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Negative autocorrelations of disorder strongly suppress thermally activated particle motion in
short-correlated quenched Gaussian disorder potentials
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We evaluate the mean escape time of overdamped particles over potential barriers in short-correlated quenched
Gaussian disorder potentials in one dimension at low temperature. The thermally activated escape is very
sensitive to the form of the tail of the potential barrier probability distribution. We evaluate this tail by using
the optimal fluctuation method. For monotone decreasing autocovariances, we reproduce the tail obtained by
Lopatin and Vinokur (2001). However, for nonmonotonic autocovariances of the disorder potential which exhibit
negative autocorrelations, we show that the tail is higher. This leads to an exponential increase of the mean escape
time. The transition between the two regimes has the character of a first-order transition.
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I. INTRODUCTION

Overdamped particle motion in short-correlated quenched
disorder potential in the presence of thermal noise is an im-
portant paradigm in a multitude of applications. These range
from diffusive transport of electrons, holes, and excitons in
disordered metals or semiconductors [1,2], to supercooled
liquids and glassy matrices [3–6] and to DNA macro-
molecules in living systems [7–9]. Colloidal systems in
quenched random potentials, created by laser light, have
recently become experimentally available [10–14]. Starting
from the groundbreaking works of de Gennes and Zwanzig
[15,16], different aspects of this basic paradigm have attracted
much interest from theorists [12,17–21].

In the simplest one-dimensional setting, overdamped par-
ticle motion in short-correlated quenched disorder potential
V (x) in the presence of thermal noise can be described by the
Langevin equation,

ẋ = −dV (x)

dx
+

√
2Dξ (t ). (1)

Here, D is the particle diffusion coefficient in the absence
of disorder potential, and ξ (t ) is a delta-correlated Gaussian
noise with zero mean and 〈ξ (t )ξ (t ′)〉 = δ(t − t ′). We suppose
in the following that the potential V (x) is statistically station-
ary and normally distributed with zero mean and variance
C(0). At low temperature, D → 0, a particle rapidly settles
down in a local potential minimum, but ultimately escapes
by overcoming a potential barrier �V , which is defined as
the minus difference between the heights of the minimum and
one of the two adjacent maxima of V (x). The average escape
time over one such potential barrier (where the averaging is
performed over the thermal noise) is well known [22],

T̄ ∼ exp

(
�V

D

)
, (2)
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up to a preexponential factor that we will not be interested in.
Our main objective is to determine the mean escape time 〈T̄ 〉,
where the additional averaging is performed over realizations
of the disorder potential. At D → 0, 〈T̄ 〉 is strongly affected
by the tail of the probability distribution of the barrier heights,
which we will call P (�V ). This distribution tail is expected
to behave as

P (�V → ∞) ∼ exp [−S(�V )], (3)

where S(�V ) is an a priori unknown large-deviation function.
Once S(�V ) is determined, one can average the mean escape
time (2) over the distribution tail (3),

〈T̄ 〉 ∼
∫

d�V exp

[
�V

D
− S(�V )

]
. (4)

The integral can be evaluated by the Laplace’s method,

〈T̄ 〉 ∼ exp

[
�V∗
D

− S(�V∗)

]
, (5)

where the saddle point �V∗ is determined from the equation

D
dS(�V∗)

d�V∗
= 1. (6)

Now we proceed to the evaluation of the large-deviation
function S(�V ).

II. OPTIMAL FLUCTUATION METHOD

To complete the statistical description of our short-
correlated Gaussian disorder potential V (x), we introduce the
autocovariance

C(x − x′) = 〈V (x)V (x′)〉 (7)

and rewrite it as C(x − x′) = A κ (x − x′), where κ (z), an even
function of z, is normalized to unity,∫ ∞

−∞
κ (z)dz = 1, (8)
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and Aκ (0) = C(0) > 0 is the variance. (For brevity, we will
use the word “covariance” instead of “autocovariance” in the
following.) We will also need the kernel K (x − x′), inverse to
κ (x − x′). It is defined by the relation∫ ∞

−∞
dx′′ K (x − x′′) κ (x′ − x′′) = δ(x − x′). (9)

