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Applications of Bose-Einstein condensates (BEC) often require that the condensate be prepared in a specific
complex state. Optimal control is a reliable framework to prepare such a state while avoiding undesirable
excitations, and, when applied to the time-dependent Gross-Pitaevskii equation (GPE) model of BEC in multiple
space dimensions, results in a large computational problem. We propose a control method based on first reducing
the problem, using a Galerkin expansion, from a partial differential equation to a low-dimensional Hamiltonian
ordinary differential equation system. We then apply a two-stage hybrid control strategy. At the first stage, we
approximate the control using a second Galerkin-like method known as the chopped random basis to derive a
finite-dimensional nonlinear programing problem, which we solve with a differential evolution algorithm. This
search method then yields a candidate local minimum which we further refine using a variant of gradient descent.
This hybrid strategy allows us to greatly reduce excitations both in the reduced model and the full GPE system.
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I. INTRODUCTION AND EXPERIMENTAL CONTEXT

Quantum optimal control is concerned with the control
of N-body quantum systems [1,2]. One important example
is the reshaping of a dilute atomic Bose-Einstein condensate
(BEC). Since they were observed in laboratory experiments
in 1995 [3–5], BECs, an ultracold quantum fluid whose
mean dynamics resemble that of a single atom [6], have
proven to be an experimentally reliable and versatile platform
for high-precision quantum metrology [7–9], high-precision
storage, manipulation, and probing of interacting quantum
fields [10,11]. Future quantum computation and simulation
technologies will likely require fast manipulation of BECs
[12,13].

Experimentalists over the past two decades have achieved
remarkably high, yet suboptimal degrees of control of BECs
by using empirical rules of thumb and intuition gained from
significantly reduced models admitting closed-formed solu-
tions [14]. Meanwhile, optimal control theory provides a
computational framework for systematically finding highly
efficient control policies [15–18]. The success of optimal
control theory is demonstrated numerically in three spatial
dimensions by Mennemann et al. [19]. Our work interpo-
lates between these two approaches by applying a general
optimization strategy to simpler, ordinary differential equa-
tions (ODE) which are, in some sense, still faithful to the
partial differential equations (PDE) that model BEC.

Mennemann et al. apply optimal control to reshape the
support of a BEC, reorienting the magnetic field concentrated
along one axial direction to another direction, which in turn
reorients the density distribution of the condensate. A two
dimensional schematic is shown in Fig. 1 with normalized
Gaussian wave functions of the form

ψGauss = 4

√
ab

π2
e−ax2−by2

, (1)

where a, b > 0 and (x, y) ∈ R2. Another manipulation Men-
nemann et al. consider is to change the topology of the
wave function’s support. An example of this is shown in
Fig. 2, where a Gaussian wave function (1), with a = b = 1,

is mapped to the normalized toroidal wave function

ψtoroid = 2√
3π

r2e−r2
, where r2 = x2 + y2.

Manipulating the condensate excites oscillations that prevent
the transformed distribution from matching the desired distri-
bution after the control process has terminated. In this paper
we use optimal control to perform these manipulations while
minimizing such oscillations and mismatch.

The, now standard, optimal control problem, first proposed
by Hohenester et al. [20], is to maximize the fidelity between
an evolving field ψ at a final time T > 0 and an experimen-
tally desired state ψd , subject to a control function u. This
problem, expressed in dimensionless form, is

inf
u∈U

J = 1
2 inf

u∈U
[J infidelity(u) + J regular (u)], (2)

where

J infidelity(u) = 1 − |〈ψd (x), ψ (x, T )〉|2L2(R3 ),

J regular (u) = γ

∫ T

0
|u̇|2dt, (3)

subject to

i∂tψ + 1
2∇2ψ − V (x, u(t ))ψ − |ψ |2ψ = 0, (4a)

ψ (x, 0) = ψ0(x) ∈ H1(R3),

(4b)

‖ψ (x, ·)‖L2(R3 ) = 1, (4c)

2470-0045/2022/105(2)/025311(16) 025311-1 ©2022 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.105.025311&domain=pdf&date_stamp=2022-02-28
https://doi.org/10.1103/PhysRevE.105.025311


J. ADRIAZOLA AND R. H. GOODMAN PHYSICAL REVIEW E 105, 025311 (2022)

(a) (b)

