
PHYSICAL REVIEW E 105, 034103 (2022)

Phase transition from nematic to high-density disordered phase in a system of hard rods on a lattice

Aagam Shah,1,* Deepak Dhar,1,† and R. Rajesh2,3,‡

1Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
2The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India

3Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India

(Received 16 September 2021; accepted 21 February 2022; published 2 March 2022)

A system of hard rigid rods of length k on hypercubic lattices is known to undergo two phase transitions when
chemical potential is increased: from a low density isotropic phase to an intermediate density nematic phase,
and on further increase to a high-density phase with no orientational order. In this paper, we argue that, for large
k, the second phase transition is a first-order transition with a discontinuity in density in all dimensions greater
than 1. We show that the chemical potential at the transition is ≈ k ln[k/ ln k] for large k, and that the density of
uncovered sites drops from a value ≈ (ln k)/k2 to a value of order exp(−ak), where a is some constant, across
the transition. We conjecture that these results are asymptotically exact, in all dimensions d � 2. We also present
evidence of coexistence of nematic and disordered phases from Monte Carlo simulations for rods of length 9 on
the square lattice.

DOI: 10.1103/PhysRevE.105.034103

I. INTRODUCTION

The study of entropy driven phase transitions in systems
of long hard rods is one of the classic problems of statisti-
cal mechanics. It has a long history, starting with Onsager
establishing an isotropic-nematic phase transition in a solu-
tion of long thin rods in three dimensions [1], and Zwanzig
developing a virial expansion for rods on lattices [2]. The
models of hard rods are good minimal models for many phase
transitions, e.g., those observed in aqueous solutions tobacco
mosaic viruses [3], liquid crystals [4], carbon nanotube ne-
matic gels [5], etc.

In this paper, we focus on lattice models for mono-
dispersed straight rigid rods. On a d-dimensional hyper-cubic
lattice, rods can orient only in one of the d directions. A k-mer
will refer to a rod of length k that occupies k consecutive
lattice sites along any one of the lattice directions. Two rods
cannot overlap. With increasing density, it is known that, for
large enough k, the system of k-mers undergoes transitions
from a low density orientationally disordered phase to an
intermediate density nematically order phase to a high den-
sity disordered (HDD) phase where the nematic order is lost
(see Fig. 1 for an illustration of these phases) [6]. The first
transition from the disordered to nematic phase is expected
to lie in the Ising [7–9] or more generally Potts universality
class [7,8,10], depending on the number of different possible
directions of nematic order. The transition has been rigorously
established to exist in two dimensions [11], and is also seen in
the exactly soluble case of k-mers on treelike lattices [12].
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It has also been shown that machine learning can be used to
detect this phase transition [13].

The second transition from the nematic to the HDD phase
is much less studied. In Monte Carlo simulations, even to
establish the existence of the second transition is nontrivial, as
the approach to thermal equilibrium at high densities becomes
very slow. In the usual algorithms using local evaporation
and deposition moves, the states at high densities are sampled
inefficiently due to the presence of highly jammed long-lived
metastable states. This difficulty is reduced substantially by
a recently introduced strip update cluster algorithm based
on simultaneously updating all the sites in a strip based on
transfer matrix calculations [14,15].

The nature of the second transition as well as the nature
of the HDD phase is not settled yet. There is some indication
of the HDD phase having power law orientation-orientation
correlations [15]. The results of Monte Carlo simulations of
systems up to size 952 × 952 for k = 7 were consistent with
a continuous transition in a non-Ising universality class [15].
However, an exact solution of soft repulsive rods on a treelike
lattice [16] suggests a continuous transition but in the Ising
universality class.

This transition has been studied more recently by Vogel
et al. by using an interesting new measure to study the Monte
Carlo data [17,18]. The size of the file storing the time series
of configurations is reduced in size using a zipping program.
The ratio of the reduced file size to original size, termed
mutability, changes with chemical potential. It is argued that
the maxima and minima of mutability can be used as mark-
ers of phase transitions in the system being modeled. But
there is no simple relationship between mutability and stan-
dard thermodynamic variables. The precise value would also
depend on the details of the zipping program used. If the
system undergoes slow relaxation, then nearby configurations
are more similar, and mutability will be low. This suggests
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FIG. 1. Typical snapshots of the three phases at different densi-
ties for rods of length 7. (a) The low density disordered phase, (b) the
intermediate density nematic phase, and (c) the HDD phase. x-mers
are shown in red and y-mers in blue.

that mutability tracks the inverse relaxation time, but near
the isotropic-nematic transition mutability actually shows a
maximum. Also, if there is a first-order transition, we would
expect the mutability to show a minimum in the middle of
the two-phase-coexistence region, if the boundary between
the two phases fluctuates. The transitions, for rods up to size
k = 10, were found to be consistent with a continuous transi-
tion.

In another study [19], the corner transfer matrix renor-
malization group technique was used to study the phase
transitions in hard rods. While this technique gives rather
accurate results for the Ising and Potts models in two dimen-
sions, the convergence of estimates for the problem of rods,
where the correlation functions show oscillations, is slow and
the technique seems less reliable. It was concluded that the
second transition is continuous and not in the Ising universal-
ity class. We note that this technique also indicates that the
first transition from isotropic to nematic is not in the Ising
universality class, contrary to strong existing evidence from
other methods.

In three dimensions, there is no phase transition for
k � 4. For k � 7, the system undergoes phase transitions
from disordered to nematic to a layered disordered phase as
density is increased. In the layered disordered phase, the sys-
tem breaks up into very weakly interacting two-dimensional
planes within which the rods are disordered. For 4 < k < 7,
there is no nematic phase, and there is a single phase transition
from a disordered to a layered disordered phase [20,21]. The
nematic to layered disordered phase is expected to be similar
to that in two dimensions. However, it is difficult to numeri-
cally study this transition because, in finite systems, these two
phases sandwich a third thermodynamically unstable layered
nematic phase [20].

