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We refute the criticism expressed in a Comment by Krstulovic, L’vov, and Nazarenko [Phys. Rev. E 105,
027101 (2022)] on our paper [Phys. Rev. E 103, 023106 (2021)]. We first show that quantization of circulation
is not ignored in our analysis. Then, we propose a more sophisticated analysis to avoid a subtle problem with the
regularity of the velocity field. We thus defend the main results of our paper, which predicts the double-cascade
scenario where the quantum stress cascade follows the Richardson cascade. We also provide a conjecture on the
relation between the Kelvin-wave cascade and the quantum stress cascade.
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In our recent paper [1], we investigated the quantum turbu-
lence described by the Gross-Pitaevskii equation (GPE) using
a phenomenological approach based on the Onsager “ideal
turbulence” theory [2–4].

Krstulovic et al. in their Comment [5] claim that there
are some physical problems with the double-cascade scenario
proposed in Ref. [1]. Their arguments are summarized as
follows: (i) The dynamics of the quantum (dispersive) Euler
equations is mathematically equivalent to that of the GPE only
in the absence of vortices; (ii) the assumption of the Besov
regularity of the velocity field does not hold in the presence
of quantum vortices; (iii) the existence of the quantum stress
cascade is questionable because the same analysis can be
applied to the linear Schrödinger equation; and (iv) if the
quantum stress cascade displaying a k−3 spectrum exists, it
is overwhelmed by the Kelvin-wave cascade, which displays
a shallower spectrum.

In this Reply, we show that (i) and (iii) are not justified. For
(ii), which is a subtle point, we propose a more sophisticated
analysis using the density-weighted velocity

√
ρv. While we

agree on point (iv), it is already mentioned in Ref. [1]. In this
regard, we provide a conjecture on the relation to the Kelvin-
wave cascade.

Reply to (i). Krstulovic et al. claim that the analysis of [1]
ignores quantum vortices because the dynamics of the dis-
persive Euler equation is mathematically equivalent to one
of the GP equation only in absence of vortices. However, this
statement is not accurate because the solutions of the quantum
Euler equations contain the solutions of the GPE as a proper
subset. In other words, while the solutions of the quantum Eu-
ler equations are not generally equivalent to those of the GPE
because arbitrary circulation is allowed in the quantum Euler
equations, the former that satisfy the quantization condition
are equivalent to the latter.

To see this, let {ρ� (·, t ), v� (·, t )} be the superfluid mass
density and velocity fields at time t obtained from the conden-
sate’s complex wave function �(·, t ) that satisfies the GPE via

the Madelung transformation

�(x, t ) =
√

ρ� (x, t )

m
exp[iθ (x, t )], (1)

with v� = (h̄/m)∇θ , where m denotes the boson mass.
Note that {ρ� (·, t ), v� (·, t )} satisfies the following proper-
ties: (i) On the nodal lines where superfluid is absent, i.e.,
{x|ρ� (x, t ) = 0}, the superfluid velocity v� is obviously not
defined, and (ii) for any closed loop C that does not pass
through the nodal lines, the circulation �C := ∮

C v� (r, t ) ·
dr is an integer multiple of 2π h̄/m because of the single-
valuedness of �. Conversely, the single-valued function
�(·, t ) is uniquely recovered from {ρ� (·, t ), v� (·, t )} up to
an overall phase factor because of the quantization condition
for �C [6]. These properties hold at any time t , so there is
one-to-one correspondence between � and {ρ�, v�} up to
an overall phase factor. In general, a function �̃ constructed
from the solutions of the quantum Euler equations {ρ, v}
becomes multivalued because v does not necessarily satisfy
the quantization condition. Thus, the solutions of the quantum
Euler equations contain the solutions of the GPE as a proper
subset [6]. This means that the quantum Euler equations can
describe the motion of the vortex lines. We remark that, as
long as we consider {ρ�, v�}, we do not have to add by
hand “extremely complex moving boundary conditions” [5]
to describe the quantum vortex dynamics because {ρ�, v�}
automatically satisfies the quantization condition.

