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Disorders can induce continuously varying universal scaling in driven systems
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We elucidate the nature of universal scaling in a class of quenched disordered driven models. In particular, we
explore the intriguing possibility of whether coupling with quenched disorders can lead to continuously varying
universality classes. We examine this question in the context of the Kardar-Parisi-Zhang (KPZ) equation, with
and without a conservation law, coupled with quenched disorders having distributions with pertinent structures.
We show that when the disorder is relevant in the renormalization group sense, the scaling exponents can depend
continuously on a dimensionless parameter that defines the disorder distribution. This result is generic and holds
for quenched disorders with or without spatially long-ranged correlations, as long as the disorder remains a
“relevant perturbation” on the pure system in the renormalization group sense and a dimensionless parameter
naturally exists in its distribution. We speculate on its implications for generic driven systems with quenched
disorders, and we compare and contrast with the scaling displayed in the presence of annealed disorders.
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I. INTRODUCTION

Classification of the physics of nonequilibrium systems at
long time and length scales into universality classes remains
a theoretically challenging task. The standard universality
classes in critical dynamics are quite robust to detailed-
balance violating perturbations [1]. In contrast, genuine
nonequilibrium dynamic phenomena, having non-Gibbsian
steady states, are found to be rather sensitive to all kinds
of perturbations. Notable examples include driven diffusive
systems [2]. For instance, for the Kardar-Parisi-Zhang (KPZ)
equation, anisotropic perturbations are found to be relevant in
all dimensions d � 2 [3].

Equilibrium systems either in the vicinity of critical points
or in broken symmetry phases for systems with continuous
symmetries show universal scaling that depend only on the
spatial dimension d and the symmetry of the order parameter
(e.g., Ising, XY , nematic, etc.) [4], but they are independent
of the material parameters that define the model. Prominent
exceptions are the two-dimensional (2D) XY model and its
related models, where the long wavelength universal prop-
erties are controlled not by a fixed point but a fixed line,
and as a result, the scaling exponents of the relevant cor-
relation functions exhibit a continuous dependence on the
stiffness parameters [5]. Furthermore, equilibrium dynam-
ics close to critical points also show dynamic universality
through the dynamic scaling exponents, which characterize
the time-dependence of the unequal-time correlation func-
tions, and now may also depend upon the presence or
absence of conservation laws and the nondissipative terms
in the dynamical equations [6]. Genuinely nonequilibrium
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systems can also show the surprising features of contin-
uously varying nonequilibrium universal properties, which
are paramatrized by dimensionless parameters that naturally
appear in the formulations of the dynamical models. Well-
known examples include stochastically forced fully developed
three-dimensional magnetohydrodynamic turbulence [7] and
stochastically coupled Burgers equations [8,9]. In all these
examples, the relevant dimensionless parameters appear in the
definition of the noise variances. More recently, it has been
suggested that a nearly phase-ordered collection of diffusively
mobile, active XY spins on a substrate can be stable, and the
relevant scaling exponents that describe the phase and density
correlation functions can vary continuously with certain an-
harmonic coupling constants that appear in the hydrodynamic
equations of motion [10,11].

Disorder is known to affect the large-scale, long time uni-
versal properties of condensed matter systems. Depending
upon the timescales, disorders are classified into two classes—
quenched and annealed. Quenched disorders are frozen in
time and do not thermalize even in equilibrium systems.
In contrast, annealed disorders time-evolve and thermalize
in the long time limit in equilibrium systems. Effects of
quenched disorder on the universal properties of equilib-
rium systems are well-documented. For example, quenched
disorders that locally affect the critical temperature lead to
new universality classes different from the corresponding
pure model; see Refs. [12–14]. Unlike quenched disorders,
annealed disordered equilibrium systems may be viewed as
pure systems supplemented by additional thermal degrees of
freedom. This may result into different static and dynamic
universality, depending upon the systems under consideration
[5,15,16].

Effects of quenched disorders on nonequilibrium systems
can be strikingly more complex. For instance, the random
Gaussian-distributed quenched columnar disordered Kardar-
Parisi-Zhang (KPZ) equation, which in one dimension (1D)
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reduces to the periodic totally asymmetric simple exclu-
sion process (TASEP) with short-ranged Gaussian-distributed
quenched disordered hopping rates is affected by the disorder
only in certain special limits of the model parameters (in
1D which is equivalent to the half-filled limit in the TASEP
language), leading to new universal scaling behavior in all
dimensions d . Else, pure KPZ universality holds [17,18]. In
a recent study, it has been shown that the conserved KPZ
(CKPZ) equation, when coupled with a particular choice of
quenched disorder can modify the scaling behavior of the pure
CKPZ equation in some cases [19]. Nonetheless, the question
of disorder-induced continuous universality in driven models
remains largely unexplored till the date.

In this article, we explore the possibility of disorder-
induced continuous universality in driven models. In the
absence of any general theoretical framework for nonequi-
librium systems, it is useful to study simple models where
such questions can be explored systematically by using an-
alytically tractable calculations. Insights drawn from such
studies should be useful to enhance general understanding of
scaling in nonequilibrium setting. To that end, in this work,
we have studied two models—one with a conservation law,
the conserved KPZ (CKPZ) equation and the other without
any conservation, the KPZ equation, both coupled with “ori-
entational” disorders, which couples with the local gradient
of the height field. By carefully choosing the disorder dis-
tributions, we show that the resulting universality classes,
when they depend upon the quenched disorders, can vary
continuously with a dimensionless parameter that character-
izes the disorder distributions. In addition, we briefly study a
version of annealed disordered CKPZ equation, and show that
similar continuously varying scaling exponents can be found
under certain circumstances. The remainder of the paper is
organized as follows. In Sec. II, we review the pure KPZ
and CKPZ universality classes. Next in Sec. III, we intro-
duce the disordered KPZ and CKPZ equations that we use
here. In Sec. IV, we elucidate the scaling properties of the
quenched disordered KPZ and CKPZ equations. In Sec. V,
we summarize our results. We have used one-loop dynamic
renormalization group (RG) calculations for our work. We
discuss some of the technical details in the Appendix for
interested readers. We briefly analyze the case of annealed
disordered CKPZ equation in the Appendix.

II. EQUATIONS FOR FLUCTUATING SURFACES

We consider a fluctuating surface without overhangs that
may be moving (i.e., growing), on average, or not mov-
ing. Microscopically, these growth processes are described
by local dynamics or local update rules and are generic ex-
amples of nonequilibrium driven systems. An interface in
d + 1-dimensional hyperspace is characterized by variations
of height h(x, t ), where x(x1, x2, . . . , xd ) is a position vector
in the d-dimensional hypersurface. We consider fluctuating
surfaces having dynamics unaffected by their absolute heights
with respect to specific base planes. In other words, the dy-
namics is invariant under constant shifts of h. The height
fluctuations display dynamic scaling [20], and the associated
time-dependent correlation function in the steady states has a

scaling form

C(r, t − t ′) ≡ 〈[h(x, t ) − h(x′, t ′)]2〉 = r2χhϕ

(
rz

t − t ′

)
(1)

in the long wavelength limit, where r ≡ |x − x′|; χh and z
are roughness exponent and dynamical exponent, respectively,
which classify the universality class; ϕ is a dimensionless
scaling function. While the values of the scaling exponents
are independent of the model parameters, they of course vary
from one universality class to another. Two such well-known
universality classes are those associated with the KPZ and
CKPZ equations, which we review briefly below.

A. KPZ universality class

The KPZ equation, originally proposed as a surface growth
model [21], is the paradigmatic nonequilibrium model that
shows nonequilibrium phase transitions at d > 2. It is given
by

∂h

∂t
= ν1∇2h − λ1

2
(∇h)2 + ξh. (2)

Here, ν1 > 0 is a diffusivity, and λ1 is a nonlinear coefficient.
Furthermore, ξh is noise with Gaussian distribution and zero
mean, that is added to describe the inherent stochasticity of
the dynamics. It is a white noise, since h in Eq. (2) obeys a
nonconserved dynamics. Stochastic noise ξh has a variance

〈ξh(x, t )ξh(x′, t ′)〉 = 2D1δ
d (x − x′)δ(t − t ′), (3)

where D1 > 0 is the noise strength. In addition to its ap-
plication as a surface growth model, Eq. (2) serves as the
active or nonequilibrium hydrodynamic model for a smoothly
varying phase, when there is no other hydrodynamic variable
present [22], and an active fluid membrane without momentum
conservation [23].

Equation (2) is invariant under the transformation x →
x − λ1at, t → t, h → h + a · x + λ1

2 |a|2t , known as the tilt
invariance [20]. This in turn gives an exact exponent relation
χh + z = 2 [20,24]. In 1D the scaling exponents are found
exactly as a consequence of the tilt invariance (that holds at
all dimensions) and the Fluctuation-Dissipation-Theorem that
holds only at 1D [20]. This gives dynamic exponent z = 1/2
and roughening exponent χh = 3/2 exactly, corresponding
to a 1D rough surface. In 2D, which is the lower critical
dimension of this model, there is only a “rough” phase which
is perturbatively inaccessible. Furthermore, the KPZ equa-
tion has smooth phase above 2D for low enough noise, the
scaling property of which is identical to the linear Edward-
Wilkinson (EW) equation [20] with z = 2, χh = 2−d

2 . As the
noise strength is increased, the KPZ equation undergoes a
phase transition from a smooth to a perturbatively inaccessible
rough phase in dimension d > 2.