It is thus clear that, in spite of several studies, the transition
from nematic to HDD phase as well as the nature of the HDD
phase are poorly understood. Current numerical evidence sug-
gests a continuous phase transition with the universality class
being ambiguous. The only established results for the high
density phase are for the fully packed phase. For this special
point, it is known that the correlations between orientation of
rods decrease algebraically with distance [22–27]. Also, it has
been conjectured that the entropy per site in the full packing
problem, on d-dimensional hypercubical lattices, shows hype-
runiversal behavior in the limit of large k: the leading term is
A(ln k)/k2, with the coefficient A = 1, independent of d [28].

In this paper, we argue that the phase transition from the
nematic to the HDD phase is a first-order transition. For large
k, the value of the critical fugacity z∗(k) at this transition is
shown to be [k/ ln k]k to leading order in k. The density of
holes is shown to jump from a value exponentially small in
k to a value ln k/k2 to leading order in k. We present strong,
but not rigorous arguments, based on perturbation theory, that
our results are asymptotically exact for large k. These results
are consistent with an exact solution that we obtain for a strip
of size k × ∞. We finally present some evidence from Monte
Carlo simulations at fixed density showing phase separation
and coexistence of phases for k = 9.

The remainder of the paper is organized as follows. In
Sec. II, we define the model precisely. In Sec. III, we recapit-
ulate the results of the one dimensional problem that will be
used later. We also discuss the perturbation theory about the
fully ordered nematic state at arbitrary densities, and show that
for large k, for most of the density values in the nematic range,
the deviations of various properties from the fully ordered
nematic state are negligibly small. In Sec. IV, using only the
fact that the fully packed state has a finite entropy per site,
we show that at high densities it is entropically favorable for
the system in the nematic state with uniform density to phase
separate into two phases, one with full packing and the other
nematically ordered at lower density. We use this fact to esti-
mate the density beyond which the instability sets in, and the
corresponding chemical potential. In Sec. V, we define two
approximations for the HDD phase called HDD1 and HDD2

phases, which includes vacancies and allows for exact calcu-
lation of the partition function. We verify that this improved
calculation of entropy does not change the basic conclusions
of Sec. IV. In Sec. VI, we discuss a technique to determine
the exact partition function per site for k-mers on a strip of
width k. We cannot obtain a closed form solution, but instead
devise an algorithm to determine numerically the asymptotic
value of partition function per site in the thermodynamic limit,
for a given numerical value of the rod activity z. The method
involves summing a series numerically. The convergence is
somewhat nontrivial, but we are able to determine the density
of covered sites as a function of activity z to about 8 digit
accuracy for each value of z. This one-dimensional problem
does not show a strict phase transition, but has a very sharp
increase in the density near z∗. The value of z∗ and the nearly
sharp jump in density can be determined, and agree with
the conclusions of the simpler calculations in Secs. IV and
V. Section VII contains the results of fixed density Monte
Carlo simulations. We present some evidence of two-phase
coexistence for k = 9, which is a signature of a first-order
transition. Finally, Sec. VIII contains a summary of our results
and some concluding remarks.

II. DEFINITION OF THE MODEL

In this section, we define the model more precisely and set
the notation.

Consider a L × L square lattice, with open boundary con-
ditions. A rod or k-mer occupies k consecutive sites along one
of the x or y directions. A site can have at most one k-mer
passing through it. We will consider monodispersed systems
of k-mers. The weight or activity of each k-mer is z = eμ,
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where μ is the reduced chemical potential, and we have set
the inverse temperature β = 1.

We refer to rods pointing in the x and y directions as x-mers
and y-mers respectively. The density ρ will denote the fraction
of sites covered by k-mers, while the density of vacant sites
will be denoted by

ε = 1 − ρ. (1)

We will denote the fraction of sites covered by x-mers and
y-mers as ρx and ρy respectively. The nematic order parameter
Q is defined as

Q = |ρx − ρy|
ρ

, (2)

with Q being zero in the disordered phase and one in the
perfectly ordered nematic phase.

We will denote by Sd,k (ε) the entropy of the system of k-
mers in d dimensions at hole density ε. Since the values of
d and k are fixed in most of our discussion, we will suppress
these indices if the meaning is clear by the context.

III. DESCRIPTION OF THE NEMATIC PHASE

Our key observation in this work is that in the nematic
phase, for large k, the nematic order is very strong, with
deviations of the order parameter Q from the maximum value
of 1 being negligible in most of the range of the nematic
phase. This may be seen as follows. Consider a generalized
problem with different activities z and zy for the x-mers, and
y-mers. Let the corresponding grand partition function for
an L × L lattice by denoted by �2d (L, z, zy). If zy = 0, then
the partition function factorizes into partition function of L
one-dimensional chains:

�2d (L, z, 0) = [�1d (L, z)]L, (3)

where �1d (L, z) is the grand partition function for a open
linear chain of L sites. It satisfies the recursion relation

�1d (L, z) = �1d (L − 1, z) + z�1d (L − k, z). (4)

For large L, �1d (L, z) ∼ λL, where λ is the solution of the
algebraic equation

λk − λk−1 = z. (5)

The density of covered sites is obtained from the par-
tition function by differentiating λ with respect to z: ρ =
kzd (ln λ)/dz. It is easily verified that one obtains a rather
simple result,

ε

1 − ε
= 1

k(λ − 1)
. (6)

We can also obtain the entropy per site for this fully nematic
state, to be denoted by Snem(ε), as a function of the density
of holes ε. The enumeration reduces to the arrangement of
L(1 − ε)/k rods and Lε holes. Thus,

Snem = lim
L→∞

1

L
ln

(
L
(

1−ε
k + ε

)
L(1−ε)

k

)
,

=
[

1 − ε

k
+ ε

]
ln

[
1 − ε

k
+ ε

]

− 1 − ε

k
ln

[
1 − ε

k

]
− ε ln ε. (7)

FIG. 2. A cluster of r = 3 vertically aligned y-mers in a sea of
x-mers.

