) that can be
readily evaluated.

—— deterministic (n=1)

0.2 7 —— deterministic (n = 1.2)
—e— stochastic (n =1, ve = 0.1)
0.0 1
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Vaa/Vr

FIG. 4. Electrical current through each transistor in steady-state
conditions as a function of Vyq.

VI. DISCUSSION

We used the theory of stochastic thermodynamics to con-
struct a thermodynamically consistent stochastic model of a
technologically relevant kind of electronic memory subjected
to Poissonian thermal noise. Large-deviations theory was then
employed to obtain an analytical expression for the steady
state of the memory that allowed us to estimate the rate at
which errors occur. We have thus explicitly solved a problem
that has been so far only treated using expensive numerical
simulations [4].

From a wider perspective, our paper shows how mod-
ern developments in statistical physics can contribute to
solve important problems in electronic engineering. Although
our focus has been the problem of memory reliability, our
methods and results are also relevant for the design of non-
conventional stochastic computing schemes, where naturally
occurring thermal fluctuations are exploited as a resource
[5,9,34-36]. For instance, we note that our results directly
apply to the low-power binary stochastic neuron proposed
in Ref. [9], which is based on a SRAM memory cell core
identical to the one studied here.
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APPENDIX A: DETERMINISTIC TREATMENT OF
THE CMOS SRAM CELL

In this Appendix, we derive the deterministic equations for
a CMOS SRAM cell working in the subthreshold regime. We
first consider a single inverter with input voltage v, and output
voltage v, and symmetric powering with voltages Vgg = — V.
The current 1, (v, v,) through the pMOS transistor for given v
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and v, is [37]
L,(v,v,) = Ioe*Vm/Vr e(Vaa—v)/(nVr) (1- e*(Vud*v)/VT)’ (A1)

while for the nMOS transistor we have I,(v,vy) =
I,(—v, —v,). From this, we can construct the deterministic
dynamical equations for the voltages v; and v, of the CMOS
SRAM cell discussed in the main text:

c dvi _, ( ) — L( )
— = Vi, V2) — 1,(V1, V),
a0 b
dvz
C 7 = p(vz, U]) - In(UZ» Ul)- (A2)

We first solve for the stationary solution satisfying dv;/dt =
dv,/dt = 0. By symmetry, this solution must satisfy v; =
—v = v*. Thus, we need to find v* such that I,(v*, —v*) =
L,(v*, —v™*). In the following, for simplicity, we consider the
case n = 1. In that case, the possible solutions are vy = 0 and,
only if Vgg > Vr In(2),

vi = Vag + Vo In (1/2 £ /174 — e 2Va/Vr), (A3)

Note that v, = —v_, since actually these are the two solutions
in the bistable phase. We now consider v; = vy 4 dv; and
vy = v_ + vy and expand Eq. (A2) to first order in dvj s,
finding

d vy _ Ioe_v[h/VT 2 — ezvdd/VT -2 vy
E Sva | CVp -2 2 — 2Va/Vr || §u, |
(A4)

The eigenvalues of the matrix in the previous equation are
—ePaa/Vr and 4 — ¢2a/Vrwhich show that the solution con-
sidered is indeed stable for Vgg > V7 In(2) (a similar analysis
shows that the solution vy becomes unstable at the same
point), and that small departures relax back to it at a rate
heq = T (Ve /Vr) €Y/ with Ty = (q./Ip)e*o/V7 .

From the previous solution, it can be seen that the
stationary current through each transistor is I, =1, =
(ge/T0) (€' — 1) for Vg < VyIn(2) (monostability), and
I, =1, = q./7o for Vg > Vr In(2) (bistability). Thus, the cur-
rent in the bistable phase is constant and the total entropy
production is > = 2(2V4aq./t0)-

APPENDIX B: MACROSCOPIC LIMIT AND LARGE
DEVIATIONS PRINCIPLE

The conduction channel of a MOS transistor in typical
designs has two associated dimensions: its width W and its
length L [37,38]. The capacitance between the gate terminal
and the body of the transistor (which is typically the largest
one) scales as the area of the channel: C o« WL. Also, the
current through the channel for fixed drain-source and gate-
source voltages is proportional to the channel width, and
inversely proportional to the channel length [37]. Thus, the pa-
rameter I used to characterize the I-V curve of the transistor
scales as Iy o« W/L. For the following discussion, we are go-
ing to consider a family of devices with fixed channel length,
but variable channel width. Thus, we can consider W as a
scale parameter, with respect to which both the capacitance C
and the current Iy are proportional. In that case, as considered
in the main text, the elementary voltage v, = ¢./C scales as