B. CKPZ universality class

The CKPZ equation, which is essentially the conserved
analog of the KPZ equation, forms a universality class distinct
from the KPZ equation. This of course is not surprising,
since in nonequilibrium systems, the presence or absence
of conservation laws not only affect the dynamic scaling
exponents, they can in principle affect the static exponents
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(e.g., the roughness exponent) as well, in contrast to equilib-
rium systems. In the CKPZ equation, the height field h(x, t)
of an interface of a volume conserving system, a single-valued
function measured with respect to an arbitrary base plane,
follows a generic conservation laws:

∂t h = −∇ · J, (4)

where J, the current, has the following form [25]:

J = ∇
[
ν2∇2h − λ2

2
(∇h)2

]
. (5)

We note that current J in Eq. (5) is constructed in such a way
that J(k = 0, t ) = 0, where k is a wave vector. With this, the
CKPZ equation takes the form [25]

∂h

∂t
= −∇2

[
ν2∇2h − λ2

2
(∇h)2

]
+ ηh. (6)

Here, ηh is a conserved noise that models stochastic nature
of dynamics. It is assumed to be zero-mean and Gaussian
distributed with a variance

〈ηh(x, t )ηh(x′, t ′)〉 = 2D2(−∇2)δd (x − x′)δ(t − t ′). (7)

In the linear limit, i.e., with λ2 = 0, Eq. (6) reduces to the
Mullins-Herring (MH) equation for linear MBE processes
[26,27]. Equation (6) is not tilt invariant, and hence, it has no
exact exponent relation in contrast to the KPZ equation [28].
Results from one-loop RG study shows that d = 2 is the upper
critical dimension, and below 2D, in an ε = 2 − d expansion
one finds the scaling exponents as z = 4 − ε

3 , χh = ε
3 . This

corresponds to a rough phase. At 2D the interface is logarith-
mically rough and above 2D, the surface is smooth, with long
wavelength scaling properties statistically identical to those
obtained from the linear MH equation. Unlike the KPZ equa-
tiom, the CKPZ equation does not admit a smooth-to-rough
transition for strong coupling.1

III. DISORDERED KPZ AND CKPZ EQUATIONS

We now minimally couple the KPZ Eq. (2) and CKPZ
Eq. (6) equations with “orientational” quenched disorder to
address the question on universality we raised above. We
call it an orientational disorder, since it, a random quenched
disordered vector field V(x), whose statistics is given below,
couples with the fluctuation in the local orientation of the
height field given by ∇h. Further, Vi can in general have both
irrotational and solenoidal parts. Quenched vector Vi is as-
sumed to be zero-mean, Gaussian-distributed with a variance

〈Vi(x)Vj (x′)〉 = [2DT Pi j + 2DLQi j]|x − x′|−α. (8)

Here Pi j and Qi j are the transverse (solenoidal) and longitu-
dinal (irrotational) projection operators, respectively. In the

1A generalized CKPZ equation has recently been proposed that
contains an additional nonlinear term which is as relevant (in a
RG sense) as the existing nonlinear term in Eq. (6). This admits
a roughening transition; see F. Caballero et al., Strong coupling in
conserved surface roughening: A new universality class? Phys. Rev.
Lett. 121, 020601 (2018). We do not discuss that here.

Fourier space, these are given by

Pi j (k) = δi j − kik j

k2
, Qi j (k) = kik j

k2
. (9)

Thus, Pi j (k) and Qi j (k), respectively, project any vector they
operate on to directions normal and parallel to k. Evidently at
1D, Pi j ≡ 0 identically. Noise strengths DT and DL are posi-
tive definite. The exponent α paramatrises the measure of how
long range or how spatially correlated the quenched disorder
is; we take 0 � α < d (in this range the short distance cutoff
implied in the Fourier transforms can be smoothly taken to
zero). In the Fourier space the disorder correlation Eq. (8)
takes the form

〈Vi(k, ω)Vj (k′, ω′)〉 = [2DT Pi j + 2DLQi j]k
−μ

× δd (k + k′)δ(ω′)δ(ω), (10)

where μ ≡ d − α > 0 for spatially long-ranged correlated
disorders. In the more familiar short-ranged disorder case,

〈Vi(x)Vj (x′)〉 = [2DT Pi j + 2DLQi j]δ
d (x − x′) (11)

in real space. In the Fourier space, this gives Eq. (10) with μ =
0. Clearly, when DL = DT , the rhs of Eq. (11) is proportional
to δi j [19]. Further, in the extreme limits when DT = 0, the
quenched vector field V is irrotational, whereas for DL = 0, it
is solenoidal.

In the next Sections, we study the effects of the coupling
of Vi with the KPZ and CKPZ equations, and explore their
universal scaling properties, in particular, the dependence on
the dimensionless ratio γ ≡ DT /DL.

A. KPZ equation with quenched disorder

Given the status of the KPZ equation as a paradigmatic
nonequilibrium model that shows phase transitions, it is of
great theoretical interest to study whether or not quenched dis-
order can modify the universality classes of the pure system.
The quenched disordered version of the KPZ equation—the
KPZ equation with minimally coupled orientational quenched
disorder that we use is

∂h

∂t
= ν1∇2h − λ1

2
(∇h)2 + κ1(V · ∇h) + ξh. (12)

The disorder-dependent nonlinear term with coefficient κ1 is
the leading order nonlinear term that respects the invariance
under a constant shift of h (see Ref. [29] for a similar cou-
pling). It breaks the tilt invariance of the pure KPZ equation.
As a result, Eq. (12) lacks any exact exponent identity, in
direct contrast with the pure KPZ equation. Further, the sign
of κ1 is arbitrary. Equation (12) reduces to the pure KPZ
Eq. (2) for κ1 = 0. The additive annealed noise ξh is assumed
to be zero-mean, Gaussian-distributed with a variance given
by Eq. (3). Just as the pure KPZ Eq. (2) is the nonequilibrium
hydrodynamic model of a phase in the absence of any other
hydrodynamic variables, Eq. (12) is the nonequilibrium hy-
drodynamic model of a smoothly varying phase field in the
presence of orientational quenched disorder in the absence
of any other hydrodynamic variables, or of an active fluid
membrane with quenched disorder with broken tilt invariance
and without momentum conservation. Thus, this study should
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provide insight to the role of quenched disorders in these
systems.

B. CKPZ equation with quenched disorder

To study the CKPZ equation minimally coupled with ori-
entational quenched disorder, we use the disordered version
of the CKPZ equation proposed and studied in Ref. [19]. The
form of the current J corresponding to this disordered CKPZ
equation reads

J = ∇
[
ν2∇2h − λ2

2
(∇h)2 − κ2(V · ∇h)

]
. (13)

The coefficient κ2 is the coupling constant of the disorder-
dependent leading order nonlinear term that respects the
invariance under a constant shift of h; κ2 can take any sign.
The choice of disorder coupling that current J(k → 0, t ) → 0
at the thermodynamic limit. With κ2 = 0, the model reduces
to the pure CKPZ Eq. (6). With Eq. (13), the disordered CKPZ
equation reads

∂t h = ∇2

[
−ν2∇2h + λ2

2
(∇h)2 + κ2(V · ∇h)

]
+ ηh. (14)

The noise ηh satisfy the same as Eq. (7).
In the next section we analyze the scaling properties of

these disordered models.

IV. UNIVERSAL SCALING IN THE
DISORDERED MODELS

The universality classes of the pure KPZ and CKPZ equa-
tions are well-established. We now set out to find whether
the quenched disorder is a relevant perturbation on these
universality classes, and if so, what the new universality
classes are. The nonlinear terms present in Eqs. (12) and (14)
preclude any exact analysis of the problem, and necessitate
use of perturbative approaches. The naïve perturbation the-
ory produces diverging corrections to the model parameters
in the long wavelength limit. We use here the dynamic RG
framework to systematically handle these diverging correc-
tions in the long wavelength limit. We outline this method
below. It is convenient to express the stochastically driven
Eqs. (12) and (14) as path integrals over configurations
of h(r, t ) and its dynamic conjugate field ĥ(r, t ) [30,31],
subject to the distribution of the quenched disorders as spec-
ified above. The momentum shell RG procedure consists
of integrating over the short wavelength Fourier modes of
h(r, t ), ĥ(r, t ), and Vi(r), followed by rescaling of lengths
and times [31]. In particular, we follow the usual conven-
tion of initially restricting the wave vectors to be within
a bounded spherical Brillouin zone: |k| < �. However, the
precise value of the upper cutoff � has no effect on our
final results. The fields h(r, t ), ĥ(r, t ), and Vi(r) are separated
into the high and low wave-vector parts h(r, t ) = h<(r, t ) +
h>(r, t ), ĥ(r, t ) = ĥ<(r, t ) + ĥ>(r, t ), and Vi(r) = V <

i (r) +
V >

i (r), where h>(r, t ), ĥ>(r, t ), and Vi(r)> have support in
the large wave-vector (short wavelength) range �e−l < |k| <

�, while h<(r, t ), ĥ<(r, t ), and V <
i (r) have support in the

small wave-vector (long-wavelength) range |k| < e−l�; b ≡
el > 1. We then integrate out h>(r, t ), ĥ>(r, t ), and V >

i (r)

perturbatively in the anhamornic couplings, which can only
be done perturbatively; as usual, this resulting perturbation
theory of h<(r, t ), ĥ<(r, t ), and V <

i (r) can be represented
by Feynman graphs, with the order of perturbation theory
reflected by the number of loops in the graphs we consider;
see, e.g., Refs. [17,18]. This procedure allows us to calculate
the RG flow equations which give the stable fixed points of the
disordered KPZ and CKPZ equations, which in turn give the
associated scaling exponents. In the next Sections, we analyze
the RG flow equations and elucidate the scaling exponents for
the quenched disordered KPZ and CKPZ equations separately.
Interested readers will find the relevant one-loop Feynman
diagrams and other details of the intermediate steps in
Appendix C.

A. Quenched disordered KPZ equation

The dynamic exponent and roughness exponent in the lin-
ear limit of Eq. (12) are z = 2 and χh = 2−d

2 , respectively,
which are unsurprisingly identical to their values in the linear
limit of the pure KPZ equation; see also Appendix B 1. We
now study the effects of nonlinear terms on long time and long
wavelength scaling behavior of the linear theory by using one-
loop perturbative RG methods, whose basic steps are outlined
above.