To add y-mers to this perfectly ordered phase, we expand
�2d (L, z, zy) as a power series in zy, and put zy = z at the end
of the calculation. Expanding to linear order in zy, we obtain

�2d (L, z, zy)

�2d (L, z, 0)
= 1 + L2zy

[
�′

1d (L, z, 0)

�1d (L, z, 0)

]k

+ O
(
z2

y

)
, (8)

where �′
1d (L, z, 0) is the partition function of a one-

dimensional system in which one fixed site is empty. This
immediately implies that the second term on the right-hand
side of Eq. (8) is the kth power of the hole density ε. Thus,

lim
L→∞

1

L2
ln �2d (L, z, zy) = ln λ + zyε

k + O
(
z2

y

)
. (9)

For moderately small values of ε, and large k, εk becomes
very small. However, as ε tends to zero, the coefficient zy,
when set equal to z becomes large. For ε → 0, λ varies as
1/ε, and z varies as λk , and hence as ε−k [see Eqs. (5) and
(6)]. Thus, for ε tending to zero, the term zyε

k tends to a finite
constant.

It turns out that in the limit of small ε, the term correspond-
ing to a stack of r parallel vertical rods (see Fig. 2 for an
example) also contributes to order εk . Hence, it is desirable
to sum over the such configurations, and find the total weight
of placing r adjacent parallel aligned vertical rods, summing
over r.

A similar calculation to the one given above for the con-
tribution to the free energy from a single y-mer gives that
the weight of a configuration with r such y-mers in a sea of
x-mers is εkzkλ−(r−1)k . Summing over this geometric series,
we obtain the net contribution of these configurations in the
series expansion for ln �2d (L, z, zy) as

lim
L→∞

1

L2
ln �2d (L, z, zy) ≈ ln λ + F, (10)

where

F = zλεk =
[

1 + (k − 1)ε

k

]k 1 − ε

εk
. (11)

When ε tends to zero, F diverges as 1/ε. Thus, while the
contribution from a single y-mer (r = 1) tended to a constant
for ε tending to zero, the contribution from the sum of islands
diverges for small ε. This analysis shows that, for very small
ε, the purely nematic state is unstable to nucleation of stacks
of vertical rods, signaling the onset of the HDD phase.

In Fig. 3, we show the variation of the relative contribu-
tion F/ ln λ with ε. The first-order correction to the nematic
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FIG. 3. The variation of the relative contribution of the correction
to entropy due to the presence of islands [see the factor F in Eq. (11)]
with ε for different values of k. The solid black circle on each curve
is at the value of ε at which the nematic phase becomes unstable, as
estimated from the tangent construction in Sec. IV.

state is negligibly small, especially for large k. In Fig. 3, the
solid black circles denote the value of ε at which the pure
nematic phase becomes unstable to a two-phase coexistence
regime, as estimated by the tangent construction calculation
in Sec. IV. At the approximate transition point, the relative
correction F/ ln λ is approximately equal to 10−5, 2 × 10−15,
6 × 10−27 for k = 7, 14, 21 respectively. Thus, for large k, for
a substantial range of densities for which the phase is nematic,

S(ε) ≈ Snem(ε) + O(k−k ), (12)

where we have dropped the subscripts of S2,k (ε) which denote
the true entropy per site of the full two-dimensional problem.

IV. THE TANGENT CONSTRUCTION

The entropy S(ε) is a convex function of ε which implies
that a tangent drawn at any point lies above the curve, and in
particular is larger than the entropy at full packing:

S(ε) − ε
d

dε
S(ε) � S(0). (13)

As discussed in Eq. (12), S(ε) is approximated very well
by Snem(ε) in the nematic phase. From Eq. (7), we note that
Snem(ε) tends to zero when ε tends to zero. But, we know that
S(0), the entropy of the fully packed phase, is nonzero and
varies as k−2 ln k for large k [28].

Suppose we do not use any information about the behavior
of the function S(ε) in the HDD phase, other than the fact that
S(0) > 0. Then, the expression for Snem(ε) given in Eq. (7)
does not satisfy the inequality in Eq. (13) for small enough
ε. Suppose we draw a tangent to the curve Snem(ε) from the
point (ε = 0, S(0)). Let this tangent meet the curve Snem(ε) at
ε = ε1. Figure 4 shows an example for k = 10, where the fully
packed entropy was approximated by its lower bound: the
entropy for that of a strip k × ∞. This tangent would be above
the curve Snem(ε) in the range 0 < ε < ε1. This implies that
for hole density less than ε1, it is entropically advantageous
for the system to separate into two phases, one of density ε1

and the other of zero hole density, rather than have a phase
with uniform hole density ε.
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S
(ε

)

ε

Snem
tangent

FIG. 4. The construction of the tangent from S(0) to the curve
Snem(ε) is shown for k = 10. S(0) is obtained from the solution of
the fully packed 10 × ∞ strip.

From Eqs. (7) and (13), it is easily seen that the equa-
tion determining ε1 simplifies to

1

k
ln

[
1 + (k − 1)ε1

1 − ε1

]
= S(0). (14)

Using the fact that S(0) ≈ (ln k)/k2, for k � 1, then for
kε1 	 1, Eq. (14) simplifies to

ε1 ≈ S(0), (15)

≈ ln k

k2
for k � 1. (16)

The value of the chemical potential μ∗ at this first or-
der transition is related to the slope of the tangent: μ∗ =
kdSnem/dε|ε1 . To leading order, dSnem/dε ≈ − ln(kε). Thus,
we obtain μ∗ to leading order in k as

μ∗ ≈ −k ln [kS(0)], (17)

≈ k ln

[
k

ln k

]
for k � 1. (18)

In view of Eq. (12) being true in all dimensions, we ex-
pect that Eqs. (15) and (17) are asymptotically exact in all
dimensions, and we are led to conjecture that, for hypercubical
lattices in all dimensions d � 2,

lim
k→∞

ε1(d, k)

Sd,k (0)
= 1, (19)

lim
k→∞

exp

[
μ∗(d, k)

k

]
kSd,k (0) = 1, (20)

lim
k→∞

ε2(d, k)km

ε1(d, k)
= 0 for all m > 0. (21)

Here, for clarity, in a departure from our notations used in the
paper, we have explicitly displayed the d and k dependence of
ε1, ε2, μ∗, and Sd,k (0).

We can check for the consistency of the assumption that,
even at ε = ε1, the entropy in the nematic state is well ap-
proximated by Snem(ε1), by noting that the value of the factor
F is of order 1/kk−1 is very small, even for k = 7 (see Fig. 3).

