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Comment on “Theoretical analysis of quantum turbulence using the
Onsager ideal turbulence theory”
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In a recent paper, Tanogami [Phys. Rev. E 103, 023106 (2021)] proposes a scenario for quantum turbulence
where the energy spectrum at scales smaller than the intervortex distance is dominated by a quantum stress
cascade, in opposition to Kelvin-wave cascade predictions. The purpose of the present Comment is to highlight
some physical issues in the derivation of the quantum stress cascade, in particular to stress that quantization of
circulation has been ignored.
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In a recent paper, Tanogami presents a theoretical inves-
tigation of quantum turbulence at very low temperatures by
adapting standard techniques used in classical hydrodynam-
ics [1]. Following Onsager’s ideas of classical turbulence [2],
Tanogami proposes a double energy cascade scenario where
the energy spectrum E v (k) behaves as

E v (k) ∼
{

Clarge k−5/3 for �−1
large � k � λ−1,

Csmall k−3 for λ−1 � k � �−1
small.

(1)

Here, k is the wave vector, and Clarge and Csmall are positive
constants. �large is a scale that can be identified with the inertial
scale of turbulence and �small is defined using the quantum
stress cospectrum (see Ref. [1]). Then, Tanogami defines the
quantum baropycnal work flux ��

� and identifies the scale λ as
the scale at which ��

� becomes constant. Finally, he associates
λ with the mean intervortex distance �i.

It has been largely accepted by the community that at scales
smaller than the intervortex distance, the energy spectrum
should display an energy cascade where the physics is dic-
tated by the Kelvin-wave cascade [3–5]. With his derivation,
Tanogami questions this cascade and proposes a completely
different mechanism. In this Comment we argue that the k−3

quantum stress cascade is based on unphysical assumptions,
and therefore such a scenario cannot take place. Basically,
Tanogami’s derivation completely ignores the quantization of
velocity circulation, a crucial property of quantum turbulence
that cannot be neglected at scales smaller than �i. We describe
in the following our main criticisms on the double-cascade
scenario proposed in Ref. [1].

The main issue of Tanogami’s work is the starting equa-
tions used to apply and adapt to the quantum case, the

standard techniques used in compressible classical turbulence.
It is explicitly stated, already in the abstract, that three-
dimensional quantum turbulence is investigated by using the
Gross-Pitaevskii (GP) equation, but this statement is highly
misleading. The GP equation is indeed an excellent theoreti-
cal framework to study low-temperature quantum turbulence
because quantum vortices naturally arise as topological de-
fects of the macroscopic wave function. As a consequence,
the velocity circulation around a quantum vortex is quan-
tized. However, the actual starting equations of Tanogami’s
derivation are the dispersive Euler equations, obtained after
using the Madelung transformation in the GP equation. This
transformation writes the complex wave function ψ as

ψ (x) =
√

ρ(x)eiθ (x), (2)

where ρ can be identified with the fluid density and the phase
θ defines the velocity field through the relation v = (h̄/m)∇θ ,
with h̄ the reduced Planck constant and m the boson mass.
Indeed, after introducing (2) into the GP equation, one obtains
the continuity equation for the density [Eq. (2) of Tanogami’s
work] and a modified Bernouilli equation for the phase θ .
Only after taking the gradient of the Bernouilli equation and
rearranging terms does one obtain the momentum equation for
the velocity [Eq. (3) of Tanogami’s work]. At the vortex
core, ψ vanishes and therefore its phase is not defined. As a
consequence, the dynamics of the dispersive Euler equation is
mathematically equivalent to one of the GP equation only in
the absence of vortices. Moreover, in the presence of vortices,
the dispersive Euler equations become meaningless as they are
undefined at the vortex locations and therefore cannot be used
for predicting the motion of the vortex lines. Such issues were
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already pointed out by Wallstrom [6], where the inequivalence
between the Schrödinger and the hydrodynamic was also dis-
cussed. We emphasize that such vortices are singular only in
the velocity-density formulation: They cannot be considered
weak solutions because they correspond to a perfectly smooth
field ψ whose evolution is perfectly regular, unique, energy,
momentum, and particle conserving. As a consequence, the
Kolmogorov-Onsager ideas of turbulence cannot be directly
applied there.

