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Diffusive majority-vote model
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We define a stochastic reaction-diffusion process that describes a consensus formation in a nonsedentary
population. The process is a diffusive version of the majority-vote model, where the state update follows two
stages: In the first stage, spins are allowed to jump to a random neighbor node with probabilities D+ and
D− for the respective spin orientations, and in the second stage, the spins in the same node can change its
values according to the majority-vote update rule. The model presents a consensus formation phase when the
concentration is greater than a threshold value and a paramagnetic phase on the converse for equal diffusion
probabilities, i.e., maintaining the inversion symmetry. Setting unequal diffusion probabilities for the respective
spin orientations is the same as applying an external magnetic field. The system undergoes a discontinuous phase
transition for concentrations higher than the critical threshold on the external field. The individuals that diffuse
more dominate the stationary collective opinion.
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I. INTRODUCTION

We consider a modified definition of a widely studied
consensus formation model, namely the majority-vote model
[1–12]. Here, we want to investigate the effects of itinerant
spins combined with a local majority rule [13] in the model
dynamics and the presence of a random noise that describes
Galam contrarians [14] and independence [15]. We call this
definition the diffusive majority-vote (DMV) model, and it
is a reaction-diffusion process [16–18]. In particular, we are
interested in the effect of different diffusive taxes for itiner-
ant spins on the consensus formation as a way to break the
inversion (Z2) symmetry.

Our primary motivation is to introduce a consensus
metapopulation model [19], where the lattice sites are not
associated with one sedentary individual. Instead, the lattice
sites are associated with locations where some diffusing in-
dividuals can reunite. Metapopulation models with diffusion
can lead to spatial heterogeneity [19], allowing one indi-
vidual to be influenced by different groups of friends or
acquaintances [20,21], increasing the model realism. In ad-
dition, the model still preserves the main feature of lattice
opinion models: Individuals with close opinions and ideas
tend to stay together, and this is realistic in a way that the
model can describe the spatial segregation of the individ-
uals in an election, for example, where we can see local
majorities.

In the DMV model, we can attach a spin variable to every
individual with values σ = ±1, assuming between neighbor-
ing nodes with different probabilities D+ and D−, and a lattice
site does not have any limit on the number of hosted individ-
uals. The control variable is the concentration ρ, defined as
the mean number of individuals per node. In addition, in the
symmetric situation where D+ = D−, we have the inversion

symmetry, and we can expect a ferromagnetic-paramagnetic
transition for a local update rule.

A question is what is the effect on the Z2 symmetry
breaking by turning the probabilities D+ �= D−. Symmetry
breaking, in this case, means favoring an opinion value, which
can describe individuals more avid to spread its opinion.
Symmetry breaking can also be interpreted as an external
field, analogous to the mass media’s influence over society.
Our results can shed some light on the problem of election
manipulation and the spreading of controversial opinions or
conspiracy theories by organized groups, which has obvious
implications for social systems.

The DMV model can determine if the Ising universality
class is robust when combining the local update rule with
diffusion. It is known that the epidemic models with local
updates given by a contact process, when Brownian diffusion
dominates transport, can have different critical exponents in
lower dimensions owing to the additional conservation laws.
The Janssen-Grassberger conjecture of directed percolation
(DP) [22–24] predicts any short-range model with a fluctu-
ating continuous phase transition from an active to a unique
absorbing state, with a positive-definite order parameter and
no additional symmetries, conserving laws or quenched ran-
domness, falls into the DP universality class.

According to Janssen-Grassberger’s conjecture, the univer-
sality class of an epidemic process can change if we include
diffusion of a conserved number of particles. One example
is the diffusive epidemic process (DEP), which models an
epidemic spreading in a diffusive population [25–34]. The
DEP presents a new universality class [33], where exponents
in lower dimensions deviate from the exponents of the contact
process (CP). The CP describes the spreading of epidemics
with no permanent immunity and obeys the DP universality
class.
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In summary, our main objective is to study the critical
behavior of the DMV model when changing the diffusive
probabilities and noise parameter value, which enters the local
update rule. In particular, the system presents a consensus
phase for particle concentrations greater than a threshold
value, which depends directly on the noise parameter. The
difference of the diffusion probabilities acts as an external
field. In Sec. II, we present the model definition and the
relevant observables. In Sec. III, we discuss the main results.
Finally, in Sec. IV, we present our conclusions.