In Table I, we list the values of ε1 and μ∗ for k from 7 to 21,
obtained from the tangent construction. For this calculation,
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TABLE I. The density of the nematic phase in the coexistence
regime, ε1, and the critical chemical potential μ∗ for different k, as
obtained from the tangent construction.

k ε1 μ∗

7 0.0352044085666 10.9186783149
8 0.0281891510465 13.1470420927
9 0.0231353803495 15.4576043505
10 0.0193666682476 17.8426607700
11 0.0164763742454 20.2958267516
12 0.0142077918145 22.8117292904
13 0.0123921831043 25.3857861041
14 0.0109148059700 28.0140438975
15 0.00969534939667 30.6930575308
16 0.00867618606129 33.4197980784
17 0.00781506083686 36.1915817038
18 0.00708039604466 39.0060138133
19 0.00644819338532 41.8609446150
20 0.00589993952465 44.7544333257
21 0.00542115940916 47.6847190234

we do not know the exact value of S(0). Instead, we use a
lower bound to S(0), obtained by solving for the entropy of
a fully packed k × ∞ strip. Then S(0) � k−1 ln φ, where φ is
the solution of

φk − φk−1 = 1. (22)

We then set S(0) ≈ k−1 ln φ.
Figure 5 shows the variation of ε1 with (ln k)/k2 for differ-

ent k. The data are compared to the asymptotic answer S(0)
[see Eq. (15)]. We see that the convergence to the asymptotic
form is rather good even for fairly small values of k.

Figure 6 shows the variation of μ∗/k with ln[k/ ln k].
Again, we see a fair agreement with the asymptotic expression
as given in Eq. (17).

0

0.01

0.02

0.03

0.04

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

ε 1

ln(k)/k2

tangent
HDD1

k×∞ strip
S(0)

FIG. 5. The variation of nematic coexistence density ε1 with
(ln k)/k2, obtained from the three different calculations. The data
points are for k = 7 to k = 30 (tangent), k = 7 to k = 150 (HDD1),
and k = 7 to k = 13 (k × ∞ strip). The solid line is the estimate in
Eq. (15). The HDD1 phase is defined in Sec. V and the solution for
the strip is given in Sec. VI.

1

2
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7

1 2 3 4 5 6 7

µ* /k

ln[k/ln(k)]

tangent
HDD1

k×∞ strip
-ln[kS(0)]

FIG. 6. The variation of scaled critical chemical potential μ∗/k
with ln(k/ ln k), obtained from the three different calculations. The
data points are for k = 7 to k = 30 (tangent), k = 7 to k = 150
(HDD1), and k = 7 to k = 13 (k × ∞ strip). The solid line is the
estimate in Eq. (17). The HDD1 phase is defined in Sec. V and the
solution for the strip is given in Sec. VI.

V. TAKING INTO ACCOUNT THE EFFECT OF HOLES
IN THE HDD PHASE

In the analysis of Sec. IV, the HDD phase was approxi-
mated as fully packed with ε = 0. This, of course, cannot be
correct, as at any finite chemical potential there will be a finite
density of holes in the HDD phase as well. We will now show
that, even when holes are accounted for in an approximate
way, the basic features of the simple calculation presented in
Sec. IV are still preserved.

Since we are not able to exactly calculate the entropy of the
HDD phase, we will approximate it by a reference phase, to be
called the HDD1 phase. This shares some qualitative features
with the actual HDD phase, but allows us to calculate the cor-
responding partition function exactly. In the HDD1 phase, we
impose some restrictions on the configurations accessible to
the system (just as we did for the nematic phase). In the HDD1

phase, the system is made of L × k strips, with no k-mers
shared between different strips. In each strip, the configuration
is made by concatenating copies of the three basic patterns,
called tiles, shown in Fig. 7: (1) A 1 × k tile consisting of a
y-mer, (2) a k × k square tile covered by k x-mers, and (3) a
(k + 1) × k tile, with k x-mers each of which can be in two
possible positions. Thus, there are 2k distinct tiles of the third
type. The total sums of weights of these three types of tiles are

FIG. 7. The three basic tiles used in the definition the HDD1

phase are shown for k = 5. (a) A y-mer, (b) a k × k square covered
by k x-mers, and (c) a (k + 1) × k tile with k x-mers, each of which
can be in two possible positions.
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FIG. 8. The variation of the scaled partition functions per site
λHDD1 and λ with chemical potential μ for k = 10. The two curves
intersect at μ∗. The partition function of the k × ∞ strip is approxi-
mately equal to the largest of the two partition functions.

xz, xkzk , and (2z)kxk+1 respectively, where the power of x is
the horizontal extent of the tile.

Lest the construction appear very contrived, we note that
the first two tiles already give a nonzero entropy per site in the
full packing limit, and the entropy varies as (ln k)/k2 for large
k [28]. Thus this reproduces the exact asymptotic behavior
of S2d (0), for large k. The third tile allows for vacancies. We
can start with a fully packed (k + 1) × k rectangle with one
y-mer and k x-mers, and remove the y-mer. Then the adjacent
x-mers can now move by one lattice site independent of each
other. Thus the total number of allowed configurations is 2k ,
for each rod removed. Thus, we retain an important feature
of the k-mer problem: the number of new configurations is
exponentially large in k for each k-mer that is removed.

Let the grand partition function of an L × k lattice in
the HDD1 phase be �HDD1 (L, z). We define the generating
function

�HDD1 (x, z) =
∞∑

L=0

xL�HDD1 (L, z). (23)

We define R(x, z) as the sum of the weights of the constituent
tiles,

R(x, z) = xz + xkzk + 2kxk+1zk . (24)

It is then easily seen that

�HDD1 (x, z) = 1 + R(x, z) + R(x, z)2 + R(x, z)3 + · · ·

= 1

1 − R(x, z)
. (25)

If the partition function per site in the HDD1 phase is
λHDD1 , then λHDD1 = x∗−1/k , where x∗ is the solution to the
equation

1 = R(x∗, z) = x∗z + x∗kzk + 2kx∗k+1zk . (26)

In Fig. 8 we have plotted the two approximate expressions
for the partition function per site as function of the chemical
potential for rods μ in the two phases. These two curves λ and
λHDD1 intersect at at some point μ∗. For μ < μ∗ the nematic
phase has higher entropy, but for μ > μ∗ HDD1 phase has a
higher value of the partition function. Thus, the intersection

of the two curves determines the location of the first order
transition. The discontinuity of the slope is related to the jump
in density at the transition.