Related to this point, the statement in Ref. [1] that we in-
vestigate three-dimensional quantum turbulence as described
by the Gross-Pitaevskii model is not misleading. This state-
ment means that {ρ, v} in Ref. [1] represents {ρ�, v�} in
the notation used here. More precisely, while the analysis of
Ref. [1] itself is applicable even to the solutions that do not
satisfy the quantization condition (see also Ref. [7]), only
the interpretation of the results for {ρ�, v�} is presented in
Ref. [1]. It is also not justified to claim that the results of
Ref. [1] are not applicable at scales smaller than �i. At least the
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main results that do not rely on the Besov regularity condition
of the velocity field, such as the “Kolmogorov’s 4/5 law”
for quantum turbulence [Eq. (28) of Ref. [1]], are completely
valid even at scales smaller than �i.

We finally remark that although Krstulovic et al. cite
Ref. [6] to support their argument, Ref. [6] explicitly states
that the solutions of the Madelung hydrodynamic equa-
tions contain the solutions of the Schrödinger equation as a
proper subset.

Reply to (ii). Krstulovic et al. question the validity of the
assumption of the Hölder continuity of the velocity field,
which is described in the main text of Ref. [1]. While they
may be right on that point, the use of the Hölder continuity is
only for clarity of presentation. The actual analysis is done
using Besov regularity in Appendix B of Ref. [1]. While
Krstulovic et al. claim that the assumption of Besov regular-
ity is also far from being justified physically, the condition
is expected to hold up to p = 6 at least in the scale range
�i � � � �large according to recent experiments [8]. We agree
that the Besov regularity is still not verified in the scale range
�small � � � �i. To avoid this subtle problem, we propose a
more sophisticated analysis using the density-weighted veloc-
ity w := √

ρv. Instead of assuming the Besov regularity of
the velocity field v, we here assume the Besov regularity of
the density-weighted velocity w,

‖δw(r; ·)‖p ∼ Apw0

( |r|
L

)σp

as |r|/L → 0, (2)

with a dimensionless constant Ap for p ∈ [1,∞] and σp ∈
(0, 1]. Here, ‖ · ‖p = 〈| · |p〉1/p, where 〈·〉 denotes the spa-
tial average, δw(r; x) := w(x + r) − w(x), and w0 denotes
a typical density-weighted velocity. Note that the validity of
this condition has been partially verified in several numerical
simulations [9–12]. Even for this case, we can predict the
double-cascade scenario, where the quantum stress cascade
follows the Richardson cascade, as shown in the Appendix.

Reply to (iii). Krstulovic et al. question the possibility of the
quantum stress cascade by pointing out that the same analysis
for the quantum stress cascade as in Ref. [1] could be applied
to the linear Schrödinger equation because the quantum stress
is independent of the GP nonlinearity. Note that their argu-
ment also holds even for the Richardson cascade, induced by
the momentum flux ρvv, because the nonlinear term ρvv of
the quantum Euler equations is also independent of the GP
nonlinearity. Because the existence of the Richardson cascade
has been well confirmed in many experiments and simula-
tions, their argument is not justified. The fact that a nonlinear
term becomes linear by a nonlinear transformation does not
mean that there is no cascade induced by that nonlinear term.

Reply to (iv). We agree that the k−3 spectrum for the
quantum stress cascade can become shallower because of the
Kelvin-wave oscillations. The possibility of such depletion of
nonlinearity has already been mentioned in Ref. [1]. We also
note that [1] does not deny the existence of the Kelvin-wave
cascade. It only states the possibility that the quantum stress
cascade is related to the Kelvin-wave cascade.

We now remark on the relation between the Kelvin-wave
cascade and the quantum stress cascade. Note that if the
Kelvin-wave cascade exists, there must be a corresponding

scale-to-scale energy flux other than the deformation work

�, which induces the Richardson cascade. In the large-scale
kinetic energy budget equation Eq. (36) of Ref. [1], the only
energy flux specific to the quantum case is the quantum
baropycnal work �

(�)
� , which induces the quantum stress

cascade. From this fact, we expect that the quantum stress cas-
cade corresponds to the Kelvin-wave cascade. More precisely,
because the theoretical analysis of the Kelvin-wave cascade
has been developed for the vortex filament model [13,14],
where compressible effects are ignored, we conjecture that
the incompressible part of the quantum baropycnal work �

(�)
�

corresponds to the energy flux of the Kelvin-wave cascade.
Conclusion. In summary, we have shown the following:

(i) The solutions of the quantum Euler equations contain the
solutions of the GPE as a proper subset. In other words,
the quantum Euler equations can describe the motion of
the vortex lines, and thus quantization of circulation is
not ignored in our paper [1].