FIG. 1. Schematic of BEC reorientation. (a) The density distri-
butions |ψGauss|2 axially aligned along the vertical with a � b in
Eq. (1). (b) The density distribution axially aligned along the hori-
zontal with a 	 b.

where γ > 0, t ∈ [0, T ], the wave function ψ (x, t ) belongs to
L2([0, T ]; H1(R3)), ψ0 is some initial state, ∇2 is the Lapla-
cian operator, V (x, u) models the geometry of confinement
as a potential energy parametrized by the control u(t ), U is
an admissible class of control functions u ∈ H1([0, T ]) with
fixed initial and terminal conditions, L2(�) is the space of
square Lebesgue-integrable functions over the measurable set
�, and H1(�) is the Sobolev space of L2(�) functions whose
first weak derivatives are also in L2(�).

The dynamical constraint (4a) is known as the Gross-
Pitaevskii equation (GPE), and the confining potential
V (x, u(t )) arises due to an applied optical or magnetic field.
How the constraint arises as a model of the mean-field dynam-
ics of BEC is discussed in detail in [6]. The terms J infidelity and
J regular are known as the infidelity and regularization terms. In
the language of optimal control theory [21,22], the infidelity
is a type of terminal cost which penalizes control policies that
miss the desired wave function ψd . The regularization is a
type of running cost which penalizes the usage of physically
undesirable controls with fast variations and ensures that Ho-
henester’s optimal control problem remains well posed. This
is shown for a more general control problem defined by the
Hohenester objective (2) and mean field constraint (4a), along
with a running cost which also penalizes the amount of work
done by the control, in work due to Hintermuller et al. [23].

Mennemann et al. numerically study experimentally moti-
vated transformations of ψ (x, t ), such as those in Figs. 1 and
2, by solving the associated optimal control problem, after
setting γ = 10−6, with a projected gradient method called

(a) (b)

FIG. 2. Schematically altering the topology of the condensate’s
support. (a) The initial distribution |ψGaussian|2 with a = b. (b) The
desired distribution |ψtoroid|2.

gradient pulse engineering (GRAPE) due to von Winckel and
Borzi [24]. Their work is the source of inspiration for this
paper.

We begin with two primary questions: can we gain fur-
ther physical intuition of the condensate dynamics as it is
controlled and can we use this physical insight to implement
optimization strategies in some easier, i.e., finite-dimensional,
computational setting? To this end, we introduce a Galerkin
ansatz which incorporates the time dependence of the con-
fining potential and use this to study two model problems
in one space dimension: squeezing a BEC in a steepening
quadratic potential and splitting a BEC with a time-dependent
barrier. These model problems abstract the salient features of
the reorientation problem illustrated in Fig. 1 and the splitting
problem illustrated in Fig. 2.

A. Structure of the paper

In Sec. II we describe the Galerkin reduction of the squeez-
ing and splitting problems. We follow the strategy used in
[25,26] and note that an equivalent reduction can also be found
by means of the variational approximation; see, for example,
Ref. [27]. We assume the reshaping potential is product sep-
arable in space and time, the problem is even symmetric, and
initial conditions are mostly prepared in the ground state of the
associated linear Schrödinger operator so that the dynamics
are weakly nonlinear. Using these assumptions, we reduce
the dynamics of the controlled condensate a nonautonomous
one degree of freedom Hamiltonian system using Galerkin
reductions and canonical transformations. We validate this
reduction by comparing numerical solutions of the GPE with
a specified time-dependent potential with solutions of the
reduced system.

We then pose an optimal control problem, in Sec. III,
constrained by the Hamiltonian dynamics whose objective
is to minimize that same Hamiltonian function and thereby
minimize oscillations which persist after the control process
is terminated. We then provide the necessary optimality con-
ditions for this class of Hamiltonian control problems.

In the Appendix, we outline the numerical methods used
to solve the optimal control problem of Sec. III. In general,
optimal control problems, such as the ones studied in this
work, are nonconvex optimization problems. The nonconvex-
ity in our problem is due to the fact that the constraints involve
products of the state and control variables.