The equations determining μ∗ = ln z∗ are

(λ∗)k − (λ∗)k−1 = z∗,

x∗ = (λ∗)−k,

z∗x∗ + (z∗x∗)k + (z∗x∗)k2kx∗ = 1.

(27)

These are easily solved for large k. For large k, Eq. (27) has the
solution z∗x∗ + (z∗x∗)k ≈ 1, with 2kx∗ 	 1. Comparing with
Eq. (22), we obtain x∗z∗ = φ−1, where φ = exp[kS(0)]. On
the other hand, from Eq. (27), x∗z∗ = 1 − λ∗−1. Substituting
for x∗z∗, we obtain

λ∗ = 1

kS(0)
. (28)

All the other critical parameters can now be calculated.
From Eq. (6),

ε1|HDD1 ≈ S(0) = ln k

k2
for k � 1. (29)

Also,

μ∗|HDD1 = ln z∗ ≈ k ln

[
1

kS(0)

]
= k ln

[
k

ln k

]
, k � 1.

(30)
We thus see that within HDD1, though holes are taken into
account, μ∗ and ε1 do not change to leading order in k, when
compared to the results obtained from tangent construction
[see Eqs. (16) and (18)].

We now compute ε2, the hole density at the high density
end of the coexistence region. Unlike in the tangent construc-
tion where ε2 = 0, in the HDD1 phase we obtain a nonzero
answer for ε2. ε2 can be calculated from x∗ through 1 − ε2 =
−kz∗d/dz∗(ln x∗−1/k ). Simplifying, we obtain

ε2|HDD1 = 2kx∗(1 − λ∗−1)k

1 − λ∗−1+k(1−λ∗−1)k +2kx∗(k + 1)(1−λ∗−1)k
.

(31)

For large k, substituting for λ∗ from Eq. (28), we obtain

ε2|HDD1 ≈ [2kS(0)]k

k
(32)

≈ 1

k

[
2 ln k

k

]k

for k � 1. (33)

Though ε2 is nonzero, it is smaller than exponential in k.
Figure 9 shows the variation of ε2 with k. Comparing the exact
answer with the asymptotic result in Eq. (32), we see a fairly
good match even for small k.

It is straightforward to make improvements to the HDD1

approximation. We outline the calculation using an example
with the main conclusion being that the asymptotic results
for the critical parameters do not change. In this example, we
define a phase called HDD2, in which we break the lattice
into strips of width 2k. We use two types of tiles, as shown
in Fig. 10, to fill this strip. The first is a 1 × 2k tile that may
have 0 or 1 or two y-mers. The combined weight of these tiles
is w1(z)x, where w1(z) = 1 + (k + 1)z + z2. The second type
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FIG. 9. The variation of the HDD1 coexistence density ε2 with
k, obtained from two different calculations. The data points are for
k = 7 to k = 100 (HDD1), and k = 13 (k × ∞ strip). The solid line
is the asymptotic behavior in Eq. (32).

of tiles is of size k × 2k. This may be filled in any way, by
x-mers and y-mers (all lying completely inside the tile), the
only constraint being that there has to be at least one x-mer
in the tile. This constraint ensures that concatenation of these
two types of tiles has a unique decomposition into constituent
tiles. The total weight of the second group of tiles is denoted
by w2(z)xk , where w2(z) is a polynomial in z with leading
term being (k + 2)z2k .

The generating function for the width 2k strip in the HDD2

phase is then

�HDD2 (x, z) = 1

1 − RHDD2 (x, z)
, (34)

FIG. 10. The two basic tiles used in the definition of the HDD2

phase are shown for k = 5. (a) A 1 × 2k tile, and (b) a k × 2k tile
which contains at least one x-mer.

L

k

FIG. 11. An example of a configuration of rods in a k × L strip
with k = 5 and L = 21. The y-mers, shown in blue, divide the strip
into noninteracting segments containing only x-mers, shown in red.

where

R(x, z)HDD2 = xw1(z) + xkw2(z). (35)

Let x∗ satisfy RHDD2 (x∗, z) = 1. Then the partition function
per site is x∗−[1/(2k)]. Close to full packing, x∗z2 tends to a con-
stant value α. Taking only the leading power of z in w2, which
is (k + 2)z2k , we obtain that α satisfies α + (k + 2)αk = 1. It
is easy to verify that this gives a higher entropy per site at
full packing than that for the k × ∞. However, the leading
order contribution is the same and, at the next order in k,
the fractional correction is again of order 2k/z. The detailed
analysis is similar to that for the HDD1 phase, and we omit it
here.

VI. EXACT SOLUTION OF k × ∞ STRIP

In this section, we solve exactly for the entropy as well
as the dependence of density and nematic order parameter on
chemical potential for the system of rods on a strip of size
k × ∞.

Let �strip(L, z, zy) be the partition function of an L × k
strip, with the activities of the x-mers and y-mers being z and
zy. We define the generating function

�̃strip(x, z, zy) =
∞∑

L=0

�strip(L, z, zy)xL. (36)

Any given configuration of rods can be split into a seg-
ments of pure nematic phase of x-mers separated by y-mers,
as illustrated in Fig. 11. Given the positions of y-mers, each
nematic segment can be filled independently of the others.
�̃strip(x, z, zy) can then expressed in terms of the generating
function of the nematic segments. Let R̃(x, zx ) denote the
generating function with only x-mers. Then,

�̃strip(x, z, zy) = R̃(x, z) + R̃(x, z)xzyR̃(x, z)

+ R̃(x, z)xzyR̃(x, z)xzyR̃(x, z) + · · · , (37)

= R̃(x, z)

1 − xzyR̃(x, z)
. (38)

The first to third terms in the right-hand side of Eq. (37)
enumerate the configurations with zero to two y-mers respec-
tively, and so on.