We define dimensionless effective coupling constants

g1 = λ2
1D1

ν3 K̃d , g2 = κ2
1 DT

ν2
1

K̃d and g3 = κ2
1 DL

ν2
1

K̃d , where K̃d =∫
d�d

(2π )d contains the angular contribution coming from the
d-dimensional volume integral. There are no fluctuation cor-
rections to DL and DT . Under rescaling of space and time, we
rescale the fields in such a way that DL and DT do not scale.
The ratio γ = DT

DL
≡ g2

g3
is marginal in this theory, as we shall

see below. Therefore, we do not need to separately study the
RG flows of g2 and g3; solving anyone of them suffices, as
the other can be eliminated in terms of γ . For convenience
we choose to work with g1 and g3. Under the rescaling of
space, time and the fields as given in Appendix C 2, effective
coupling g1 scales as exp[(2 − d )�], whereas both g2 and
g3 scale as exp[(2 + μ − d )�] under these rescalings. Both
the pure (g1) and disorder (g2 or g3) nonlinearities naïvely
scale the same way for short-ranged disorder (μ = 0), mak-
ing them compete with each other. Whether the resulting
nonequilibrium steady state is controlled by g1, or g2 or g3,
or all of them, can only be ascertained by a RG treatment.
In contrast, for spatially long-ranged disorders (μ > 0), near
a (stable) RG fixed point controlled by g2 or g3, g1 is irrel-
evant in the RG sense. These can already be seen from the
one-loop fluctuation corrections of the model parameters that
with short-range quench disorder the corrections originating
from the pure nonlinear term λ1 have the same naïve infrared
divergence as those originating from the disorder nonlinear
term κ1. Thus, both types of the fluctuation-corrections must
be retained for a RG treatment. In contrast, for long-ranged
disorder, the former class is necessarily less infrared divergent
than the latter class [see Appendix C, Eqs. (C1)]. Therefore, in
this case only the latter class of fluctuation-corrections is to be
retained, and the former class discarded being less divergent,
in the spirit of the RG procedure.
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Note that at 1D the strength DT = 0, it implies g2 = 0 and γ = 0. The relevant one-loop Feynman diagrams are shown in
Appendix C 1. The differential RG recursion relations for the model parameters are

dD1

d�
= D1

[
z − d − 2χh + g1

4
+ 2g3

]
, (15a)

dν1

d�
= ν1

[
z − 2 + 2 − d

4d
g1 + 2g3

(
γ

d − 1

d
+ μ − d

2d

)]
, (15b)

dλ1

d�
= λ1

[
z + χh − 2 + 2g3

(
γ

d − 1

d
− 1

d

)]
, (15c)

dκ1

d�
= κ1

[
z − 1 + μ − d

2
− 2

d
g3

]
, (15d)

along with dDL/dl = 0 = dDT /dl . The flow Eqs. (15) can be used to find the RG flow of the dimensionless couplings g1 and
g3. We get

dg1

d�
= g1

{
2 − d + g1

4

(
4 − 6

d

)
− g3

[
2γ

(
1 − 1

d

)
+

(
3μ + 4

d
− 5

)]}
, (16a)

dg3

d�
= g3

{
2 + μ − d − g1

2

(
2

d
− 1

)
− g3

[
4γ

(
1 − 1

d

)
+ 2

(
μ + 2

d
− 1

)]}
. (16b)

Below we discuss the scaling behavior for short-range
and long-range correlated disorders separately using the flow
Eqs. (16a) and (16b).

1. Short-range disorder

For the short-range disorder case, we set μ = 0 as dis-
cussed earlier. The RG flow equations of g1 and g3 are

dg1

dl
= g1

{
2 − d + g1

4

(
4 − 6

d

)

− g3

[
2γ

(
1 − 1

d

)
−

(
5 − 4

d

)]}
, (17a)

dg3

dl
= g3

{
2 − d + g1

2

(
1 − 2

d

)

− g3

[
4γ

(
1 − 1

d

)
+ 2

(
2

d
− 1

)]}
. (17b)

Flow Eqs. (17a) and (17b) show that both g1 and g3 have
the same critical dimension 2. The flow equations in Eq. (17)
at 2D have the form

dg1

dl
= g1

[
g1

4
− g3(γ − 3)

]
,

dg3

dl
= −2γ g2

3. (18)

In Eqs. (18) (0,0) is the only fixed point. Further, g3 flows to
zero in the long RG time limit. In fact, the fixed point (0,0)
is stable along the g3 direction, whereas unstable along the
g1 direction. We further find that for any “initial conditions”
g1(� = 0) > 0, g3(� = 0) > 0, the flow ultimately runs away
along the g1 axis to infinity suggesting the existence of a per-
turbatively inaccessible phase. Since g3 flows to zero, we are
tempted to speculate that this inaccessible phase is statistically
identical to perturbatively inaccessible rough phase of the 2D
KPZ equation.

The Gaussian fixed point (0,0) is unstable for dimension at
or below d = 2 and it is the only FP at 2D. For any dimension
higher than d = 2, the Gaussian fixed point is stable and the
nonlinear terms are irrelevant near it. As a result, the scaling

properties are described by linear theory. For d > 2, there
is at least one strong coupling fixed point corresponding to
a rough phase, which is perturbatively inaccessible. While
this is qualitatively similar to the pure KPZ equation, due to
the nonperturbative nature of the rough phase, we cannot tell
whether this rough phase is statistically same as the rough
phase of d > 2 pure KPZ equation implying irrelevance of
the quenched disorder, or different, in which case, quenched
disorder is relevant. In the latter case, we speculate the yet
unknown scaling properties are to be parametrized by the
parameter γ . Numerical solutions of Eq. (12), or simulations
of suitably constructed discrete models equivalent to Eq. (12)
should be able to shed further light on this issue. Unsurpris-
ingly, we further conclude that d = 2 is the lower critical
dimension of Eq. (12), same as for the pure KPZ model.

We now briefly consider the scaling properties at d = 1
by performing the RG at d = 1, instead of expanding about
the critical dimension [19,20]. Remembering γ = 0, the flow
equations of g1 and g3 are

dg1

dl
= g1

[
1 − g1

2
+ g3

]
, (19a)

dg3

dl
= g3

[
1 − g1

2
− 2g3

]
. (19b)

The Fixed points are found by setting dg1

dl = 0 = dg3

dl and
corresponding stability are given below.

(1) (0,0): globally unstable.
(2) (0, 1

2 ): stable in the g3 direction and unstable in the g1

direction.
(3) (2,0): stable in the g1 direction, and marginally stable

in the g3 direction. At this stable fixed point, from Eqs. (15a)
and (15b) we get the scaling exponents z = 3/2 and χh = 1/2,
which characterizes the KPZ universality class behavior.

The RG flow diagram is pictorially shown in Fig. 1.
We thus conclude that the short-range orientational

quenched disorder is irrelevant in Eq. (12), ultimately giving
the well-known 1D KPZ universality class.
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FIG. 1. Schematic flow diagram in the g1-g3 plane for the
disordered KPZ equation at 1D, showing the irrelevance of the short-
ranged quenched disorder (see text). Here, (2,0) is the stable fixed
point.

2. Long-range correlated disorder

In this Section, we study the effects of spatially correlated
or long-range disorder (i.e., 0 < α < d , i.e., μ > 0) on the
universal scaling properties of the KPZ equation. The flow
Eqs. (16a) and (16b) show the critical dimension of g1 = 2
but for g2 is 2 + μ. Thus, coupling g1 has a critical dimension
lower than g3. Therefore, g1 is subleading to g3, and the
leading scaling behavior in the asymptotic long wavelength
limit should be controlled by g3 (if the disorder is relevant
in the RG sense). Since g1 is subleading, the renormalized
disordered equation motion is invariant under inversion of
h, a symmetry absent microscopically and also in the rough
phase of the pure KPZ equation. Thus, this symmetry under
inversion of h appears as an emergent symmetry of the model
in the asymptotic long wavelength limit. The flow Eq. (16b)
for g3 is

dg3

dl
= g3

{
2 + μ − d − g3

[
4γ

(
1 − 1

d

)

+ 2

(
μ + 2

d
− 1

)]}
. (20)

To calculate the scaling exponents at dimensions d < 2 + μ,
we use O(ε1) expansion, where d = 2 + μ − ε1, ε1 > 0. To
the lowest order in O(ε1), the flow Eq. (20) for g3 takes the
form:

dg3

d�
= g3

[
ε1 − 1 + μ

2 + μ
4γ g3

]
. (21)

Equation (21) reveals that g∗
3 = 0 is an unstable fixed point,

but

g∗
3 = ε1

4γ

2 + μ

1 + μ
(22)

for a nonzero γ is a stable fixed point. We evaluate the expo-
nents at this stable fixed point. We find the dynamic exponent

z = 2 − ε1

2γ

γ (1 + μ) − 1

(1 + μ)
, (23)

which can be more or less than 2, its value in the linear theory,
implying that nonlinear disorder effects can induce slower

or faster than ordinary diffusive relaxation of fluctuations,
with γ (1 + μ) = 1 is the boundary between the two kinds of
behavior. We further get the roughness exponent

χh = ε1

4

[
1 + 3 + μ

γ (1 + μ)

]
− μ

2
. (24)

Thus, both z and χh explicitly vary with γ . In the limit of
γ → ∞, i.e., for DT 
 DL, z = 2 − ε1/2 and χh = ε1/4 −
μ/2. We focus on the d = 2 case. From the definition of ε1,
d = 2 implies ε1 = μ. From Eq. (57), we then obtain

χh = μ

4

[
− 1 + 3 + μ

γ (1 + μ)

]
, (25)

which can be positive or negative, depending upon γ . In fact,
for a large γ , χh < 0. By setting χh = 0, we get γc, the critical
value of γ :

γc = (3 + μ)/(1 + μ). (26)

Now, χh < 0, which for a fluctuating surface means a “smooth
surface”, means 〈h2(x, t )〉 is independent of the system size L
for large L. This, when h is interpreted as a phase, implies
long-range orientational order in 2D, result not possible in
equilibrium at 2D due to the well-known Mermin-Wagner
theorem (MWT) [32]. Similarly, for an active membrane, this
result means the membrane should be statistically flat, an
impossibility in equilibrium again due to MWT. Since in 2D,
ε1 = μ and μ = d − α, the maximum value of ε1 can be 2
(= μ at 2D), by using this value we find χh = 1

2 [−1 + 5
3γ

],
which can be made negative for γ > 5/3.