II. MODEL AND SCALING

A. DMV model

In the following, we present our definition of the DMV
model. We consider a population W of walkers, given in terms
of the concentration ρ as

W = ρN, (1)

where N is the number of the lattice nodes we assign a spin
variable to each walker, assuming two values σ = ±1. The
following rules define the Markovian chain:

(i) Initialization: We randomly distribute the population in
the lattice. Every spin can randomly assume two values σ =
±1, and diffuse with respective probabilities D±. We store the
number of spins +1, and −1 in each node by using two arrays
S± of size N . Every dynamical step is done in a unitary time
interval and is composed of two stages:

(ii) Diffusion: All nodes are visited, and for each individual
with spin σ = ±1 in the node i, one generates a random
uniform number x, and if x � D±, the individual jumps to a
randomly chosen neighbor j, in such a way that the arrays are
updated as follows,

S±(i, t + dt ) = S±(i, t ) − 1,

S±( j, t + dt ) = S±( j, t ) + 1. (2)

(iii) Reaction: Inside a node, the spins follow the two-state
MV model update rule [1–3]. All nodes are visited, and for
each spin σ = ±1 in the node i, we try a spin flip with a
probability ω±, written as

ω± = 1
2 [1 ± (1 − 2q)�(S+(i) − S−(i))], (3)

where �(x) is the signal function, associated with the node
majority opinion

�(x) =
⎧⎨
⎩

−1, if x < 0,

0, if x = 0,

1, if x > 0.

(4)

When computing the local majority, we sum only the other
spins in the same node (excluding the spin we are trying the
spin flip). However, this does not affect the critical behavior of
the model. In the case of no local majority [x = 0 or S+(i) =
S−(i)], the spin can change its opinion state with ω± = 1/2.

The noise parameter induces a no-consensus phase, anal-
ogous to the paramagnetic phase of magnetic materials. We
repeat rules 2 and 3 by several predefined Monte Carlo (MC)

steps, and for every repetition, we increase a time counter by
one unit. Diffusion and reaction stages are done with the help
of temporary arrays S(t )

± of size N , where we store the states
of the lattice sites after the spin flips and jumps, respectively.
The use of temporary arrays avoids the possibility of a spin
jumping twice or more and eliminates the case of a spin
undergoing twice or more spin flips in a time unit.

B. Observables and critical behavior

After describing the DMV dynamics, we present the
needed observables to identify the critical behavior. The main
observable is the magnetization

m = 1

W

N∑
i

[S+(i) − S−(i)]. (5)

From the moments of the time series of m, we can obtain
the order parameter M, its respective susceptibility χ , and
Binder’s fourth-order cumulant U , which are given by [1]

M(q) = 〈|m|〉,
χ (q) = N (〈m2〉 − 〈|m|〉2),

U (q) = 1 − 〈m4〉
3〈m2〉2

, (6)

respectively, where |m| is the absolute value of m. All observ-
ables are functions of noise parameter q and concentration ρ.

The observables written in Eq. (6) obey the following
finite-size scaling (FSS) relations in the case of symmetric
D+ = D−,

M = L−β/ν fM[L1/ν (ρ − ρc)],

χ = Lγ /ν fχ [L1/ν (ρ − ρc)],

U = fU [L1/ν (ρ − ρc)], (7)

where L is the linear size of the lattice. The number of nodes is
N = Ld , where d is the dimension of the lattice. In the scaling
relations given by Eq. (7), 1/ν, β/ν, and γ /ν are the critical
exponent ratios, ρc is the critical concentration, and fM,χ,U are
the finite-size scaling functions. Identifying the external field
as h = |D+ − D−|, we can conjecture the following scaling
relation for the order parameter,

M = h1/δgM[h−1/(βδ)(ρ − ρc)]. (8)

To obtain the relevant observables, we performed the dy-
namics on square lattices with sizes L = 50, L = 60, L = 70,
L = 80, L = 90, and L = 100, and cubic lattices with sizes
L = 14, L = 16, L = 18, L = 20, L = 22, and L = 24, all
with periodic boundary conditions. In all simulations shown
here, we used a noise value of q = 0.1. In general, for a finite
value of the noise parameter, we obtain a threshold for D+ =
D− that increases with the noise parameter. We considered 106

MC steps to evolve the system in a stationary state and another
107 MC steps to collect 107 values of the opinion balance to
measure the observables. We calculated error bars by using
the “jackknife” resampling technique [35,36].
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FIG. 1. Results of the averages given in Eq. (6) for the DMV
model on a square lattice, with periodic boundary conditions, dif-
fusion probabilities D+ = D− = 0.5, and noise parameter q = 0.1.
In (a), (c), and (e), we show our numerical data for the Binder
cumulant U , the order parameter M, and susceptibility χ for different
lattice sizes. In (b), (d), and (f) we show the respective data collapses
following Eq. (7), and the critical exponents given in Table I for two
dimensions (2D). The estimated value of the critical threshold for the
square lattice is ρc = 3.862(5). Error bars are smaller than symbols
and are not shown.