The function R̃(x, z) is easily expressed in terms of the one-
dimensional partition functions �1d (L, z):

R̃(x, z) =
∞∑

L=0

[�1d (L, z)]kxL. (39)
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The functions �1d (L, z) increase exponentially with L, and
would cause overflow problems in numerical evaluation of the
series. To control this divergence, we eliminate the exponen-
tially diverging part by defining

QL(z) = λ−L�1d (L, z). (40)

Here λ is an implicit function of z satisfying Eq. (5). For these
variables, the recursion relation Eq. (4) reduces to

QL(z) = QL−1(z)

λ
+ λ − 1

λ
QL−k (z), L � k, (41)

with the boundary conditions

QL(z) = λ−L, L = 0, 1, . . . , k − 1. (42)

For large L, QL(z) tends to a finite value.
Now, the partition function �̃strip(x, z, zy) in Eq. (38) can

be rewritten in terms of QL(z) as

�̃strip(x, z, zy) =
∑∞

L=0 QL(z)kθL

1 − θ
zy

z (1 − λ−1)
∑∞

L=0 QL(z)kθL
, (43)

where

θ = xλk. (44)

The singularity θ∗ closest to the origin of �̃strip(x, z, zy) is
given by the zero of the denominator in Eq. (43):

1 − θ∗ zy

z
(1 − λ−1)

∞∑
L=0

QL(z)kθ∗L = 0. (45)

Knowing θ∗ and hence x∗, we obtain the partition function to
be

lim
L→∞

ln �strip(L, z, zy)

L
= − ln x∗. (46)

While a closed form solution cannot be written down for
x∗, it is possible to find a numerical solution. For a given
value of z, we first find λ using Eq (5). To determine QL, we
note that, for large L, QL → λε. We determine the coefficients
QL up to L = L∗ till Qk

L − (λε)k < 
 for 20 consecutive L’s.
We choose 
 = 10−14. The infinite sum in Eq. (43) is split
into a finite sum upto L∗ for Qk

L − (λε)k and an infinite sum
over (λε)k . We then determine θ∗ using Eq (45), and hence
determine the partition function per site for the k strip. The
densities and nematic order parameter can be found by taking
suitable numerical derivatives.

Figure 12 shows the variation of ε with μ for different k.
The hole density ε shows a nearly discontinuous behavior,
which becomes sharper with increasing k. This jump occurs
at larger μ and ρ with k, as expected.

More evidence for the near first-order nature of the tran-
sition may be found by examining the order parameter Q. Q
shows a sharp decrease at small ε, as shown in Fig. 13. The
discontinuity becomes sharper with increasing k. The nematic
order parameter does not decrease to zero at full packing. This
is an artifact of the finite width of the strip, and, as the width
increases, Q will be expected to decrease to zero in the entire
HDD phase.

We note that there is no true phase transition for the system
on a strip. Instead, the curves are smooth throughout and what
we observe is a sharp crossover from nematic to disordered
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0.08

0.1

0.12

5 10 15 20 25

5 6 7 8 9 10 11 12 13

ε

µ

FIG. 12. The variation of hole density ε with μ for different k,
where the numbers in the plot refer to the value of k. The jump in
density becomes sharper with increasing k. The data are obtained
from the solution of the k × ∞ strip.

phase with decreasing hole density. In Fig. 14, we show a
blowup of the crossover region for K = 10. It can be seen that
there is no singular behavior.

We estimate μ∗ as the value of μ at which dρ/dμ is
maximum. It is determined to accuracy 10−4 for smaller k and
10−5 for larger k. Figure 6 compares the μ∗ obtained from the
strip with that of the tangent construction and HDD1 phases.
We observe that the three calculations give results that are not
distinguishable.

We now study the dependence of ε1 and ε2, the coexistence
densities, on k. We identify ε1 and ε2 as the lower and higher
densities at the point of discontinuity. There is a certain ambi-
guity in measuring these critical densities because the solution
on the strip has no true discontinuities. Figure 5 shows the
variation of ε1 with k. As for μ∗, the results obtained from the
strip are indistinguishable from those obtained from tangent
construction and HDD1 phases.

Figure 9 shows the variation of ε2 with k. The data ob-
tained from the strip solution, unlike the data for ε1 and μ∗,
show slight discrepancy from the calculation based on HDD1
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µ

FIG. 13. Variation of the order parameter Q with μ for different
k, where the numbers in the plot refer to the value of k. The jump in
Q becomes sharper with increasing k. The data are obtained from the
solution of the k × ∞ strip.
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FIG. 14. The crossover region for K = 10 is blown up for (a) the
hole density ε and (b) order parameter Q. The data are obtained from
the solution of the k × ∞ strip.

phase. The data are, however, consistent with ε2 decreasing
exponentially with k for large k.

We now quantify the deviation, δSnem, of the entropy of the
nematic phase, obtained from the solution of the strip, from
the variational nematic entropy Snem. In addition to check-
ing whether this quantity is small in the nematic phase, we
would also like to check how well our estimates for δSnem,
obtained from summing over all islands, quantify these cor-
rections. The sum over single islands gave a correction term
F [see Eq. (11)]. However, these calculations were for the
two-dimensional lattice. On the k × ∞ strip, due to open
boundary conditions, we have to divide F by k to account for
lack of translational invariance. Thus, our estimates for the
corrections are

Fstrip = F

k
=

[
1 + (k − 1)ε

k

]k 1 − ε

εk2
. (47)

In Fig. 15, we show the variation of δSnem with ε for k =
12. First, we see that δSnem is very small in the nematic phase
decreasing to as much as 10−12. There is a sharp increase in
δSnem across the transition. Second, we compare the numerical
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10-2

0 0.1 0.2

δ
S

n
em

ε

k×∞ strip
Fstrip

FIG. 15. The deviation, δSnem, of the entropy of the strip from
Snem [see Eq. (7)], as a function of hole density ε for k = 12. The
data are compared with the theoretical estimates (denoted by Fstrip)
as given in Eq. (47). The solid black circle is at ε1, as estimated from
the solution of the system on the strip.

FIG. 16. An example of the generalized flip used in the Monte
Carlo simulations. A box of size M × M, shown by dotted line, is
chosen at random. All the rods are reflected about a randomly chosen
diagonal (in this case +π/4).

result with our perturbative estimate from islands in Eq. (47).
As can be seen, the data match very well with Eq. (47).