For ε1 < 0, i.e., d > 2 + μ, g3 = 0 is the only fixed point
which is stable. We therefore conclude that d = 2 + μ is the
upper critical dimension of this model.

At d = 1, in which case DT = 0 necessarily, giving γ = 0.
Then Eq. (21) reads

dg3

d�
= g3ε1. (27)

For 1D, we set ε1 = 1 + μ. The only fixed point here is
g∗

3 = 0, which is unstable. The lack of a stable fixed point
does not allow us to extract the scaling properties. It is likely
to be an artifact of the one-loop study. Notice that at any
d-dimension for γ → 0, both z and χh diverge in Eqs. (23)
and (24), respectively, which is unphysical. To investigate
the γ = 0 case further, we use Eq. (20) and perform a fixed
dimension RG, which is similar in spirit with the RG for the
1D KPZ equation [20]; see also Refs. [19,33]. In that scheme
Eq. (20) gives at d-dimension the stable fixed point

g∗
3 = d

2
· 2 + μ − d

2γ (d − 1) + 2 + μ − d
. (28)

At this fixed point, the scaling exponents can be calculated
from Eqs. (15a) and (15b). We obtain

z = 2 − (2 + μ − d )[2γ (d − 1) + μ − d]

2[2γ (d − 1) + 2 + μ − d]
,

χh = 2 − d

2
− (2 + μ − d )[2γ (d − 1) + μ + d]

4[2γ (d − 1) + 2 + μ − d]
. (29)
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Thus, for γ = 0,

z = 2 − μ − d

2
, (30)

χh = 2 − d

2
− μ + d

4
, (31)

which are perfectly well-behaved. In particular, at 1D, we
find g∗

3 = 1/2, z = 2 − μ−1
2 and χh = 1 − μ+1

4 . Further, us-
ing Eq. (29) we find in 2D χh = −μ(2γ+2+μ)

4(2γ+μ) which gives a
smooth surface whatever value of μ and γ . Generally then,
regardless of the scheme we used, we uncover explicit γ -
dependence of z and χh. This clearly shows parametrization
of the universality classes by γ .

In general, an alert reader will easily notice that the rough-
ness exponent in Eq. (24) from ε1 expansion RG, or in Eq. (29)
from fixed dimension RG method reveals that by tuning μ,
it can be made positive or negative for d < 2 + μ. Thus,
by changing μ, the surface can be made rough (χh > 0) or
smooth (χh < 0). The transition line in the μ − d plane can
be found by setting χh = 0. By using Eq. (24), we find the
equation for the line

d = 2 + μ − 2μγ (1 + μ)

γ (1 + μ) + 3 + μ
, (32)

in the ε1-expansion calculation, and by using Eq. (29), the line
is given by

2 − d = (2 + μ − d )[2γ (d − 1) + μ + d]

2[2γ (d − 1) + 2 + μ − d]
, (33)

in the fixed dimension RG calculation. On the line χh = 0,
the surface is logarithmically rough. The dynamic exponent z
on that line unsurprisingly depends on the precise equation of
the line χh = 0. We show for two differenty method: z = 2 +
μ[1−γ (1+μ)]
3+μ+γ (1+μ) by using Eq. (32) in ε1 expansion case and z =
d + d (2+μ−d )

2γ (d−1)+2+μ−d by using Eq. (33) in fixed dimension RG
analysis.

We plot the values of the scaling exponents as obtained
from fixed dimension RG and ε1 expansion as functions of γ

in Fig. 2 below.
It is theoretically interesting to calculate the scaling

exponents at the critical dimension d = 2 + μ. The flow equa-
tion of g3 is at d = 2 + μ reads [see Eq. (21)]

dg3

d�
= −1 + μ

2 + μ
4γ g2

3. (34)

Equation (34) shows that g3(�) is marginally irrelevant; g3(�)
flows toward g∗

3 = 0 with increasing of �. Coupling g3(�)
takes the form g3(�) = g3(0)

1+g3(0)�4γ ( 1+μ

2+μ
)
, and for large renor-

malization group time i.e., � → ∞, g3(�) � 2+μ

4γ (1+μ)
1
�
. This

shows that timescale t no longer shows simple scale with
length-scale r, giving breakdown of conventional dynamic
scaling

t ∼ r2[log(r/a0)]−
γ (1+μ)−1
2γ (2+μ) . (35)

Thus, the extent of breakdown of dynamic scaling depends
on γ , and it can be faster or slower than ordinary diffusion.
We now calculate the variance of h at the critical dimension

2 4 6 8 10

- 1

1

2

3

4

FIG. 2. A plot of the scaling exponents of the quenched dis-
ordered KPZ equation, comparing between the results found from
one-loop ε1 expansion and fixed dimension RG, showing the γ -
dependence of the scaling exponents. Here, suffix ε1 indicates scaling
exponents obtained from an ε2-expansion, whereas suffix FD indi-
cates fixed dimension RG results. These are plotted for d = 2 and
μ = 1.

d = 2 + μ. We get

〈h2(x, t )〉 �
∫ 1/a0

1/L
d2+μq q−2[log(1/q)]−

γ (1+μ)−(3+μ)
2γ (2+μ) . (36)

Here, L and a0 are linear system size and small-scale cutoff,
respectively. Clearly, 〈h2(x, t )〉 is bounded: it does not diverge
for large L. For d > 2 + μ, i.e., above the upper critical di-
mension, since g3 = 0 is the stable FP, the asymptotic long
wavelength limit scaling is identical to the linear theory.

We thus find that with short-range disorder although the
disorder coupling constant g3 is naïvely as relevant as the
coupling g1 of the pure KPZ equation, in a one-loop theory g3

is irrelevant in the RG sense at all dimensions. For long-range
correlated disorder g3 is relevant while g1 becomes irrele-
vant, resulting into scaling exponents depending explicitly
on γ . Last, for μ < 0 quenched disorder is irrelevant in all
dimensions. Hence, the model belongs to the standard KPZ
universality class. In fact, this model with μ < 0 is statisti-
cally identical to μ = 0 in the long wavelength limit.

We present the phase diagram of the disordered KPZ equa-
tion in the μ − d plane showing the possible phases in Fig. 3.

B. Quenched disordered CKPZ equation

We now investigate the universal scaling properties of the
quenched disordered CKPZ equation. As in our study of
the disordered KPZ equation above, we consider both short-
ranged and long-ranged disorders separately. In the linear
limit of Eq. (14), we find dynamic exponent z = 4 and rough-
ness exponent χh = 2−d

2 , which are unsurprisingly identical
to the scaling of the linearlized pure CKPZ equation; see
Appendix B 2 for detailed calculations. The nonlinear terms
can affect the linear theory theory scaling, if they are relevant
in a RG sense. For instance, the pure CKPZ equation has an
upper critical dimension two, meaning for dimension d < 2,
the nonlinear effects modify the linear theory scaling in the
asymptotic long wavelength limit. In the disordered case,
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FIG. 3. Schematic phase diagram of the quenched disordered
KPZ equation in the μ-d plane. The broken blue line corresponds
to χh = 0, dividing the disorder-induced rough and smooth phases,
and depends on γ ; here, this line is schematically drawn for γ = 1.

as for the quenched disordered KPZ equation, the pertinent
questions are, whether disorder is relevant in the RG sense,
and if so, what are scaling properties of the resulting univer-
sality class. We systematically address these issues by using
one-loop perturbative RG, whose details are available in the
Appendix C.

Similar to our studies above on the quenched disor-
dered KPZ equation, we define two dimensionless coupling

constants �1 = λ2
2D2

ν3
2

K̃d , �2 = κ2
2 DT

ν2
2

K̃d , and �3 = κ2
2 DL

ν2
2

K̃d .
Further, we set DL and DT do not scale, accordingly we define
a ratio γ = DT

DL
≡ �2

�3
. Note that at 1D the strength DT = 0,

which implies γ = 0, as before. Furthermore, naïve rescaling
of space, time and the fields, as shown in Appendix C 2 show

that the under these rescalings, effective couplings �1 scales
as exp[(2 − d )�], whereas both �2 and �3 scale as exp[(2 +
μ − d )�]. As in the RG treatment of the disordered KPZ
equation, in the RG analysis for the CKPZ equation, both the
pure (�1) and disorder (�2 or �3) nonlinearities naïvely scale
the same way for short-ranged disorder, making them compete
with each other and control the nonequilibrium steady states.
In contrast, for spatially long-ranged disorders μ > 0, �2 or
�3 control the behavior of stedy states, �1 is irrelevant in
the RG sense. The one-loop fluctuation-corrections generating
from pure λ2 and disorder κ2 nonlinearities show these two
types of infrared divergences [see Appendix C, Eqs. (C2)].
With short-range disorder, both types have the same diver-
gences, but for long-range disorder the leading divergences
originate from the disorder vertices. Needless to say, as for the
disordered KPZ equation studied above, in all these cases the
parameter γ is marginal, and has no fluctuation-corrections.
This means there is no need to study the flows of �2 and
�3 separately; it is enough to study the flow of one of them
parametrized by γ . In what follows below, we choose to work
with �1 and �3.

The RG recursion relation of the model parameters for
general μ � 0 are (see Appendix C for more details):

dD2

d�
= D2[z − d − 2 − 2χh], (37a)

dν2

d�
= ν2

[
z − 4 + 4 − d

4d
�1 + 2�3

(
γ

d − 1

d
+ μ − d

2d

)]
,

(37b)

dλ2

d�
= λ2

[
z + χh − 4 + 2�3

(
γ

d − 1

d
− 1

d

)]
, (37c)

dκ2

d�
= κ2

[
z − 3 + μ − d

2
− 2

d
�3

]
. (37d)

The flow equations of the dimensionless coupling con-
stants �1 and �3 are then calculated by using Eqs. (37). These
are given by

d�1

d�
= �1

[
2 − d − 4 − d

4d
3�1 − �3

(
2γ

d − 1

d
+ 4 + 3μ − 3d

d

)]
, (38a)

d�3

d�
= �3

{
2 + μ − d − 4 − d

2d
�1 − �3

[
d − 1

d
4γ + 2

(
2 + μ − d

d

)]}
. (38b)

We separately discuss the short and long-range disorder cases below.