By virtue of Eq. (9), K (z) is also normalized to unity:∫ ∞
−∞ K (z)dz = 1. The knowledge of the inverse kernel K

enables one to write down the statistical weight of a given re-
alization of a normally distributed stationary short-correlated
random field V (x) [23]. Up to normalization, the statistical
weight is equal to exp{−S[V (x)]}, where the action functional
S[V (x)] is

S[V (x)] = 1

2A

∫ ∞

−∞
dx

∫ ∞

−∞
dx′K (x − x′)V (x)V (x′). (10)

The distribution tail of P (�V ) corresponds to atypically large
�V , which are dominated by the optimal, that is, most likely
configuration of the potential V (x) conditioned on this �V .
This is the essence of the optimal fluctuation method (OFM)
(also called the instanton method) that we employ here, fol-
lowing an early work of Lopatin and Vinokur [17]. The OFM
boils down to a minimization of the action functional (10) with
respect to V (x) subject to constraints that we now specify.
Without loss of generality, we can place the minimum and
maximum of V (x) at x = −L and x = L, respectively. Overall,
assuming that the optimal solution V (z) is smooth, we demand

V (x = L) − V (x = −L) = �V, (11)

dV

dx
(x = −L) = 0,

d2V

dx2
(x = −L) > 0, (12)

dV

dx
(x = L) = 0,

d2V

dx2
(x = L) < 0. (13)

In addition, there must be no other extrema inside the interval
|x| < L, and the minimization is over all possible values of L.

It is convenient to rewrite Eq. (11) as an integral constraint,∫ ∞

−∞
V (x)[δ(x − L) − δ(x + L)]dx = �V. (14)

Now we can minimize the functional,

sλ[V (x)] = 1

2

∫ ∞

−∞
dx

{ ∫ ∞

−∞
dx′K (x − x′)V (x)V (x′)

− λV (x)[δ(x − L) − δ(x + L)]

}
, (15)

where λ is a Lagrange multiplier to be ultimately expressed
through �V from Eq. (11). The variation δsλ must vanish,

δsλ =
∫ ∞

−∞
dx δV (x)

{∫ ∞

−∞
dx′K (x − x′)V (x′)

− λ

2
[δ(x − L) − δ(x + L)]

}
= 0, (16)

leading to the linear integral equation∫ ∞

−∞
dx′ K (x − x′)V (x′)= λ

2
[δ(x − L) − δ(x + L)], (17)

0
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ΔV

FIG. 1. Optimal configuration of the disorder potential V (x),
conditioned on a large value of the potential barrier �V for a
monotone decreasing covariance; see Eq. (20).

which, for given L and λ, has a unique solution. Comparing
Eqs. (9) and (17), we can easily guess this solution,

V (x) = λ

2
[κ (x − L) − κ (x + L)], (18)

so what remains is to determine L and express λ through the
rest of the parameters. V (x) is an odd function of x, and we
demand that it have its maximum at x = L. The condition
dV/dx(x = L) = 0 yields

dκ (x)

dx

∣∣∣
x=0

− dκ (x)

dx

∣∣∣
x=2L

= 0. (19)

For smooth covariances, the first term in Eq. (19) vanishes.
The behavior of the second term depends on whether or not
the covariance function κ (x) is a monotone decreasing func-
tion of x > 0, so we will consider these two cases separately.

III. MONOTONE-DECREASING COVARIANCE

In this case, the second term in Eq. (19) vanishes only in the
limit of L → ∞. Therefore, according to Eq. (18), the most
probable configuration of the potential V (x), conditioned on a
large �V ,

V (x) = �V

2κ (0)
[κ (x − L) − κ (x + L)], L → ∞, (20)

consists of two essentially independent “spikes”: a positive
spike with the height (λ/2)κ (0) = �V/2 at x = L and a nega-
tive spike with height −(λ/2)κ (0) = −�V/2 at x = −L [24].
An example of this configuration is shown Fig. 1. Remarkably,
the spikes of optimal V (x) have the same functional form as
the covariance function itself.