We proceed in two steps, using a so-called hybrid method.
Because the problem is nonconvex, the objective functional
may have many local minima and we first must search for the
best among many candidates. We use a method due to Calarco
et al. [28,29], called the chopped random basis (CRAB)
method, to reduce the search space to finite dimensions by
considering controls within a space of Galerkin approxima-
tions. This space is searched using a global, nonconvex search
method due to Storn and Price called differential evolution
(DE) [30]. The second step is to refine the best candidate
using a local descent method. The GRAPE method allows
us to perform this descent among controls satisfying desired
boundary conditions.

To validate the proposed approach, in Sec. IV we solve
the Gross-Pitaevskii equation (4a) again, using the controls
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resulting from the methods of the Appendix. We find that this
approach both suppresses undesirable persistent oscillations
and minimizes the infidelity in the Hohenester objective func-
tional (2).

II. MODEL PROBLEMS FROM A GALERKIN REDUCTION

In this section, we outline the derivation of model Hamil-
tonian problems via a Galerkin truncation. We apply this
truncation to a GPE in one spatial dimension which we as-
sume depends on a stationary potential Vs(x) and a reshaping
potential Vr (x), i.e.,

i∂tψ = − 1
2∂2

x ψ + Vs(x)ψ + u(t )Vr (x)ψ + |ψ |2ψ. (5)

We use a Galerkin expansion of the form

ψ (x, t ) =
∞∑

n=0

cn(t )ϕn(x; u(t )), (6)

where each of the basis functions ϕn(x; u(t )) is an instanta-
neously normalized eigenfunction of the equation

− 1
2∂2

x ϕn + [Vs(x) + uVr (x)]ϕn = Enϕn,

i.e., the linear Schrödinger equation with u-dependent poten-
tial.

By choosing initial conditions which are in the form of
(6) with |cn|/|c0| relatively small for n > 0, nonlinear effects
remain relatively weak throughout the control process. This
allows us to truncate the expansion (6) at a low order. This
large reduction of dimension due to the Galerkin greatly sim-
plifies the dynamics and is justified through numerical studies
in Sec. II C. We show the coefficients cn(t ) evolve under a
Hamiltonian system whose dynamics motivates the control
strategy discussed in Sec. III.

A. Squeezing problem

We first address the problem of squeezing and elongation
discussed in Sec. I and shown in Fig. 1. As a model prob-
lem, we consider the squeezing of a stationary wave packet
centered about the origin and trapped in a reshaping quadratic
potential, i.e., Vr (x) = 1

2 x2, Vs(x) ≡ 0 in Eq. (5), with the end
points of the control fixed as u(0) = u0 > 0 and u(T ) = uT >

u0.
In this case, each of the ϕn(x; u(t )) in expansion (6) satis-

fies

− 1
2∂2

x ϕn + 1
2 ux2ϕn = Enϕn.

The eigenfunctions ϕn(x; u) are the well-known Hermite func-
tions and can be generated by the Rodrigues formula

ϕn(x; u) = (−1)n π−1/4

√
2nun/4 n!

u1/8e
u1/4x2

2 ∂n
x e−u1/4x2

. (7)

The first three are

ϕ0(x; u) = ξ e− 1
2

√
ux2

,

ϕ1(x; u) =
√

2ξux e− 1
2

√
ux2

,

ϕ2(x; u) =
√

2ξu(2
√

ux2 − 1)e− 1
2

√
ux2

,

where ξ = π−1/4u1/8. We truncate expansion (6) after the
third term and discard the single odd term involving ϕ1(x; u)
because we assume the initial conditions obey an even sym-
metry which is invariant under GPE. For convenience, we
relabel these first two even eigenstates and their time depen-
dent coefficients as the n = 0, 1 states.

To derive the equations governing the time-dependent
coefficients present in expansion (6), we substitute the ex-
pansion into the GPE (5) and project onto each mode using
the standard L2(R) inner product. Letting † denote complex
conjugation and overhead dots denote time derivatives, the
resulting ODE system is Hamiltonian, i.e.,

iċn = ∂c†
n
H, iċ†

n = −∂cnH, n = 0, 1, (8)

with the Hamiltonian H(c0, c†
0, c1, c†

1; u) given by

H = ξ 2

[
|c0|4
2
√

2
+ 41|c1|4

128
√

2
+ 3|c0|2|c1|2

4
√

2
+ 3 Re

{
c2

0c†2
1

}
8
√

2

− 2 Re{c0c†
1}
(

|c0|2 − |c1|2
8

)]

+
√

u

2
(|c0|2 + 5|c1|2) − u̇

2
√

2u
Im{c0c†

1}. (9)

Note that the dynamics conserve the “discrete” mass

Md (t ) = |c0(t )|2 + |c1(t )|2. (10)

Next, we reduce the squeezing Hamiltonian (9) to one and
a half degrees of freedom using canonical transformations.
This allows the use of phase plane techniques which provide
further insight into the problem.