1. Short-range disorder

When the disorder is short-ranged, we set μ = 0. The flow equations of couplings �1 and �3 for the short-ranged disorder
case can be obtained from Eq. (37). These are

d�1

d�
= �1

[
2 − d − 4 − d

4d
3�1 − �3

(
2γ

d − 1

d
+ 4 − 3d

d

)]
, (39a)

d�3

d�
= �3

[
2 − d − 4 − d

4d
2�1 − 2�3

(
2γ

d − 1

d
+ 2 − d

d

)]
. (39b)

034104-8



DISORDERS CAN INDUCE CONTINUOUSLY VARYING … PHYSICAL REVIEW E 105, 034104 (2022)

Λ Λ

Λ

Λ

FIG. 4. Schematic flow diagram at dimension d = 2 − ε2, ε2 >

0 (except 1D) for the short-range quenched disordered CKPZ equa-
tion. The small, red circle is the nontrivial fixed point, which is
globally stable.

Flow Eqs. (39a) and (39b) show that �1 and �3 both
have the same critical dimension 2, as already argued by
using naïve rescaling of space, time and the fields. Further,
the Gaussian fixed point (0,0) is globally unstable below 2D,
whereas this is the only stable fixed point at or above 2D.
That implies that d = 2 is the upper critical dimension for this
model, same as pure CKPZ; at 2D, couplings �1 and �3 are
marginally irrelevant. Therefore, the linear theory scaling is
expected to be modified by the nonlinear effects at or below
2D, whereas for d > 2 the nonlinear couplings are irrelevant
and the linear theory holds in the asymptotic long wavelength
limit. To the lowest order in ε2 ≡ 2 − d , the flow Eqs. (39a)
and (39b) reduce to

d�1

d�
= �1

[
ε2 − 3�1

4
− �3(γ − 1)

]
, (40a)

d�3

d�
= �3

[
ε2 − �1

2
− 2γ�3

]
. (40b)

Equations (40a) and (40b) can be used to calculate the fixed
points (�∗

1,�
∗
2 ) by setting d�1

d�
= 0 = d�3

d�
. We find

(1) Fixed point 1: (0,0) is globally unstable.
(2) Fixed point 2: (0,ε2/2) unstable in the �1 direction,

but stable in the �3 direction.
(3) Fixed point 3: (4ε2/3, 0) unstable in the �3 direction,

but stable in the �1 direction.
(4) Fixed point 4: The nontrivial fixed point

( 2ε2(1+γ )
2γ+1 , ε2

2(2γ+1) ): stable along both the �1 and �2 directions,
i.e., globally stable.

The fixed points and the RG flow lines are shown schemat-
ically in Fig. 4.

The globally stable fixed point describes the stable
nonequilibrium steady state of the model. It can be used to
calculate the associated scaling exponents. We find that the
dynamic exponent

z = 4 − ε2γ

2γ + 1
, (41)

and the roughness exponent

χh = ε2(1 + γ )

2(2γ + 1)
. (42)

From this above expression χh > 0 since ε2 > 0. Thus, it is
a short-range disorder induced rough phase (“SR rough”).
We note that as γ → 0, both z and χh approach their linear
theory values, i.e., z = 4, χh = ε2/2, an unexpected result.
In the same way, we note that at 1D, ε2 = 1 and γ = 0,
giving z = 4, χh = 1

2 , identical to the linear theory results!
In the absence of any general symmetry argument to render
the fluctuation corrections to vanish or turn irrelevant, we be-
lieve this is fortuitous, an artifact of the one-loop perturbation
theory. Higher order perturbation theory or numerical studies
should be useful to obtain better quantitative estimates of the
exponents in the limit γ → 0. We reanalyze the 1D case by
using a fixed dimension RG scheme, which is similar in spirit
with what one does for the 1D KPZ equation [20]. To do this,
we use the flow Eqs. (39a) and (39b) directly, and set d = 1.

The resulting flow equations are

d�1

d�
= [1 − 9�1/4 − �3], (43)

d�3

d�
= [1 − 3�1/2 − 2�3]. (44)

Solving these two equations, (1/3, 1/4) is only stable FP and
finds the exponents z = 4, χh = 1/2, again same as the linear
theory results, offering no further insight into the unexpected
appearance of the linear theory results.

The fixed point analysis of the flow equations in 2D, which
is the physically relevant dimension as its pure counterpart is,
needs to be done separately, as 2D is the critical dimension.
At d = 2, i.e., ε2 = 0. The resulting flow equations of �1 and
�3 are

d�1

d�
= −�1

[
3�1

4
+ �3(γ − 1)

]
, (45a)

d�3

d�
= −�3

[
�1

2
+ 2γ�3

]
. (45b)

Thus, (0,0) is the only fixed point. Whether it is a stable
or unstable fixed point can be found only by solving the flow
Eqs. (45a) and (45b). To do so, we first define a ratio β = �3

�1
.

The flow equation of β is

dβ

d�
= β�1

[
1

4
− β(1 + γ )

]
. (46)

Equation (46) shows that

β∗ = 1

4(1 + γ )
= �3(�)

�1(�)
(47)

gives the fixed point of Eq. (46), which in turn gives the
separatrix, such that all initial conditions �1(�=0),�3(�=0)
maintaining �3(� = 0)/�1(� = 0) = β∗ will continue to
maintain it under the RG transformations. Furthermore, the
separatrix can be shown to be stable or attractive: We write
β = β∗ + δβ. To the linear order in δβ, we find

dδβ

δ�
= −β∗�1(1 + γ )δβ, (48)
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Λ

Λ
Λ

Λ

FIG. 5. Schematic RG flow diagram in 2D (ε2 = 0) for the short-
range quenched disordered CKPZ equation. The origin (0,0) is the
only fixed point, which is stable. The incline straight line is the
separatrix having a γ -dependent slope given by Eq. (47).

showing the attractive nature of the separatrix. Interestingly,
as γ → ∞, β∗ → 0, meaning that the separatrix coincides
with the �1 axis in the �1-�3 plane in that limit. Using the
value of β∗, we can further show that

d�1(�)

d�
= −�2

1(1 + 2γ )

2(1 + γ )
< 0, (49a)

d�3(�)

d�
= −�2

32(1 + 2γ ) < 0, (49b)

giving (0,0) as the globally stable fixed point. This then means
�1 and �3 are marginally irrelevant, with both of them even-
tually flowing to zero in the asymptotic long wavelength limit.
Nonetheless, they do so slowly enough to allow for infinite
renormalization of ν2, leading to logarithmic modulations of
the linear theory scaling. We work this out explicitly below.

Since the separatrix is attractive, we can use �3(l ) =
β∗�1(l ) in the long wavelength limit in the flow Eq. (45a).
We can then solve the resulting effective flow equation for
�1(l ) giving

�1l = 2(1 + γ )

1 + 2γ

1

�
, �3l = 1

2(1 + 2γ )

1

�
, (50)

is the asymptotic limit � → ∞. Since � is the logarithm of a
physical length scale, we note that both �1(�) and �3(�) ap-
proach zero logarithmically slowly. Thus, an arbitrary initial
condition �1(� = 0), �3(� = 0) not only flows to the origin,
it also flows toward the attractive separatrix in course of its
flow to the origin under successive RG transformations. The
RG flows in 2D are schematically shown in Fig. 5.

We can now find the scale-dependent ν2(�) by assuming
z = 4, χh = 0. This gives

ν2(�) � ν2(0)�
γ

2γ+1 . (51)

However, D2(�) � D2(0), since it has no relevant one-loop
fluctuation correction.

These can be used to obtain the variance

〈h2(x, t )〉 ∼ [log(L/a0)]1− γ

1+2γ , (52)

where L and a0 are linear system size and small-scale cutoff,
respectively. The logarithmic dependence of 〈h2(x, t )〉 on the
system size L in Eq. (52) implies that at d = 2, the disordered
CKPZ surface is logarithmically rough (“log rough”). We
further see that in the renormalized theory, timescale t and
length-scale r are no longer simply related by a dynamic
scaling exponent. We in fact find

t ∼ r4[log(r/a0)]−
γ

1+2γ (53)

for large r, signifying breakdown of conventional dynamic
scaling due to logarithmic modulations. The dynamics is log-
arithmically slower than that in the linear theory by an extent
that depends upon γ . In the limit γ = 0 (DT = 0), t ∼ r4,
same as in the linear theory, which is likely an artifact of
our low order perturbation theory; as γ rises, the dynamics
gets slower initially, ultimately saturating at t ∼ r4 1√

log(r/a0 )
as

γ → ∞, i.e., DT 
 DL. In the same limit by using Eq. (52),
we obtain 〈h2(x, t )〉 ∼ √

log(L/a0).

2. Long-range correlated disorder

We now study the scaling properties in the presence of
long-range quenched disorder, i.e., α < d , or μ > 0. The flow
Eqs. (38a) and (38b) show that the critical dimensions of
�1 = 2 but for �3 is 2 + μ > 0. Here �1 has critical dimen-
sion lower than �3. Therefore, near a fixed point controlled by
�3, �1 is subleading to �3, and the leading scaling behavior
is described by �3. This is similar to our analysis for the
long-range quenched disordered KPZ equation above. Again,
as in the disordered KPZ equation, the disordered CKPZ equa-
tion with long-range disorder has invariance under inversion
of h as an emergent symmetry in the long wavelength limit.
Hence, Eq. (38b) reduces to

d�3

dl

= �3

{
2 + μ − d − �3

[
4γ

(
1 − 1

d

)
+ 2

(
μ + 2

d
− 1

)]}
.