(ii) The Besov regularity of the velocity field is indeed still
not verified. To avoid this subtle problem, we can develop
a more sophisticated analysis using the density-weighted
velocity

√
ρv and obtain the same result as in Ref. [1].

(iii) Krstulovic et al.’s criticism on the quantum stress cas-
cade based on the fact that the same analysis can be
applied to the linear Schrödinger equation is not justified.

(iv) The possibility that the k−3 spectrum for the quantum
stress cascade becomes shallower because of the Kelvin-
wave oscillations has already been mentioned in Ref. [1].
In this regard, the incompressible part of the quantum
baropycnal work �

(�)
� is expected to correspond to the

energy flux of the Kelvin-wave cascade.

We thus clarify the validity of the main results of our paper,
which predicts the double-cascade scenario where the quan-
tum stress cascade follows the Richardson cascade. We hope
that experiments and numerical simulations will be conducted
to verify our predictions.
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APPENDIX: ANALYSIS USING THE
DENSITY-WEIGHTED VELOCITY

Here, we provide the details of the more sophisticated
analysis using the density-weighted velocity. We consider the
quantum Euler equations obtained after the Madelung trans-
formation of the GPE (the notation is the same as in Ref. [1]),

∂tρ + ∇ · (ρv) = 0, (A1)

∂t (ρv) + ∇ · (ρvv) = −∇p + ∇ · � + f . (A2)
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Let w := √
ρv be the density-weighted velocity. The quan-

tum Euler equations can be rewritten in terms of this
quantity as

∂tρ + ∇ · (
√

ρw) = 0, (A3)

∂t (
√

ρw) + ∇ · (ww) = −∇p + ∇ · � + f . (A4)

To investigate the energy transfer across scales, we take
a coarse-graining approach that can resolve turbulent fields
both in space and in scale. For any field a(x), we define a
coarse-grained field at length scale � as

ā�(x) :=
∫

�

d3rG�(r)a(x + r), (A5)

where G : � → [0,∞) is a smooth symmetric function sup-
ported in the open unit ball with

∫
�

G = 1, and G�(r) :=
�−3G(r/�) is the rescaling defined for each � > 0. Coarse
graining of (A3) and (A4) gives

∂t ρ̄� + ∇ · (
√

ρw)� = 0, (A6)

∂t (
√

ρw)� + ∇ · (ww)� = −∇ p̄� + ∇ · �̄� + f̄�. (A7)

We introduce the following density-weighted coarse-grained
variable ŵ� to obtain a simple physical interpretation,

ŵ� := (
√

ρw)�√
ρ̄�

. (A8)

Note that ŵ� is different from the density-weighted average
(
√

ρw)�/
√

ρ
�
. Because

√
ρ is a concave function of ρ, we

find that
√

ρ
�
� √

ρ̄�. We can rewrite (A6) and (A7) in terms
of ŵ� as

∂t ρ̄� + ∇ · (
√

ρ̄�ŵ�) = 0, (A9)

∂t (
√

ρ̄�ŵ�) + ∇ · (ww)� = −∇ p̄� + ∇ · �̄� + f̄�. (A10)

We now consider the large-scale kinetic energy balance.
We first note that, because |v|2 is a convex function of v, the
following inequality holds:

1

2
|ŵ�|2 = 1

2
ρ̄�

∣∣∣∣ (ρv)�
ρ̄�

∣∣∣∣2

� 1

2
ρ̄�

(ρ|v|2)�
ρ̄�

= 1

2
(ρ|v|2)�.

(A11)
Therefore, the integral over space of |ŵ�|2/2 is less than the
total kinetic energy,∫

�

dd x
1

2
|ŵ�|2 �

∫
�

dd x
1

2
ρ|v|2, (A12)

and thus |ŵ�|2/2 represents the large-scale kinetic energy as
in the one based on the Favre averaging [1,15]. From (A9)
and (A10), we obtain the large-scale kinetic energy balance,

∂t
1

2
|ŵ�|2 + ∇ · J� = p̄�∇ ·

√
ρ

�
w̄�

ρ̄�

− �̄� : ∇
√

ρ
�
w̄�

ρ̄�

+ εin
�

− Qflux
� − ∇ ŵ�√

ρ̄�

: (ŵ�ŵ� − w̄�w̄�).