III. RESULTS AND DISCUSSION

We start by presenting the results for the relevant ob-
servables of the DMV model on the square and cubic
lattices with periodic boundary conditions. In Figs. 1 and 2,
we show the results for the cumulant, the order param-
eter, and its susceptibility for square and cubic lattices,
respectively, with noise q = 0.1 and diffusion probabilities
D+ = D− = 0.5. For a finite value of the noise parameter,
and equal diffusion probabilities D+ = D− = D, the system
undergoes a continuous phase transition by increasing the
concentration.

The continuous transition is in the Ising universality class
regarding the scaling behavior, which is unexpected at first
glance because, as already mentioned in the Introduction, the

TABLE I. Ising critical exponents. In our data collapses, we used
the exact Ising exponents in 2D, and the best estimations in 3D to
date, given in Ref. [37].

Critical exponents Values in 2D Values in 3D

ν 1 0.629971(4)
β 1/8 0.326419(3)
γ 7/4 1.237075(10)
δ 15 4.78984(1)

reaction-diffusion version of the contact process, known as the
DEP, has a different set of exponents from the CP defined on
a sedentary population. According to the Janssen-Grassberger
conjecture [22,23], the particle conservation laws of the DEP
are responsible for changing the universality class. However,
the introduction of diffusion while maintaining Z2 symmetry

FIG. 2. The same as Fig. 1 for the simple cubic lattice with
periodic boundary conditions. The estimated value of the critical
threshold for the simple cubic lattice is ρc = 2.692(5). The data
collapses follow Eq. (7), and the critical exponents given in Table I
for three dimensions (3D). Error bars are smaller than symbols and
are not shown.
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FIG. 3. Snapshots of DMV dynamics on a square lattice with periodic boundary conditions, with diffusion probabilities D+ = D− = 0.5,
and noise parameter q = 0.1. A node is black if most of its spins have the value 1, red for the opposite, and white for no local majority. We
simulated the dynamics for the value of the susceptibility maxima ρ = 3.81(5). Note the presence of clusters, where walkers with the same
opinion state tend to stay closer.

still leaves the system in the Ising universality class, as shown
by the data collapses in Figs. 1 and 2. The exponents of the
Ising universality class used in our data collapses are shown
in Table I.

We show snapshots of the DMV dynamics in Fig. 3 for
equal diffusive probabilities D+ = D− = 0.5 on the maxima
of fluctuations for a square lattice, with L = 100, estimated at
ρ = 3.81(5). The dynamics generate clusters of populations
with a defined polarization state, where spins with the same
polarization tend to stay together, leading to spatial segre-
gation. When close to the critical threshold, the system has
clusters of various sizes.

We simulated the model for some diffusion probabilities
D+ = D− = D. We estimate the critical thresholds by us-
ing the critical exponents in Table I, and the inspection of
the data collapses when changing the ρc value yields an
estimate for the critical threshold. The �ρ interval contain-

ing the cumulant crossings offers an estimate for the error
bar for the critical threshold. In general, the threshold in-
creases with the value of the noise parameter, indicating
that an increasing noise strength induces the paramagnetic
phase by the disorder. On the other hand, the growing
concentration causes a consensus (ferromagnetic order). In
Fig. 4, we show phase diagrams of the DMV model with
a constant noise q = 0.1 in square and cubic lattices. The
curve gives the critical thresholds for the model, where the
system presents continuous phase transitions from a param-
agnetic phase (shown in yellow) to a ferromagnetic phase
(shown in blue). The regime at slow diffusion is almost linear
on 1/D.

We focus on the critical behavior as a function of the diffu-
sion probabilities and analyze what happens at the D+ �= D−
case. The system behavior follows the FSS relation given in
Eq. (8) where the external magnetic field is h = |D+ − D−|.
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FIG. 4. We show the phase diagrams for the DMV model’s constant noise parameter q = 0.1 on the square and cubic lattices in (a) and (b),
respectively. The critical threshold increases when decreasing the diffusion probability D+ = D− = D and presents an approximately linear
dependence in the slow diffusion (small D) regime. The curve gives the critical thresholds ρc as functions of 1/D for the continuous phase
transitions between the paramagnetic phase (shown in yellow) to the ferromagnetic phase (shown in blue). In the blue region (ferromagnetic
phase), for a constant ρ > ρc, the system undergoes a discontinuous phase transition as a function of D+ − D−, analogous to the Ising model
isotherms.