(54)

Notice that Eq. (54) is identical to the flow Eq. (20) in Sec. IV
A 2, and hence, the ensuing analysis runs exactly parallel to
the one below Eq. (20) in Sec. IV A 2. To proceed further,
we set d = 2 + μ − ε2 where ε2 > 0 and extract the fixed
point and the associated scaling exponents to O(ε2). The flow
equation of �3 reads

d�3

d�
= �3

[
ε2 − 1 + μ

2 + μ
4γ�3

]
. (55)

Unsurprisingly, Eq. (55) is same as Eq. (21) in Sec. IV A 2.
Equation (55) gives �3 = 0 is an unstable fixed point, but
�3 = �∗

3 ≡ ε2
4γ

2+μ

1+μ
is a stable fixed point for any γ > 0. As

before, the scaling exponents are calculated at the stable fixed
point �∗

3. We find the dynamic exponent

z = 4 − ε2

2γ

γ (1 + μ) − 1

1 + μ
, (56)
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FIG. 6. The scaling exponents are plotted as functions of γ to
compare between the results found from one-loop ε2 expansion RG
and fixed dimension RG. Here, suffix ε2 indicates scaling exponents
obtained from an ε2-expansion, whereas suffix FD indicates fixed
dimension RG results. We have set d = 2, μ = 1.

which can be lesser or greater than 4, with the dynamics being
faster or slower, respectively, than in the linear theory. Further,
the roughness exponent

χh = ε2

4

[
1 + 1

γ (1 + μ)

]
− μ

2
. (57)

Clearly, both z and χ depends explicitly on and vary contin-
uously with γ . As γ → ∞, z = 4 − ε2/2, χh = ε2/4 − μ/2.
However, if γ → 0, i.e., DT � DL, then both z and χh di-
verge, an unexpected result reminiscent of what we have
found in the analogous analysis for the long-range disordered
KPZ equation. At 1D, necessarily γ = 0, the flow of �3 reads
same as Eq. (27),

d�3

d�
= �3ε2. (58)

Equation (58) surprisingly has no stable FP, so it cannot de-
scribe stable scaling behavior at 1D, which we believe just
as an artifact of our one-loop calculations. To investigate this
further, we perform a fixed dimension RG akin to the 1D KPZ
equation [20]. In this scheme flow Eq. (54) has a fixed point
�∗

3 = d
2 · 2+μ−d

2γ (d−1)+2+μ−d at a (fixed) dimension d , which is a
stable fixed point. We calculate the exponents at this fixed
point are

z = 4 − (2 + μ − d )[2γ (d − 1) + μ − d]

2[2γ (d − 1) + 2 + μ − d]
, (59a)

χh = 2 − d

2
− (2 + μ − d )[2γ (d − 1) + μ − d]

4[2γ (d − 1) + 2 + μ − d]
. (59b)

Thus, the scaling exponents depend explicitly on γ . These
results reveal the generally expected existence of a stable
scaling regime parametrized by γ different from the linear
theory scaling.

We give a plot of the scaling exponents, showing their
dependence on the disorder parameter γ in Fig. 6.

For d = 1 with γ = 0, the value of the fixed point is �3 =
1/2 and exponents are z = 4 − μ−1

2 and χh = 1
2 − μ−1

4 using
the values of Eqs. (59a) and (59b).

Similar to the disordered KPZ equation with long-range
quenched disorder, both smooth and rough phases are possible
for d < 2 + μ, as can be seen from Eq. (57), obtained from
an ε1 expansion RG, and from Eq. (59b), obtained by using
a fixed dimension RG method. As γ is varied, the system
can undergo a transition between a smooth with χh < 0 and
a rough χh > 0 phase. The transition line in the μ-d plane can
be found from the condition χh = 0, and is parametrized by γ .
The equation of this line obtained from an ε2 expansion RG is
given by

d = 2 + μ − 2μγ (1 + μ)

γ (1 + μ) + 1
. (60)

The same obtained from a fixed dimension RG scheme is
given by

2 − d = (2 + μ − d )[2γ (d − 1) + μ − d]

2[2γ (d − 1) + 2 + μ − d]
. (61)

As expected and similar to the quenched disordered KPZ
equation studied above, the location of these lines in the μ − d
plane depend explicitly on γ . The surface is logarithmically
rough on the line χh = 0. The dynamic exponent z on this line
will be 4 − μ[γ (1+μ)−1]

γ (1+μ)+1 by using Eq. (60) for ε2 expansion case
or 2 + d by using Eq. (61) for fixed dimension RG case.

We find that at 2D, ε2 = μ in the ε2-expansion method,
and hence from Eq. (57) χh = μ

4 [−1 + 1
γ (1+μ) ]. We further

note that again in the fixed dimension RG method, by using
d = 2, Eq. (59b) gives χh = −μ(2γ+μ−2)

4(2γ+μ) . On the whole, these
show that χh can be negative depending on values of γ and μ.
This means that the surface can be smooth due to presence of
long-range disorder instead of logarithmically rough in pure
CKPZ case.

Precisely at dimension d = 2 + μ, the flow equation of g2

is

d�3

d�
= −1 + μ

2 + μ
4γ�2

3. (62)

Equation (62), which has the same structure as Eq. (34),
reveals that �3(�) is marginally irrelevant and it flows to zero
with increasing of �; in fact, �3 = 0 is the only fixed point,
which is stable. Furthermore, �3(�) scales as 2+μ

4γ (1+μ)
1
�

in the
limit of large renormalization time length (�), same as the
behavior of g3(�) for large � in Sec. IV A 2 above. This behav-
ior of coupling constant realizes the leading sacling: dynamic
exponent z = 4 and roughness exponent χh = −μ/2. This in
turn gives breakdown of conventional dynamic scaling with

t ∼ r4[log(r/a0)]−
γ (1+μ)−1
2γ (2+μ) , (63)

meaning the dynamics is logarithmically faster than the linear
theory. Furthermore, the extent of “logarithmic speeding up”
vis-a-vis the linear theory depends explicitly on γ , and also
unsurprisingly on μ. The variance of h at d = 2 + μ is

〈h2(x, t )〉 �
∫ 1/a

1/L

d2+μq
q2

[log(1/q)]−
γ (1+μ)−1
2γ (2+μ) . (64)

The above expression says that variance does not diverge for
large L.
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FIG. 7. Schematic phase diagram of the disordered CKPZ equa-
tion in the μ-d plane. The broken blue line divides disorder induced
rough and smooth phases and depends on disorder parameter γ ; here
this line is schematically drawn for γ = 1.

So far we have studied μ � 0 above. In principle, one may
also consider the case μ < 0. This choice makes �3 subdom-
inant to �1 at all dimensions, making the model identical to
the pure CKPZ equation in the long wavelength limit. In fact,
as in the case of quenched disorder KPZ equation above, the

μ < 0 case for the CKPZ equation is statistically identical to
the pure ckpz case in the long wavelength limit. Interestingly,
the μ = 0 case for the quenched disordered KPZ equation is
statistically identical to the pure KPZ equation in the long
wavelength limit; in contrast, the μ = 0 case for the quenched
disordered CKPZ equation belongs to a new universality class
different from the pure CKPZ equation. This amply highlights
the role of the conservation law in determining the universality
classes in driven diffusive systems.

We summarize our results on the disordered CKPZ equa-
tion in the form of a phase diagram in Fig. 7 showing all the
possible phases in μ-d plane.

We thus obtain the scaling exponents varying continuously
with γ for both the short- and long-range disorder cases.

We summarize our results on the scaling exponents of the
quenched disordered KPZ and CKPZ equations in the follow-
ing Tables I and II, respectively.

V. SUMMARY AND OUTLOOK

In summary, we have studied the universal scaling prop-
erties of the KPZ and conserved KPZ equations coupled to
orientational quenched disorders. We have chosen a partic-
ular form of disorder that couples with the local gradient
of the height field, i.e., the disorder is sensitive to the local
height nonuniformity. It is described by a zero-mean Gaus-
sian distributed quenched vector field V. Vector V can in
general have both irrotational and solenoidal parts. This is
reflected in the variance of V(k) having parts proportional
to the transverse Pi j (k) and longitudinal projection operator
Qi j (k), with amplitudes DT and DL, respectively. This allows
us to define a dimensionless number γ ≡ DT /DL. We have

TABLE I. Scaling exponents for the disordered KPZ equation as obtained from both ε1-expansion and fixed dimension RG.

Disordered KPZ equation

μ = 0: Uncorrelated disorder μ > 0: Correlated disorder

Dim. Exponents Possible phases Dim. Exponents Possible phases

d < 2 Pure KPZ result:
Disorder irrelevant.
At d = 1, z = 3/2
and χh = 1/2.

Rough d < 2 + μ ε1 expansion:

z = 2 − ε1
2γ

γ (1+μ)−1
(1+μ) ,

χh = ε1
4 [1 + 3+μ

γ (1+μ) ] − μ

2 .

Fixed dimension RG:

z = 2 − (2+μ−d )[2γ (d−1)+μ−d]
2[2γ (d−1)+2+μ−d] ,

χh = 2−d
2 − (2+μ−d )[2γ (d−1)+μ+d]

4[2γ (d−1)+2+μ−d] .

Disorder induced rough
and smooth possible. At
the transition χh = 0 with
z = 2 + μ[1−γ (1+μ)]

3+μ+γ (1+μ) and

z = d + d (2+μ−d )
2γ (d−1)+2+μ−d

for ε1 expansion and
fixed dimension RG case,
respectively.

d = 2 = dlc Pure KPZ result. Rough d = 2 + μ = duc z = 2, χh = −μ/2. Smooth

d > 2 EW result:
z = 2, χh = 2−d

2 ,
or the scaling
exponents of the
pertubatively
inaccessible rough.

Smooth and rough
with a roughening
transition

d > 2 + μ EW result: z = 2, χh = 2−d
2 . Smooth
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TABLE II. Scaling exponents for the disordered CKPZ equation as obtained from both ε2-expansion and fixed dimension RG.

Disordered CKPZ equation

μ = 0: Uncorrelated disorder μ > 0: Correlated disorder

Dim. Exponents Possible phases Dim. Exponents Possible phases

d = 1 <

duc = 2
ε2 expansion with
ε2 = 1:

z = 4 − ε2γ

2γ+1 ,

χh = ε2 (1+γ )
2(2γ+1) .

Fixed dimension
RG:
z = 4, χh = 1/2.

Rough d < 2 + μ ε2 expansion:

z = 4 − ε2
2γ

γ (1+μ)−1
1+μ

,

χh = ε2
4 [1 + 1

γ (1+μ) ] − μ

2 .