W—1 while the Poisson rates )»'i/" (vy, v2) associated to the
transistors scale as W. Under those conditions, the master
equation in the main text can be rewritten as

dP(.1) =Y v; ' [0, (v — v.A,, v.)P(v
P

—VeAy) — @, (v, V)P (V)] (BI)

In the previous equation, v = (v;, v,)7 is the state vector, and
the index runs over the possible transitions. For example, the
values p = 1, - -+ , 4 correspond to the forward transitions of
each transistor, while p = —1, - - - , —4 to the reverse transi-
tions. The vectors A, encode the change in voltage associated
to each transition. The scaled rates w, (v, v,) are related to the
original Poisson rates w, (v, v,) by A,(v, v.) = ve’la)p(v, V).
Thus, the scaling of the rates with respect to W (or equiva-
lently, with respect to v,) is taken into account in the factor
v;l, in such a way that the limit lim, ¢ w,(v, v,) is well-
defined (the limit v, — O here and below must be interpreted
as v, /Vr — 0and v,/Vgg — 0 for fixed V and Vgq). Note that
the explicit dependence of the rates in the elementary voltage
v, stems from the charging effects discussed in the main text.

Under these conditions, the solution of the master equa-
tion in Eq. (B1) satisfies a large deviations principle in
the macroscopic limit v, — 0. To see this, we intro-
duce the large deviations ansatz P(v,t) =< exp(—(f(v,t) +
o(v.))/v.) into Eq. (B1), and only keep the dominant terms
in v, — 0. We note that in that limit P(v —v.A,, 1) <
P(v,t)exp((A,)i0y, f(v,1)). Therefore, the master equa-
tion in Eq. (B1) reduces to the following dynamical equation
for the rate function:

dif(.1) = w,(v,0)[1 — A/ D] (B2)
]

It is worth noting that for general jump processes with scaling
properties as the ones satisfied by Eq. (B1), the validity of the
large deviation principle can be formally proven [25].

For the particular circuit under consideration, we can see
from the previous equation that the steady state rate function
f(vy, vy) should satisfy

0= (ea”lf — 1) a(vy, vo) + (e_avlf — l) b(vy, vp)
+ (e™/ — 1) a(vy, v1) + (e7%2/ — 1) b(vy, v1) (B3)

as presented in the main text, where the functions a(vy, vy)
and b(vy, vy) were defined as the appropriate combination
of the scaled transition rates. The previous equation cannot
be solved exactly. However, it can be employed to solve for
reduced rate functions derived from f(v;, vy), exploiting the
symmetry of the problem and the contraction principle of
large deviations theory. We begin by changing variables to x =
(vi —v2)/2 and y = (vi +v2)/2. Then, 9,pf = (£0:f +
dyf)/2. Defining o = e*//2 and B = e*//?, the previous
equation becomes

0= (af —Dalx,y) + (@' 7" =1) blx,y)
+ B/a =1 a(=x,y) +(a/B = 1) b(=x,y), (B4

where the change of variables of the functions a(x, y) and
b(x,y) is implicit. Now, we are interested in computing the
partial distributions P(x) and Q(y) for the variables x and y.
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The contraction principle states that if the full distribution
Py (x, y) satisfies a large deviation principle with rate func-
tion f(x,y), then the partial distribution P(x) = Zy Py (x,y)
also satisfies a large deviation principle with rate function
g(x) =inf, f(x,y) [14]. Then, assuming that f is sufficiently
regular and that infy f(x, y) = min, f(x, y), we have g(x) =
f (X, Yminlx), Where yminly is @ minimum of f(x, -) and there-
fore satisfies 9y f (X, Ymin|x) = 0. Thus, ypin|x is the most
probable value of y for a given value of x. As discussed in
the main text, the symmetry of the steady state is such that
Ymin|X = O for all x. Thus, evaluating the previous equation at
y = 0, since B|,—o = 1, we obtain
doey2 _ a(=x,0)+ b(x, 0)
~a(x,0)+b(—x,0)’
from where we easily obtain the expression for d,g(x) given
in the main text. Note that from the previous expression is

evident that d,g(x) is an odd function, and therefore g(x) is
even. The rate function h(y) for the partial distribution Q(y)

J

O fly=0/2

aly—g =e =e (BS)

h(y) =

2(m— D+ e2(1+1/n)xmin/VT) + eWaa+xmin)/Vr + eWVaa+xmin (142/0))/Vr

can also be obtained. It is given by A(y) = f (Xmin|y, ¥), Where
Xmin|Y 18 @ minimum of f(-, y). In this case, a symmetry argu-
ment is lacking, and to proceed we must neglect correlations
between x and y. Then, x,, is considered to be independent of
v, and thus it can be computed as the minimum of g(x). In the
bistable phase there are actually two equivalent values of xp;p,
that lead to the same function A(y). Thus, evaluating Eq. (B4)
at X = Xpin, SINCE | = 1, we obtain

=Xmin

ﬂlx:xmm = eav‘fl“:"min/2 = ed,\*h()’)/z

— bmin,y)+b(—Xmin,y)
a(Xmin,y)+a(—Xmin,y) *

(B6)

For the Poisson rates corresponding to MOS transistors in
subthreshold operations, that enter into the definition of the
functions a(x, y) and b(x, y), the integration of d,g(x) can be
performed exactly, leading to the compact expression given in
the main text. This is not the case for d,h(y). However, it is
possible to obtain the leading behavior of i(y) around y = 0,
which is given by

v}V + 00™h).