Figure 8 compares the partition function per site for the
strip with Snem and that obtained from the HDD1 phase for k =
10. The partition function of the strip extrapolates between the
two entropies. It also shows that the variational estimate λHDD1

for the high density phase describes the numerical solution of
the strip quite well.

VII. MONTE CARLO SIMULATIONS

The arguments presented up to now for the high density
transition being discontinuous were for large k or for a strip
of small widths. In this section, we study smaller values of k
on square lattice using Monte Carlo simulations. We present
evidence, from simulations at fixed density, of coexistence of
nematic and HDD phases.

It is in general difficult to equilibrate the system of rods at
densities close to full packing. The algorithm that has been
most efficient in equilibration is grand canonical in nature
[14,15], but to show phase coexistence we need to work with
fixed number of rods. For fixed density simulations, we need
an efficient algorithm that does not change the number of rods.
We used the following three moves to make the system relax
to equilibrium:

Generalized flip: Choose a site at random and consider an
M × M box whose left bottom corner is at the chosen site.
Choose at random one of the diagonals from those in the π/4
or the −π/4 directions. Reflect all the rods whose center of
mass lies within the box about the chosen diagonal. An exam-
ple is shown in Fig. 16. If the reflected configuration does not
violate the hard core constraint, it is accepted, otherwise it is
rejected. In our simulations, we choose M = k.

Enhanced diffusion. A row is chosen at random (a row
could be in the horizontal or vertical direction). Suppose it
is a horizontal row. Remove all x-mers such that the row
breaks up into segments separated by y-mers. Each segment is
repopulated with a new configuration with the same number
of original x-mers in that segment. This new configuration is
chosen at random from among all possible configurations. The
rearrangement of rods correspond to multiple diffusion moves
in the direction of the rods’ orientation. The procedure to gen-
erate a new configuration is the same as used in Refs. [29,30].
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FIG. 17. Time evolution of the nematic order parameter Q for
two different initial conditions: checkered and nematic checkered.
The data are for L = 504 and ρ = 0.968. At long times, the nematic
order is independent of initial condition.

Sliding. The sliding move will correspond to the movement
of entire rows of rods of one kind. Choose a row at random
(say horizontal). If it is not fully nematic, then nothing is done.
If it is nematic, choose a direction (up or down) at random
and identify the contiguous nematic lines in this direction.
These lines are shifted to the next available row in the same
direction, which corresponds to a row where all the vertical
links with a bottom edge on the row are not occupied by rods.
It can be checked that the move is reversible and satisfies
detailed balance. The sliding move speeds up the aggregation
of nematic lines. We find that, in the absence of this move,
the dynamics is very slow and the system does not equilibrate
within our simulation times.

We will define one Monte Carlo time step to correspond
to 2L row updates, 3(L2/M2 + 1) flip moves, and 2L sliding
moves.

All the results that are presented are for k = 9. We first
show that the Monte Carlo algorithm is able to equilibrate
the system at the densities we are interested in. To do so,
we consider two different initial conditions: (1) checkered,
which is a chessboard-like arrangement of k × k squares filled
with either x-mers or y-mers, chosen at random, and (2) ne-
matic checkered, where half the rods are in a nematic phase
and the other half in a checkered phase with the interface
being perpendicular to the nematic order. Figure 17 shows
the time evolution of the nematic order parameter Q(t ) for
a single realization for the two initial conditions for L = 504
and ρ = 0.968. After initial transients, Q(t ) fluctuates about a
steady state value that is independent of the initial conditions,
showing that equilibration is achieved.

In Fig. 18, we show snapshots of the configurations and the
spatial variation of density for different times. The initial con-
dition is checkered. At initial times (t = 9990 in Fig. 18), the
system is homogeneous. At intermediate times (t = 719990
and t = 1719990 in Fig. 18), we see the formation of vertical
nematic regions. At later times (t = 2719990 in Fig. 18), the
nematic region becomes stable (also see below). The density
in the nematic phase is lower than the other regions, as can be
seen from the corresponding density maps. We thus conclude
that the system equilibrates in a phase-separated configuration
characterised by coexistence of the nematic and high density
phase, a strong signature of a first-order transition.

We can estimate the densities in the two phases from the
Fig. 18. From the snapshots, we estimate that the density of
vacancies in the nematic phase is ε1 ≈ 0.0443, and in the
HDD phase is ε2 ≈ 0.0246. Note that ε1 is substantially higher

FIG. 18. Snapshots of the configurations (top row) and the color map of the corresponding local densities (bottom row) at different times.
The initial phase was checkered. The vertical rods are colored blue and the horizontal rods are colored red. The data are for L = 504, ρ = 0.968,
and k = 9. At initial times (t = 9990), the system is homogeneous. At intermediate times (t = 719990 and t = 1719990), nematic regions (all
blue) start to appear. At late times (t = 2719990), the snapshot shows a region that is pure nematic (region that is only blue) with the remaining
region being disordered (both colors being present). This corresponds to the coexistence of a nematic phase with the high density phase. The
densities corresponding to the nematic phase are lower (darker shade).
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FIG. 19. The local mean nematic order for a given local density
ρ. The local ρ and Q are obtained by averaging over a box of
size 13 × 13. The data are for L = 504 and ρ = 0.968, and for two
different initial conditions: one which is checkered and the other
where a nematic phase and a checkered phase are separated by a
straight interface.

than the calculated values in Table I, showing that the there are
substantial corrections to the large k behavior at k = 9. This
is true for ε2 also.

We now show quantitatively that the low density regions
in the snapshots in Fig. 18 correspond to the nematic phase
and the high density regions have no nematic order. To do so,
we define coarse-grained densities and nematic order for each
lattice site by averaging these quantities over a box of size
13 × 13 centered about the lattice point. Figure 19 shows the
mean nematic order for a given local density for the two initial
conditions for L = 504 and ρ = 0.968. the data is averaged
over the steady state with an interval of 104 Monte Carlo

steps. The data show that, in the coexistence regime, the local
nematic order decreases sharply with increasing local density.