Fixed dimension RG:

z = 4 − (2+μ−d )[2γ (d−1)+μ−d]
2[2γ (d−1)+2+μ−d] ,

χh = 2−d
2 − (2+μ−d )[2γ (d−1)+μ−d]

4[2γ (d−1)+2+μ−d] .

Disorder induced rough
and smooth possible. At
the transition χh = 0 with
z = 4 − μ[γ (1+μ)−1]

γ (1+μ)+1 for ε2

expansion case and
z = 2 + d for fixed
dimension RG case.

d = 2 =
duc

z = 4 and χh = 0
with logarithmic
roughness

Logarithmic rough
or smooth d = 2 + μ = duc z = 4, χh = −μ/2 Smooth

d > 2 MH result:
z = 4, χh = 2−d

2 .
Smooth d > 2 + μ MH result: z = 4, χh = 2−d

2 . Smooth

studied the scaling properties of the models for both spatially
short and long-ranged quenched disorders by using a one-loop
perturbative RG scheme.

For each of the models, we have calculated the relevant
scaling exponents, i.e., the roughness exponent χh and dy-
namic exponent z. For instance, we find that the disordered
KPZ equations with short-ranged quenched disorder belongs
to the well-known KPZ equation only, i.e., the disorder is
irrelevant in the RG sense. Unsurprisingly, d = 2 remains
the lower critical dimension of the model, just as it is for
the pure KPZ equation. For long-range disorder, the model
no longer belongs to the KPZ universality class; a new uni-
versality class emerges, with the pure KPZ nonlinear term
being irrelevant in the RG sense. Our result on long-range
orientational order induced by long-range quenched disorder,
when h is considered as a phase, is theoretically intriguing,
and should stimulate further work on disordered active XY
models. The asymptotic long wavelength scaling is controlled
by the disorder nonlinearity only, and the associated scaling
exponents depend explicitly on γ and μ; the latter parameter
characterizes the spatial scaling of the disorder variance. In
contrast, for the disordered CKPZ equation, even with short-
range disorder we find that a new universality class emerges
at dimension d � 2; the scaling exponents are calculated by
using a one-loop expansion, which depend explicitly on γ .
Further, d = 2 is now the upper critical dimension, as in the
pure CKPZ equation. For long-range disorder, the pure CKPZ
nonlinearity is irrelevant in the RG sense; the asymptotic long
wavelength properties are controlled by the disorder nonlin-
earity only. This is exactly analogous to the universality in the
quenched disordered KPZ with long-range disorder. We show
that as μ > 0 is varied, both the quenched disordered KPZ
and CKPZ equations can have a transition between a rough
phase and a smooth phase. Last, the scaling exponents, which
are calculated at the one-loop order, depend explicitly on γ

and μ.

Beyond the specific results, we find the surprising generic
conclusion that whenever quenched disorders are relevant
(in the RG sense), the parameter γ enters into the expres-
sions of the scaling exponents. Since γ can in principle vary
continuously (between zero and infinity), so do the scaling
exponents and hence does the universality class itself. We thus
find continuously varying universality, induced by quenched
disorder, in the two models that we considered. Furthermore,
the existence of continuously varying universality appears
to be quite robust: It exists with (CKPZ) or without (KPZ)
a conservation law, so long as the quenched disorder itself
remains relevant in the RG sense. We can relate this with
the symmetry of the disorder distribution: γ is the parameter
that determines the relative strengths of the transverse and
longitudinal parts of the disorder variance. Thus, varying γ

effectively means variation of the local alignment of V(q)
with respect to q. This continuous variation of the univer-
sality class is in fact more robust than our results perhaps
imply. Since the variance of a quenched disordered vector
field can generally be a combination of transverse and longi-
tudinal parts, a dimensionless parameter like γ automatically
arises, which remains a free parameter, continuously varying
universal properties are generically expected so long as the
quenched disorder remains relevant in the RG sense. These
results may be tested by designing and simulating appropriate
agent-based models coupled to a vector quenched disorder
field with specified distributions. Do these results apply to
annealed disorders as well? As shown in Appendix D, the
CKPZ equations, when driven by vector fields with linear
dynamics show this behavior. Preliminary results on the KPZ
equation driven by an annealed disorder field also shows sim-
ilar behavior (not shown here). This however comes with a
caveat. An annealed field has a dynamics, which is not neces-
sarily linear in general. We have assumed a linear dynamics
for the annealed field only for simplicity. In general nonlinear
terms should be present, which may or may not be relevant in
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the RG sense. If it is relevant, then there is a possibility the
dynamics of the annealed disorder field is renormalized, and
that a parameter equivalent to γ may acquire specific RG fixed
point value(s), instead of being a free, continuously varying
parameter. Thus, it is possible that the resulting universal-
ity class of the height field (or in general a dynamical field
driven by the annealed disorder) will not vary continuously.
However, in the event the nonlinear effects in the dynamics
of the annealed field are irrelevant, we expect continuously
varying universality class to follow, as we have already found
in the CKPZ equation with annealed disorder. We therefore
conclude that, the existence of continuously varying univer-
sality classes with a vector quench disorder field is likely to
be more generic than its annealed counterparts. Lastly, we
caution the reader that the continuously varying universality
class observed with quenched disorder here does not hold for
any kind of quenched disorder, even if the disorder is relevant
in the RG sense. This is because, in order for this result to
hold, there must a free dimensionless parameter like γ in
the disorder distribution. Not all quench disorder distributions
may allow this. For instance, there is no scope of this in the
recent studies on quenched columnar disordered KPZ equa-
tion [17,18], since the disorder there is a scalar.

Our results may be verified by direct numerical simulations
of the stochastically driven equations of motion, which may
be conveniently done by using pseudospectral methods [9].
It would be interesting to develop equivalent quenched dis-
ordered agent-based lattice-gas models, in terms of a height
field or a phase field, which may be studied by using Monte
Carlo simulations and explore and validate the RG results
above. We hope our studies will provide new impetus in
these directions.

Apart from their obvious theoretical interests, our results
have experimental implications as well. For instance, a pos-
sible physical origin of the (vector) quenched disorder is the
underlying disordered substrates. The substrates, if not very
carefully prepared, may have different patches, characterized
by different values of the parameter γ . For sufficiently large
patches, each such patch should be characterized by scaling
exponents parametrized by γ . If the experimental measure-
ments are done on a region that includes may such patches
having different γ , then the measured correlation functions
are not likely to show any clean scaling, but should rather
display a broadening of the measured values of the scaling
exponents, or a kind of smeared scaling behavior. We hope
our studies here will provide further impetus to research along
these lines in the future.
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APPENDIX A: GENERATING FUNCTIONAL

The generating functional of the disordered KPZ or CKPZ
equation has the form [30,34–36]

Z =
∫

x,t
DĥDhDVe−S[ĥ,h,V ]. (A1)

Here S is the action functional and it contains two parts:
(i) harmonic (SH ), (ii) anharmonic (SA). Field ĥ(x, t ) is the
dynamic conjugate field of h(x, t ) [30].

We here write the down the explicit forms of the action
functionals for the disordered KPZ and CKPZ equations.

1. Disordered KPZ equation

The action functional is constructed by using Eq. (12) and
averaging over the Gaussian-distributed noise ξh. We get

SKPZ
H =

∫
x,t

[−D1ĥĥ + ĥ(∂t − ν1∇2)h]

+
∫

x,x′

VixVjx′

4[DT Pi j + DLQi j]|x − x′|−α
, (A2)

SKPZ
A =

∫
x,t

−ĥ

[
λ1

2
(∇h)2 + κ1(V.∇h)

]
, (A3)

where SKPZ
H and SKPZ

A are, respectively, the harmonic and an-
hamornic parts of the action functional.

2. Disordered CKPZ equation

The action functional is constructed by using Eq. (14) and
then averaging over the Gaussian-distributed noise ηh. We get

SCKPZ
H =

∫
x,t

[−D2(−∇2)ĥĥ + ĥ(∂t + ν2∇4)h]

+
∫

x,x′

VixVjx′

4[DT Pi j + DLQi j]|x − x′|−α
, (A4)

SCKPZ
A =

∫
x,t

−ĥ

[
λ2

2
∇2(∇h)2 + κ2∇2(V.∇h)

]
, (A5)

where SCKPZ
H and SCKPZ

H are the harmonic and anharmonic
parts of the action functional.

APPENDIX B: HARMONIC THEORY

In this section, we consider the harmonic parts of the ac-
tion functionals, which correspond to the linear parts of the
underlying stochastically driven equations of motion.

1. Disordered KPZ equation

The propagator and correlator of h in the Fourier space can
be obtained from action Eq. (A2). These are

〈ĥ−k,−ωhk,ω〉 = 1

−iω + ν1k2
, (B1a)

〈|hq,ω|2〉 = 2D1

ω2 + ν2
1 k4

. (B1b)

We thus get dynamic exponent z = 2 at all dimensions. The
equal-time correlator in real space

C(r) ≡ 〈[h(x, t ) − h(x′, t )]2〉

= 2
∫

dd k
(2π )d

D1[1 − eik·[x−x′]]

ν1k2
, (B2)

for large r ≡ |x − x′|. Following Eq. (1), we conclude that
χh = 2−d

2 . Therefore, χh = 1/2 at 1D and χh = 0 at 2D in
the Gaussian theory, or in the linearized Eq. (12).
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2. Disordered CKPZ equation

The bare propagator and correlator of h in Fourier space
can be obtained from the harmonic part of action Eq. (A4).
These are

〈ĥ−k,−ωhk,ω〉 = 1

−iω + ν2k4
, (B3a)

〈|hq,ω|2〉 = 2D2k2

ω2 + ν2
2 k8

. (B3b)

Here z = 4, and the equal-time correlator C(r) for this case
in real space can be defined similarly as Eq. (B2) which gives
χh = 2−d

2 . It means χh = 1/2 at 1D and χh = 0 at 2D in the
Gaussian theory, or in the linearized Eq. (14).