Using Eq. (20), we can evaluate the action (10). The spike
and antispike give equal contributions and, using Eq. (9), we
obtain the large-deviation function,

S(�V ) = �V 2

4Aκ (0)
= �V 2

4C(0)
. (21)

This result is independent of the form of the (monotone-
decreasing) covariance of the disorder potential: it depends
only on the variance C(0). The corresponding tail of the bar-
rier height distribution,

P (�V ) ∼ exp

[
− �V 2

4C(0)

]
, �V → ∞, (22)
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perfectly agrees with that of Lopatin and Vinokur [17,25].
Now, using Eqs. (6) and (21), we obtain the saddle point
�V∗ = 2C(0)/D which, by virtue of Eq. (5), leads to

〈T̄ 〉 ∼ exp

[
C(0)

D2

]
, D → 0. (23)

Because of the 1/D2 factor in the denominator inside the
exponent, the mean escape time is extremely long [15,16].
Importantly, for monotone-decreasing covariance C(z), the
mean escape time is determined by the variance of the disorder
potential and is insensitive to the form of the covariance.

IV. NONMONOTONIC COVARIANCES

Now we apply Eq. (19) to a nonmonotonic covariance
[26]. We continue to assume that the disorder potential V (x)
is smooth, so that dκ/dx(x = 0) = 0. A nonmonotonic κ (x)
implies the existence of at least one minimum at x > 0. Let
us denote by x = � > 0 the minimum point of κ (x) closest
to x = 0. Now, to satisfy Eq. (19), we can either send L to
infinity as before, or set L = �/2. This is in contrast to the case
of monotonic covariance, where we could only set L → ∞.
Let us explore the new solution with L = �/2. As x = 0 is a
maximum of κ (x), and x = � is a minimum, the condition (12)
on the second derivative of V (x) is satisfied. We determine
λ from Eq. (11) and arrive at the following configuration
of V (x):

V (x) = �V

2

κ
(
x − �

2

) − κ
(
x + �

2

)
κ (0) − κ (�)

. (24)

Plugging Eq. (24) into Eq. (10), splitting the integral into four
integrals, and making use of Eq. (9) and of the symmetry of
the covariance κ (−z) = κ (z), we obtain, after some algebra,

S(�V ) = �V 2

4A[κ (0) − κ (�)]
. (25)

This result looks more interesting than Eq. (22), where only
the variance Aκ (0) = C(0) contributes. But, before going any
further, let us consider two typical scenarios of nonmonotonic
covariances: see Figs. 2 and 3.

Shown in Fig. 2(a) is the case when anticorrelations of the
disorder potential are present so that κ (�) < 0. In this case,
the action (25) is smaller than the action (21) obtained for
L → ∞. Therefore, the solution (24) indeed describes the
optimal configuration of the disorder potential in this case,
and Eq. (25) describes the true large-deviation function. Using
Eq. (25), we obtain the tail of P (�V ),

P (�V ) ∼ exp

{
− �V 2

4A[κ (0) − κ (�)]

}
, �V → ∞. (26)

The saddle point �V∗, described by Eqs. (6) and (25), is now
�V∗ = 2A[κ (0) − κ (�)]/D. Then, using Eq. (5), we arrive at

〈T̄ 〉 ∼ exp

{
A[κ (0) − κ (�)]

D2

}

= exp

[
C(0) − C(�)

D2

]
, D → 0. (27)

As we can see, the 1/D2 scaling inside the exponential per-
sists, but because of the new term C(�) < 0, the mean escape

z= l

(a)

0

z

(z
)

l/2
−l/2

(b)

0
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2

x

V
(x

)/
V

FIG. 2. (a) A nonmonotonic covariance, exhibiting a region
of negative correlations, and (b) the optimal configuration of the
disorder potential V (x) in this case.

time increases exponentially. The physical mechanism of this
increase is a much more frequent occurrence of large potential
barriers in random realizations of the disorder. The optimal
configuration of the disorder potential V (x) in this case is
shown in Fig. 2(b).

Figure 3(a) depicts the case where κ (z) is nonmonotonic,
but anticorrelations are absent and κ (�) > 0. Crucially, the
action (25) here is larger than the action (21) for L → ∞. This

z=l
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)

(b)
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FIG. 3. (a) A nonmonotonic but positive covariance and (b) the
optimal configuration of the disorder potential V (x) in this case.
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means that the configuration (24) of the disorder potential is
not optimal in this case. The true minimum of the action is
achieved on the configuration with L → ∞, as in the case
of a monotonic covariance. In other words, Eqs. (24)–(27)
are inapplicable here, and the correct solution is given by
Eqs. (20)–(23). The optimal configuration of the disorder
potential in this case is again composed of two essentially
independent positive and negative spikes, but the spikes now
have “satellites”; see Fig. 3(b).