In the simulations, we find that the phase separation dy-
namics is very slow. To confirm that the phase-separated phase
is stable, we also perform simulations with initial conditions
that are different to what we chose in Fig. 18. Now, the
initial condition is phase separated with one half in a check-
ered phase with density 1 and the other half in a nematic
phase with the interface parallel to the nematic orientation,
as shown in t = 0 snapshot in Fig. 20. We then evolve the
system and check whether the phase separated phase persists.
The snapshots at different times are shown in the top row of
Fig. 20. As can be seen, the nematic region is quite stable. The
corresponding density maps (bottom row of Fig. 20) show a
lower density for the regions that are nematic. We conclude
that, at this density, the system shows co-existence.

For showing a first-order transition, one signature that has
been used is to demonstrate that finite size corrections scale
as L−2 [31]. However, we do not use this here, as the nematic
state is highly anisotropic and the orientational correlations in
both phases may be long ranged.

VIII. SUMMARY AND DISCUSSION

In this paper, we have argued that in a system of monodis-
persed hard rods on lattices the transition from the nematic
phase with orientational order to a high density phase with
no orientational order is a first-order transition. By estimating
the entropy of the high density phase by counting over a
subset of allowed configurations, we determine the large k
asymptotic behavior of the critical chemical potential per rod
at the transition, μ∗, and the jump in density at the transi-
tion, δε. We showed that to leading order μ∗ = k ln[k/ ln k]
and δε = ln k/k2. These asymptotic behaviors are shown to

FIG. 20. Snapshots of the configurations (top row) and the color map of the corresponding densities (bottom row) at different times. The
vertical rods are colored blue and the horizontal rods are colored red. The initial configuration consists of a checkered phase of density one and
a nematic phase as shown in the t = 0 snapshot. The data are for L = 504, ρ = 0.968, and k = 9 (same as Fig. 18). With increasing time, the
nematic region (only red) is stable. The densities corresponding to the nematic phase show a lower value, which can be seen as a darker band
in the density plots.
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change by a very small amount [O(k−k )] if the restrictions on
the subset of configurations are removed one by one. Thus, the
asymptotic behavior is independent of the exact choice of the
subset of configurations that we count. We also obtained the
solution of the problem on the k × ∞ strip. The entropy on
the strip at full packing is known to have the same asymptotic
behavior of entropy as that for the square lattice [28]. We
showed that the entropy of the strip extrapolates smoothly
from the value in the nematic phase to that in the high density
phase, consistently with our different estimates. While there is
no sharp transition on the strip, we see a fairly sharp jump in
the density at a value of the chemical potential. This analysis
is consistent with the hypothesis of a first-order transition in
the two-dimensional problem, which is smeared in the strip.
Finally, we also presented evidence for the first order nature of
the transition using Monte Carlo simulations for k = 9 on the
square lattice. A combination of enhanced diffusion, sliding
moves where entire lines are displaced, and generalized flips
where rods are rotated seems to equilibrate the system at high
densities within the time used for simulation. Phase separa-
tion was observed, which is a clear signature of a first-order
transition.

We note that when two different approximate equations are
used for the Gibbs free energy in the two different phases,
their intersection gives the location as well as the density jump
in a first-order transition, independently of the details of the
problem. This would be the case, even if the actual transition
is continuous. The special feature of the problem of hard
rods considered in this paper, which makes our results more
trustworthy, is the fact that the asymptotic behavior of the
solution is unchanged on making improved approximations,
and is robust against minor changes in the equations.

Within our approximation scheme, we find a first-order
transition, which implies that the Gibbs free energy per site
is the same for a whole range of density values. If this degen-
eracy is lifted in the bulk free energy, even by a correction
factor of order k−k , the range of first-order transition may
be modified substantially, or the transition may disappear
altogether. This is what happens in the k × ∞ strip, where
there is no transition. However, if we assume that there is a
transition in two dimensions, then the scenario presented in
this paper is the simplest, and quite plausibly correct. Making
these arguments more rigorous would be desirable.

The arguments based on different estimates for entropies
do not depend on dimension. Hence, we expect that the
transition from the nematic to the high density phase (lay-
ered disordered in three and higher dimensions [20]) will be

discontinuous in all dimensions. Demonstrating this in Monte
Carlo simulations is a challenging problem.

Our arguments are easily extended to other lattices like
the triangular lattice, and the transition will be expected to
be first order on these as well for large k. Earlier Monte
Carlo simulations for k = 7 on a triangular lattice as well
as square lattice found the transition to be continuous and
consistent with the exponents of the three-state Potts model
(for triangular lattice) [15]. These results do not contradict the
results obtained in this paper as the arguments presented are
for large k. However, it would be worthwhile to reexamine
the transition for k = 7, as the earlier analysis was based on
an algorithm that did not include the generalized flip and the
autocorrelation time was large. Preliminary data show that the
generalized flip implemented in this paper, when combined
with the evaporation-deposition algorithm in Ref. [15] will
decrease the autocorrelation time by a factor larger than 100,
and thus the improved algorithm may be effective. Also, in
Ref. [15], we had given some evidence of a high density phase
having power law correlations. These correlations can also be
better studied with the improved algorithm.

The arguments presented here for a first-order transition
will also apply to the phase transitions at high density in
systems of hard rectangles of size 
 × m [32–34]. In these sys-
tems, there is a transition from a columnar phase, which has
both orientational order as well as translational order in one
direction, to a high density phase, which has no nematic order
and has sublattice order only if greatest common divisor of 


and m is larger than 1. The columnar entropy is well approxi-
mated by the one dimensional entropy. The description of the
high density phase in this paper carries over to rectangles. For
example, the entropy per site in the m × mk rectangle should
be 1/m2 times the entropy per site in the 1 × k rods [32]. In
Ref. [32], the transition for 2 × 10 rectangles was found to
be continuous in grand canonical Monte Carlo simulations. It
would be of interest to reexamine this transition.

It may also be interesting to extend the study of the prob-
lem on the k × ∞ strip to bigger widths using simulations.
It seems reasonable to expect that similar behavior to that
seen for k × ∞ strip would be seen in wider strips also,
say of width 2k. One possible method to study strips is to
use flat histogram techniques. Cluster algorithms on strips
combined with a Wang-Landau flat histogram algorithm have
been recently successful in obtaining the entropy of hard core
lattice gas models even at full packing [29,30]. Using k × L
lattices to benchmark this algorithm, it would be an interesting
direction for further study.
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