APPENDIX C: DYNAMIC RENORMALIZATION
GROUP (RG) METHOD

We have discussed above about the method of dynamic
RG, so, here we present the intermediate details such as loop
diagrams, rescaling, fluctuation corrections.

1. One-loop Feynman diagrams

We represent the bare two-point functions, the anhar-
monic terms or the “vertices” in the action functional and
the fluctuation-corrections of the model parameters by the
Feynman diagrams, as shown in Fig. 8. These diagrams are
for both the disordered KPZ and CKPZ equations. However,
their expressions differ depending upon the model in question.

(a) (b) (c)(i)

(ii)

(iii)

(iv)

(v)

FIG. 8. (i) Bare two-point functions: (a) propagator, (b) cor-
relator, (c) disorder correlator. Figures (ii)–(v) give the Feynman
diagrams for the one-loop corrections in the theory; the one-loop
diagrams have the same structure for in both the disordered KPZ and
CKPZ equations, though their values differ (see text) . Figure (ii)
give one-loop corrections to the diffusivity (ν1 or ν2), figure (iii)
are for the noise strength (D1 or D2), figure (iv) are for the pure
nonlinear terms (λ1 or λ2), and figure (v) correspond to the dis-
ordered nonlinear terms (κ1 or κ2). The number written before
a Feynman diagram is the symmetry factor of the corresponding
diagram.

a. Disordered KPZ equation

The fluctuation-corrections of the model parameters of the disordered KPZ Eq. (12) corresponding to the one-loop diagrams
in Fig. 8 are given below:

Fig. 8(ii): ν<
1 = ν1

[
1 + 2 − d

4d

λ2
1D1

ν3
1

∫ Λ

Λ/b

dd q
(2π )d

1

q2
+

(
d − 1

d

2κ2
1 DT

ν2
1

+ μ − d

d

κ2
1 DL

ν2
1

) ∫ Λ

Λ/b

dd q
(2π )d

1

q2+μ

]
, (C1a)

Fig. 8(iii): D<
1 = D1

[
1 + λ2

1D1

4ν3
1

∫ Λ

Λ/b

dd q
(2π )d

1

q2
+ 2κ2

1 DL

ν2
1

∫ Λ

Λ/b

dd q
(2π )d

1

q2+μ

]
, (C1b)

Fig. 8(iv): λ<
1 = λ1

[
1 +

(
d − 1

d

2κ2
1 DT

ν2
1

− 2

d

κ2
1 DL

ν2
1

) ∫ Λ

Λ/b

dd q
(2π )d

1

q2+μ

]
, (C1c)

Fig. 8(v): κ<
1 = κ1

[
1 − 2

d

κ2
1 DL

ν2
1

∫ Λ

Λ/b

dd q
(2π )d

1

q2+μ

]
. (C1d)

b. Disordered CKPZ equation

The fluctuation-corrections of the parameters in the disordered CKPZ Eq. (14) corresponding to the one-loop Feynman
diagrams in Fig. 8 are given below:

Fig. 8(ii): ν<
2 = ν2

[
1 + 4 − d

4d

λ2
2D2

ν3
2

∫ Λ

Λ/b

dd q
(2π )d

1

q2
+

(
d − 1

d

2κ2
2 DT

ν2
2

+ μ − d

d

κ2
2 DL

ν2
2

) ∫ Λ

Λ/b

dd q
(2π )d

1

q2+μ

]
, (C2a)

Fig. 8(iii): D<
2 = D2 + subleading corrections, (C2b)

Fig. 8(iv): λ<
2 = λ2

[
1 +

(
d − 1

d

2κ2
2 DT

ν2
2

− 2

d

κ2
2 DL

ν2
2

)∫ Λ

Λ/b

dd q
(2π )d

1

q2+μ

]
, (C2c)

Fig. 8(v): κ<
2 = κ2

[
1 − 2

d

κ2
2 DL

ν2
2

∫ Λ

Λ/b

dd q
(2π )d

1

q2+μ

]
. (C2d)
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2. Rescaling

We rescale a Fourier wave vector and frequency as k → bk
and ω → bzω, equivalently in the real space x → x/b, t →
t/bz, where z is the dynamic exponent. The fields are accord-
ingly rescaled as

h(k, ω) = ξh(bk, bzω); ĥ(k, ω) = ξ̂ ĥ(bk, bzω). (C3)

Furthermore, Vi(k, ω) = bz+ d
2 + μ

2 Vi(bk, bzω), as obtained
from Eq. (10).

a. Scaling of the parameters in the disordered KPZ equation

We set ξ ξ̂ = bd+2z by demanding the term in action
Eq. (A2)

∫
dd kdωĥhω does not scale under the rescaling of

wave vectors and frequencies. Accordingly the model param-
eters scale as given below:

ν ′
1 = ν<

1 bz−2, D′
1 = D<

1 bz−d−2χh ,

λ′
1 = λ<

1 bz−2+χh , κ ′
1 = κ<

1 bz−1+ μ

2 − d
2 ,

D′
L = D<

L = DL, D′
T = D<

T = DT . (C4)

b. Scaling of the parameters in the disordered CKPZ equation

We set ξ ξ̂ = bd+2z by demanding the term in the action
functional Eq. (A4)

∫
dd kdωĥhω does not scale under the

rescaling of wave vectors and frequencies. Accordingly the
model parameters scale as given below:

ν ′
2 = ν<

2 bz−4, D′
2 = D<

2 bz−d−2−2χh ,

λ′
2 = λ<

2 bz−4+χh , κ ′
2 = κ<

2 bz−3+ μ

2 − d
2 ,

D′
L = D<

L = DL, D′
T = D<

T = DT . (C5)

APPENDIX D: ANNEALED DISORDER

We now briefly discuss what happens when the disorder is
“annealed” instead of “quenched.” This means the disorder is
no longer frozen in time. At the simplest level, we model it
by a time-dependent fluctuating vector field U(x, t ) that has
zero mean and is assumed to be Gaussian distributed. If U is
interpreted as a velocity field, then this is reminiscent of the
well-known passive scalar turbulence problem [37–40]. The
equation of motion of U is

∂U
∂t

= b∇2U + f, (D1)

where the noise f is zero-mean, Gaussian-distributed with a
variance

〈 fi(k, ω) f j (k′, ω′)〉
= [2a1Pi j + 2a2Qi j]k

2−μδd (k − k′)δ(t − t ′). (D2)

Here, μ = d − α, as in the main text. Then the velocity au-
tocorrelation function can be calculated exactly. In Fourier
space it is

〈Ui(k, ω)Uj (k′, ω′)〉

= 2a1Pi j + 2a2Qi j

ω2 + b2k4
k2−μδd (k + k′)δ(ω + ω′), (D3)

where a1/b = 2D̃T and a2/b = 2D̃L. We are interested in the
large b limit, with D̃L and D̃T being finite. In this limit, the
annealed disorder autocorrelation in real space reduces to

〈Ui(x, t )Uj (x′, t ′)〉
= [2D̃T Pi j + 2D̃LQi j]|x − x′|−αδ(t − t ′). (D4)

We briefly discuss the scaling properties of the disordered
CKPZ equation with annealed disorder of the type defined
above. The one-loop Feynman diagrams are identical to their
quenched disorder counterparts. We focus on the one-loop di-
agrams which vanish in the absence of the annealed disorder.

Let us consider the last diagram in Fig. 8(ii) that originates
from the disorder coupling κ2 and corrects ν2:

∫
q

(k − q)i(k − q)2q2−μ(2a1Pi j + 2a2Qi j )q

bq2[bq2 + ν2(k − q)4]
, (D5)

where k is an external wave vector and q is an internal wave
vector of the one-loop diagram. Noise strength D2 receives no
relevant or diverging corrections.

In Fig. 8(iv) the triangle diagrams that originate from the
disorder coupling κ2 correct λ2. They are:

first triangle diagram ∼
∫

q
q6q2−μ[2a1Pim + 2a2Qim]

[
1

bq2
[
ν2

2 q8 − b2q4
] − 1

ν2q4[b2q4 − ν2q8]

]
, (D6)

second triangle diagram

∼
∫

q

qmqjq4q2−μ[2a1Pim + 2a2Qim]

bq2[bq2 + ν2q4]2
. (D7)

Similarly, the last diagram in Fig. 8(v), coming from the
disorder vertex, corrects κ2:

∫
q

qmqjq4q2−μ[2a1Pim + 2a2Qim]

bq2[bq2 + ν2q4]2
. (D8)

All the expressions of different one-loop diagrams given in
Eqs. (D5)–(D8) are infrared divergent if b � ν2q2 is satisfied.
In fact, these corrections are same as in Eq. (C2). However,
these diagrams give subleading corrections to the parameters
in the opposite limit b 
 ν2q2.

As the high wave-vector modes are being eliminated start-
ing from k = Λ, the upper wave vector cutoff, there can be
two situations: either ν2k2 dominates over b over a substantial
range of (i.e., intermediate values of) wave vectors just below
Λ, or b dominates over ν2k2 in the same wave-vector region.
Noting that with ν2 gaining positive corrections but b gets
none, there can be two distinct possibilities.

(I) It is possible that as one eliminates the higher wave-
vector modes, before b starts dominating, long enough RG
time is spent, and the annealed-disordered CKPZ equation is
renormalized. In this case, The corrections of parameters
and corresponding flow equations are same as equations of
Eq. (37). Therefore the result is identical to quenched disor-
dered CKPZ equation. In this case, for even lower wave-vector
regimes with b 
 ν2k2, there are no new relevant fluctua-
tion corrections to the model parameters. Hence, the same
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universality as the quenched disordered CKPZ equation en-
sues, with a continuously varying parameter γ̃ ≡ D̃T /D̃L

parametrizing the universality class.
(II) In the opposite case, not enough RG time is available

to make ν2 substantially renormalise, making b dominate over
ν2k2 for low enough k. In this case, further more elimination

from the disorder-dependent diagrams do not produce any rel-
evant corrections to the parameters. However, the fluctuation
corrections from the pure CKPZ nonlinear terms still survive,
ultimately giving the scaling exponents of the pure CKPZ
equation. In this case, naturally, there are no γ̃ -dependence
of the scaling exponents.
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