We first convert to action-angle coordinates through the
canonical transformation

c0 = √
ρ0e−iθ0 , c1 = √

ρ1e−iθ1 .

Hamiltonian (9) then becomes

H =
√

u

2
(ρ0 + 5ρ1) − u̇

4u

√
2ρ0ρ1 sin φ

+ 3ξ 2

8
√

2
ρ0ρ1 cos(2φ) +

√
2ξ 2

256

[
64ρ2

0 + 96ρ1ρ0

+ 41ρ2
1 + (8ρ

3/2
1

√
2ρ0 − 56ρ

3/2
0

√
2ρ1
)

cos(φ)
]
,

where φ = θ0 − θ1. In these coordinates, the discrete mass
(10) is given by Md = ρ0 + ρ1. We make the choice to set
the discrete mass to one and introduce the change of variables
ρ0 = 1 − J and ρ1 = J so that

H = ξ 2

128
√

2
(9J2 − 32J + 64) − u̇

2
√

2u

√
(1 − J )J sin(φ)

+
√

u

2
(1 + 4J ) + ξ 2

16
[
√

(1 − J )J (8 − 7J ) cos(φ)

+ 3
√

2(1 − J )J cos(2φ)].

In these coordinates, J = 0 indicates that all of the mass is in
the ground state, while J = 1 indicates that all of the mass is
in the excited state.
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A further canonical transformation facilitates visualization
of the phase portrait. Defining q + ip = √

2Jeiφ yields

H(q, p, u) = √
u

(
q2 + p2 + 1

2

)

+ ξ 2

64

√
2 − p2 − q2

×
(

9q3 − 16q + 9p2q − 8
√

2π u̇

u
p

)

+ ξ 2

512
√

2
(57p4 − 160p2 + 18p2q2

− 39q4 + 32q2 + 256) (11)

and evolution equations

q̇ = ∂pH, ṗ = −∂qH. (12)

B. Splitting problem

We refer to the problem of topologically changing the
support of the condensate, mentioned in Sec. I and shown
in Fig. 2, as the “splitting” problem. In the case of one spa-
tial dimension and splitting potential Vr (x) = δ(x), together
with quadratic stationary potential Vs(x) = 1

2 x2, the linear
Schrödinger equation is exactly solvable for each value of u.

In order to construct the Galerkin ansatz, we provide brief
details on solving the eigenvalue problem

− 1
2∂2

x ϕn + 1
2 x2ϕn + uδ(x)ϕn = Enϕn. (13)

A more thorough computation and discussion is given by
Viana-Gomes and Peres [31]. First, note that integrating (13)
in a neighborhood about the origin leads to a jump condition
on the derivative:

lim
ε→0

∂xϕ(x)
∣∣+ε

−ε
= 2uϕ

∣∣
x=0. (14)

Since all odd C1(R) functions satisfy the jump condition, the
odd-parity states are given by the Rodrigues formula (7) with
u = 1. Only the even-parity states are modified by the delta
function at the origin.

By letting ϕ = e−x2/2w(x), z = x2, and E = ν + 1
2 , ν ∈

R, Eq. (13) and condition (14) become

z∂2
z w +

(
1

2
− z

)
∂zw + ν

2
w = 0, z > 0, (15a)

∂zw
∣∣
z=0 = uw

∣∣
z=0. (15b)

Equation (15a) is called Kummer’s equation and admits solu-
tions of the form

w(z) = AνU

(
−ν

2
,

1

2
, z

)
,

where

U (a, b, z) = �(1 − b)

�(a + 1 − b)
M(a, b, z)

+ �(b − 1)

�(a)
z(1−b)M(a + 1 − b, 2 − b, z) (16)

is Tricomi’s confluent hypergeometric function whose def-
inition involves the gamma function, �(z), and Kummer’s

function

M(a, b, z) =
∞∑

n=0

a(n)zn

b(n)n!
,

with (·)(n) denoting the rising factorial defined by

a(n) :=
n−1∏
k=0

(a + k).