We show results as functions of the external field in Fig. 5
for a square lattice with L = 100 and a cubic lattice with L =
24 with periodic boundary conditions. Note that the critical
behavior is still consistent with the Ising universality class,
where the critical isotherm exponent δ values for 2D and 3D
are given in Table I.

In this way, the system has a discontinuous phase transition
for ρ > ρc as a function of the difference between the diffu-
sion probabilities. At the critical threshold ρ = ρc, we have
the critical isotherm where M scales as h1/δ . We can state
that an organized group of individuals that are more avid to
spread their own opinion is similar to a mass media influence
over society described by an external magnetic field. The
external field dictates the direction of the net magnetization
as shown by the histogram of the time series with 106 values
of m for a DMV model with different diffusive probabilities,
depicted in Fig. 6. The interchange of different values reflects
the histogram, changing the sign of the most probable value
of the net magnetization.

In addition, the maxima separations of the histograms
from m = 0 increase with the concentration so that if we
grow the population of walkers, we produce a greater net
magnetization. For ρ > ρc, the histogram of a time series
shows a bimodal pattern. Note that the histogram is not the
actual stationary distribution because our sampling is just
an importance sampling. The actual stationary distribution
could be obtained by a “flat histogram” algorithm, such as the
Wang-Landau algorithm [38] for equilibrium systems. Such
an algorithm is nonexistent for nonequilibrium systems as
far as we know. However, the histogram shows a metastable
state, indicating a discontinuous transition on the external
field h.

IV. CONCLUSIONS

We presented a consensus formation model in a system
composed of nonsedentary individuals that can interact in the
same node of a lattice or network according to the majority
rule. The model assigns different diffusion probabilities for
the other individual opinion states, and it includes the presence
of a random noise that describes Galam contrarians [14] and
independence [15]. The DMV is a reaction-diffusion process,
where the transport is dominated by Brownian diffusion, and
the reactions are done by following a local majority rule.

In the case of Z2 symmetry, i.e., equal diffusion probabil-
ities, the system presents a continuous phase transition from
a paramagnetic phase to a ferromagnetic state, with a global
consensus when increasing the number of individuals. Unlike
the DP universality class, introducing a conserved metapopu-
lation of diffusive spins does not affect the Ising universality
class. In this way, the model predicts that isolation can po-
tentialize local disagreements and induce a global dissensus
state. Increasing concentration causes a contrary effect of the
Galam contrarians, i.e., preserving the global consensus. As
expected, the critical threshold increases with the noise pa-
rameter and decreases with the equal diffusion probabilities.

When breaking the Z2 symmetry, the greater diffusion
probability determines the dominant (consensus) opinion
state, which is consistent with the fact that the dominant
opinion state is the opinion state of the more eager individuals
to convince others. The external magnetic field is the absolute
value of the difference between the diffusion probabilities,
analogous to the influence of mass media, which has obvious
implications for election manipulation and the spreading of
organized groups’ controversial opinions or conspiracy theo-
ries.
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FIG. 5. In (a), we show magnetizations for the DMV model on a square lattice of size L = 100 with periodic boundary conditions. We
consider the case D+ = 0.5, D− = 0.5 + h, and noise parameter q = 0.1, where the external field is identified as h = |D+ − D−|. In (b), we
show the respective data collapse following the FSS relation given in Eq. (8), the critical threshold ρc = 3.862(5), and the critical isotherm
exponent δ for 2D, given in Table I. In (c) and (d), we show the same of (a) and (b), respectively, for a cubic lattice of size L = 24 with periodic
boundary conditions where the critical threshold is ρc = 2.692(5). Error bars are smaller than the symbols and are not shown.

FIG. 6. In (a), we show two histograms of the time series of m for the stationary evolution of DMV on a square lattice with D+ = 0.55, and
D− = 0.5 (black circles), and with D+ = 0.5, and D− = 0.55 (red circles). For both data sets, the noise parameter is q = 0.1, L = 100, and the
concentration is ρ = 1. In (b), we have the same parameters as (a) except the concentration, which is ρ = 1.5. In (c), we show the histogram
of a time series for a concentration ρ = 4 > ρc. Note that the sign of the most probable value of m follows one of the most diffusing particles.
The most probable value of m increases with the concentration, which can be seen from the spacing between the maxima of the histograms in
(a) and (b). Eventually, for ρ > ρc, the system undergoes a discontinuous phase transition on the external field h, where the histogram presents
a metastable state and a bimodal shape.
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