(A13)

Here, εin
� := ŵ� · f̄�/

√
ρ̄� denotes the energy injection rate due

to external stirring at the scale � and J� represents the spatial

transport of large-scale kinetic energy,

J� := 1

2
|ŵ�|2 ŵ�√

ρ̄�

+ p̄�

√
ρ

�
w̄�

ρ̄�

− �̄� ·
√

ρ
�
w̄�

ρ̄�

+ ŵ�√
ρ̄�

· τ̄�(w, w) − ŵ�√
ρ̄�

· (ŵ�ŵ� − w̄�w̄�), (A14)

where τ̄�( f , g) := ( f g)� − f̄�ḡ�. The first two terms on the
right-hand side of (A13) are the large-scale pressure-dilatation
and quantum-stress–strain terms. Because these two terms
contain no modes at scales < �, they contribute only to the
conversion of the large-scale kinetic energy into the interac-
tion or quantum energies, and vice versa. The last term on the
right-hand side of (A13), which does not exist in Eq. (36) of
Ref. [1], arises from introducing the density-weighted variable
ŵ�. Because this term contains ŵ�ŵ� − w̄�w̄�, we expect its
contribution to the energy balance to be small relative to
the other terms. The term Qflux

� represents the scale-to-scale
kinetic energy flux,

Qflux
� := 
� + �

(p)
� + �

(�)
� . (A15)

Here, 
� is the deformation work,


� := −∇ ŵ�√
ρ̄�

: τ̄�(w, w), (A16)

�
(p)
� is the baropycnal work,

�
(p)
� := 1

ρ̄�

∇ p̄� · τ̄�(
√

ρ, w), (A17)

and �
(�)
� is the quantum baropycnal work,

�
(�)
� := − 1

ρ̄�

∇ · �̄� · τ̄�(
√

ρ, w). (A18)

Note that only these three terms are capable of direct transfer
of kinetic energy across scales because each of the three
terms has the form “large-scale (>�) quantity × small-scale
(<�) quantity,” whereas the other terms on the right-hand side
of (A13) do not. We remark that these energy fluxes are not
Galilean invariant, unlike those defined in Ref. [1]. Therefore,
they can be scale-local only if spatially or ensemble aver-
aged [16].

Let δa(r; x) := a(x + r) − a(x) for any field a. Instead of
assuming the Besov regularity of the velocity field v, we here
assume the Besov regularity of the density-weighted velocity
w,

‖δw(r; ·)‖p ∼ Apw0

( |r|
L

)σp

as |r|/L → 0 (A19)

with a dimensionless constant Ap for p ∈ [1,∞] and σp ∈
(0, 1], where w0 denotes the typical density-weighted veloc-
ity. The important point here is that the validity of the Besov
regularity (A19) has been partially verified in several numeri-
cal simulations [9–12]. In addition, we assume the following
properties for

√
ρ instead of ρ:

‖δ√ρ(r; ·)‖p = O(|r|/L) as |r|/L → 0, (A20)

‖1/
√

ρ̄�‖∞ < ∞ for � � ξ . (A21)
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Under these assumptions, we can derive the same results as in
Ref. [1],

‖
�‖p/3 = O

[(
�

L

)3σp−1]
,

‖�(p)
� ‖p/3 = O

[(
�

L

)σp+1]
,

‖�(�)
� ‖p/3 = O

[(
�

L

)σp−1]
, (A22)

for p � 3. Following the same argument as in Ref. [1], we
thus find that the asymptotic behavior of the energy spectrum

reads

E (k) ∼
{

Clargek−5/3 for �−1
large � k � �−1

i ,

Csmallk−3 for �−1
i � k � �−1

small,
(A23)

where Clarge and Csmall are positive constants. Note that E (k)
denotes the standard energy spectrum, not the velocity power
spectrum E v (k) used in Ref. [1]. We also remark that the
k−3 spectrum for the quantum stress cascade can become
shallower because of the Kelvin-wave oscillations, as already
mentioned in Ref. [1]. The important point here is that the
quantum stress cascade, induced by the quantum baropycnal
work �

(�)
� , emerges following the Richardson cascade. This

is nothing but the main claim of our paper [1].
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