V. DISCUSSION

We found that regions of negative autocorrelations of
one-dimensional disorder potential strongly (exponentially)
suppress the activated escape of overdamped particles,
trapped in the local potential minima. A consequence of this
result is a realization of the fact that quantitative modeling of
one-dimensional particle transport in disordered media at low
temperatures may require a more detailed knowledge of the
autocorrelation properties of the disorder than was believed
previously.

The presence of two different regimes of activated escape
for nonmonotonic covariances, depending on the sign of κ (�),
implies a dynamical phase transition. Indeed, κ (�) = 0 corre-
sponds to a critical point of a control parameter governing the
covariance function κ (z). As we observed, at the critical point,
the optimal fluctuation solution switches from one branch to
the other. The action S(�V ) is continuous at the critical point
[see Eqs. (21) and (25)], but the first derivative dS(�V )/d�V
experiences a jump, which is characteristic of a first-order
transition.

We assumed in our derivation that the covariance κ (z) and
the optimal configuration V (x) are smooth functions of their
arguments. It can be argued, however, that this assumption is
actually unnecessary for Eq. (22) or (26) [and, as a result,
Eq. (23) or (27), respectively] to hold. To clarify this issue,
we considered a well-known particular case of a nonsmooth
covariance, i.e., the Ornstein-Uhlenbeck potential, and re-
produced Eq. (22) leading to Eq. (23). This calculation is
presented in the Appendix.

A worthy next step is to address long-correlated disorder,
for which the integral

∫ ∞
−∞ C(z) dz diverges.

How can our prediction of the exponential increase of the
mean escape time due to negative correlations of disorder be
tested in experiment? Colloidal systems in a speckled light
field, where controllable disorder landscapes can be created
[10,12–14], look especially promising for this purpose. Un-
fortunately, particle mean-square displacement measurements
alone are insufficient here. The reason is that, remarkably, the
effective long-time diffusion coefficient of particles in this
system is insensitive to the presence of negative autocorre-
lations of disorder and is determined solely by the disorder
variance [16].
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APPENDIX: THE ORNSTEIN-UHLENBECK DISORDER
POTENTIAL

The Ornstein-Uhlenbeck (OU) potential is a Gaussian
random potential V (x) with the covariance

〈V (x)V (x′)〉 = C(0) e−|x−x′ |/�, (A1)

where � is the correlation length. This covariance has a corner
singularity at x = x′, so formally Eq. (19) cannot be used. No
less importantly, the barrier distribution that we are after is
ill defined in this case, as the potential V (x) is not smooth,
and its maxima and minima are everywhere dense. We argue,
however, that very large maxima and minima of the disor-
der potential are well behaved and amenable to the OFM.
Therefore, we proceed as if we were unaware of the formal
ill posedness and solve the problem anew. As we will see
shortly, the solution will again lead us to Eqs. (20)–(23), as
to be expected for a monotone-decreasing covariance.

The action functional of the OU process can be obtained
from the general relation (7), and it is well known:

S[V (x)] = 1

4C(0)

∫ ∞

−∞
dx

[
�

(
dV

dx

)2

+ V 2

�

]
. (A2)

Let us minimize this functional subject to the condition (11)
on �V . The Euler-Lagrange equation reads

d2

dx2
V (x) − V (x)

�2
= 0. (A3)

The spike-antispike solution of this equation is

V (x) = ±�V

2
e− |x∓L|

� , (A4)

where L → ∞, in agreement with Eq. (20). Notice that the
maximum and minimum of V (x) at x = ±L are not smooth, so
Eqs. (12) and (13) are inapplicable. But otherwise the optimal
configuration of the disorder potential is similar to that for
a smooth monotone-decreasing covariance. Furthermore, by
plugging the solution (A4) into Eq. (A2) and evaluating the
integral, we reproduce Eqs. (21) and (22), leading to Eq. (23).
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