The dispersive Euler equations are however useful to pro-
vide a phenomenological hydrodynamic interpretation of the
GP equation at scales where the quantization of circulation
can be ignored, that is, at scales much larger than the intervor-
tex distance �i. In order to give some meaning to the dispersive
Euler equation at scales smaller than �i, such equations have
to be supplied with information about the location of quan-
tum vortices, that reduces in these variables to extremely
complex moving boundary conditions on three-dimensional
curves where density vanishes and circulation is quantized.
Such constraints have been ignored in Tanogami’s work, and
could hardly be incorporated. Indeed, even if ρ and v are such
that at t = 0 they represent a quantum turbulent state, at t > 0
the solutions of the dispersive Euler equations, if some mean-
ing could be given to them, would most likely become a more
general type of flow, not necessarily representing a quantum
turbulent state with quantized vortices. For the reasons we
have presented, Tanogami’s work could provide, in principle,
a rigorous derivation of the energy spectrum based on the
Onsager conjecture and a phenomenological model of quan-
tum turbulence, only at scales k � �−1

i , i.e., at scales where
quantum turbulence displays a classical behavior. Therefore
the quantum stress cascade has no physical relevance and
should not be considered as a possible scenario.

In more specific terms, in the main text Tanogami’s deriva-
tion assumes some regularity of the velocity field that does not
hold for quantum vortices. It is assumed that the velocity field
is Hölder continuous with exponent h ∈ (0, 1], i.e.,

δv(r; x) = v(r + x) − v(x) = O(|r|h), (3)

for � = |r| → 0. Note that an infinitely thin isolated quantum
vortex leads to a regularity of h = −1 [which in terms of the
energy spectrum corresponds to E v (k) ∼ k−1 scaling [7,8]].
Note that a quantum vortex corresponds to a regularity of
h = −1. In order to overcome this issue, the author considers
a domain 
 that excludes any possible point x having a local
Hölder exponent with h < 0. In doing so, all vortices are
excluded from the domain. Therefore, only far-field contri-
butions of the velocity field are retained. Even if the notion of
quantized vortices was somehow introduced in the dynamics
of the dispersive Euler equations, excluding the energy of this
domain would certainly miss most contributions arising from
Kelvin waves. To further avoid this possible issue, the author
devotes one Appendix to generalizing the calculations using
Besov spaces. In this approach, only the Lp norm of the veloc-
ity increments is assumed to have such restricted regularity,
allowing in principle the velocity field to have a local neg-
ative Hölder exponent. Such an assumption is far from being

justified physically as the vortex line density should be vanish-
ingly small in order to fulfill such a restriction. Moreover, note
that the author restricts in Eq. (87) the regularity of density
gradients to have a Hölder exponent β ∈ (0, 1). Contrary to
the velocity field, the density and its gradients are completely
regular fields in the vortex, so β is larger than or equal to
1. Note that for a quantum vortex, the velocity diverges but
the density simultaneously vanishes at its position in such a
way that the wave function, and the momentum and energy
densities, are completely regular fields. This singularity is
only a trivial consequence of the Madelung transformation not
being defined at the vortex core.

In addition, we would like to remark that the quantum
stress cascade predicted by Tanogami results from the quan-
tum pressure term of the dispersive Euler equation. Such a
term is independent of the GP nonlinearity and therefore the
same analysis could be applied to the (linear) Schrödinger
equation. With this equation being linear, we cannot expect
an energy transfer along scales. Perhaps the k−3 law is a
consequence of the regularity of the wave function at small
scales, in agreement with Tanogami’s choice of a local Hölder
exponent h = 1 in this range. Such a scaling could emerge at
scales � � ξ , however, as mentioned in his work, it could be
much shallower due to nonlinearity depletion.

Finally, from a practical point of view, if such a quantum
stress cascade displaying a k−3 scaling exits at scales between
�i and the healing length ξ , it should be overwhelmed by
Kelvin waves (KWs), which display much less steep spec-
tra [3–5]. Also, we would like to remark that there exist
several works using the GP equation where the KW cascade
has been observed, which we summarize in the following.
In Ref. [9], the KW cascade was observed by directly track-
ing perturbed straight vortex lines. In that setting, there was
no Kolmogorov cascade as by construction �i ∼ �large, but
the KW cascade was observed to be compatible with the
weak wave turbulence predictions. Later, in Ref. [10], KWs
were studied in turbulent tangles (exhibiting a Kolmogorov
spectrum) by using spatiotemporal filtering. Then, by track-
ing large vortex rings of turbulent quantum tangles, Villois
et al. [11] observed the development of a KW cascade with a
spectrum supporting the L’vov and Nazarenko prediction [4]
for more than one decade. Finally, several simulations, using
resolutions up to 40963 collocations points, have observed
a Kolmogorov scaling range, followed by a KW cascade at
scales smaller than �i [12–14]. In particular, in Müller and
Krstulovic [14], the L’vov and Nazarenko prediction was
observed, including the scaling with the energy flux. In sum-
mary, we believe that there is enough evidence supporting the
scenario where in quantum turbulence the Kolmogorov energy
cascade is followed by the KW energy cascade.
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