Finally, we note that the most probable values according to
the large deviations solution (x = Xy, and y = 0, which corre-
spond to v; = —vy = Xpin) Match the deterministic solutions
obtained in the previous section.

APPENDIX C: VALIDITY OF THE SEPARABILITY
ASSUMPTION

In this Appendix, we discuss the accuracy of the separabil-
ity assumption used above to derive equation Eq. (B6) for the
rate function A(y), and also involved in the reconstruction of
the full probability distribution in Eq. (8) in the main text. We
stress the fact that the expression for the rate function g(x) is
exact and independent of such assumption.

We begin by considering the regime of small fluctuations
around the deterministic fixed points. We first note that for
small perturbations around the fixed points, the deterministic
dynamics completely decouples the variables x = (v; — v3)/2
and y = (v 4 v2)/2, as can be seen from Eq. (A4). However,

0.006
a
3 (@)
0.005
2
1 0.004
s &
0.003 £
-1
) 0.002
-3 0.001

vo/Vy

-3 -2 -1 0 1 2 3
u/Vr
0.000

n 1 + e20+1/mxmin/Vr 4 e(Vaa+xmin)/Vr 4 o(Vaa+xmin(142/0))/Vr

(B7)

(

fluctuations might still induce correlations. To see that this
is not the case for typical fluctuations, we will compute the
Gaussian fluctuations around the fixed points by expanding
Eq. (B2). Thus, if v* are the fixed point voltages, the rate
function f(v) can be expanded as

f)=iw—vH'Cw—v)+0(v—v")  (CD

in terms of the matrix {C};; = dfiv/_f(v*). Then, the Gaus-

sian covariance matrix is given by v,C~!. Accordingly, the
covariance matrix for the variables x and y is v,MC~'MT,
with M = (}ﬁ 711/22). We will show now that MC~'MT is
a diagonal matrix, and therefore the variables x and y are
uncorrelated to the Gaussian level. Expanding Eq. (B2) to

second order in v — v*, we obtain

0=C'A+ATC! +B, (C2)

0.006 : 0.00015

0.005 0.00010
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0.00005

0.003 £

0.00000
0.002
—0.00005
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FIG. 5. (a) Exact steady-state distribution PS(v) for Vyq/Vr = 1.2 and v, /Vr = 0.1. (b) Reconstruction P (v) based on Eq. (8) and the
analytical expressions for the rate functions g(x) and h(y) for the same parameters. (c) Difference P (v) — Py (v).
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where the matrices A and B are given by
{A}j =) 0,0,(v",0)(A,);  and
P

[BYij =) w,(v*,0)(A,)i(A,);. (C3)
P

In this particular model, one can see that B = b1 is always
proportional to the identity matrix. In particular for n = 1
we have b = 4(v,/10)e" /"7 sinh(Vyq/Vr). Also, matrix A is
the one appearing in Eq. (A4) [in the bistable phase, i.e.,
for V4 > Vr In(2)]. The matrix C'~! = MC~'M7 satisfies an
equation analogous to Eq. (C2), but in terms of the trans-
formed matrices A’ = (MT)"'AMT and B = MBM" . Solving

that equation, one can easily show that the matrix C -1 s
indeed diagonal.

The difference between the exact steady-state distribu-
tion PZ*(v) and the approximated reconstruction Py (v) given
by Eq. (8) in the main text can be quantified by the
Hellinger distance 0 < H < 1, which is computed as H? =

PX(v)Pys(v). Since the separability assumption
holds for Gaussian fluctuations and they are the dominant ones
in the macroscopic limit v,/Vr — 0, it follows that H — 0
in the same limit. For finite values of v,, the accuracy of the
reconstruction of Eq. (8) can be tested numerically. As an ex-
ample, in Fig. 5 we compare the exact steady-state distribution
P&(v) with the reconstruction Py (v) for Vyq/Vr = 1.2 and
v./Vr = 0.1, and we also show the difference P3 (v) — Py (v).
In this case, the Hellinger distance is H = 1.94 x 1072 « 1.
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