The coefficient Aν is a normalization constant.
Applying boundary condition (15b) to w(z) leads to the

nonlinear equation

ν − u
�
(
1 − ν

2

)
�
(

1
2 − ν

2

) = 0 (17)

for ν. For u = 0, Eq. (17) implies ν = 0, and we recover
the even Hermite basis given by the Rodrigues formula (7).
In general, a numerical solution of Eq. (17), demonstrated
in [31], shows there is a countable sequence of solutions
{νn} each satisfying νn+1 = νn + 2. Thus it suffices to solve
Eq. (17) on the interval [0,1], the interval containing the
ground state value of ν, since this determines all other solu-
tions. Therefore, we we restrict ν to [0,1], so that the first two
even eigenfunctions can be written as

ϕ j (x; ν) = Nj (ν)e− x2

2 U

(
−ν + 2 j

2
,

1

2
, x2

)

:= Nj (ν)e− x2

2 Uj (x
2, ν), j = 0, 1, (18)

where Nj (ν) are ν-dependent normalization constants given
by

N−2
j (ν) =

∫
R

e−x2
U 2

j (x2, ν)dx, j = 0, 1.

These eigenfunctions ϕ j (x; ν) will serve as basis functions in
the Galerkin expansion.

Note that as ν → 1, u → ∞, since �(z) has a pole at the
origin. In this case, the first two even eigenfunctions reduce to
the simple form of “split” wave functions

ϕ0(x; 1) = 2
1
2 π− 1

4 |x|e− x2

2 ,

ϕ1(x; 1) = 2π− 1
4 3− 1

2

(
|x|3 − 3

2
|x|
)

e− x2

2 ,

shown in Fig. 3.
Proceeding as Sec. II A, we have, after projecting onto each

mode using the L2(R) inner product, a Hamiltonian system
with Hamiltonian

H = (α0 + uβ0)|c0|2 + (α2 + uβ2)|c1|2

+ 2(α1 + β1)Re{c0c†
1} + 1

2γ0|c0|4 + 1
2γ1|c1|4

+ 2(γ3|c0|2 + γ2|c1|2)Re{c0c†
1}

+ γ4(|c0|2|c1|2 + 2 Re
{
c2

0c†2
1

}
) + 2� Im{c†

0c1}, (19)

where the projection coefficients are given by

2α0 = 〈ϕ0, x2ϕ0 − ∂2
x ϕ0
〉
, 2α1 = 〈ϕ0, x2ϕ1 − ∂2

x ϕ1
〉
,

2α2 = 〈ϕ1, x2ϕ1 − ∂2
x ϕ1
〉
,
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FIG. 3. (a) Function u(ν ) as determined by Eq. (17). Large values
of u are needed to achieve ν close to 1. (b) The first two even states
in (18) for the values of ν = 0, 1.

β0 = 〈ϕ0, δ(x)ϕ0〉, β1 = 〈ϕ0, δ(x)ϕ1〉,
β2 = 〈ϕ1, δ(x)ϕ1〉,
γ0 = ∥∥ϕ4

0

∥∥, γ1 = ∥∥ϕ4
1

∥∥, γ2 = 〈ϕ0, ϕ
3
1

〉
,

γ3 = 〈ϕ1, ϕ
3
0

〉
, γ4 = 〈ϕ2

0 , ϕ
2
1

〉
,

� = 〈ϕ0, ∂tϕ1〉 = −〈∂tϕ0, ϕ1〉. (20)

Applying the same canonical transformations as in Sec. II A,
the evolution equations are again (12), where

H = α0 + γ0

2
+ 1

2
(p2 + q2)[α2 − α0 − γ0 + (β2 − β0)u]

+
√

2 − p2 − q2

×
[

q

(
α1 + γ3 + 1

2
(γ2 − γ3)(p2 + q2) + β1u

)
+ �p

]

+ γ4

2
(3q2 − p2) + 1

8
(γ0 + γ1)(p4 + q4)

+ γ4

4
(p4 − 3q4) + 1

4
(γ0 + γ1 − 2γ4)p2q2 + β0u. (21)

C. Numerical experiments

In this section, we simulate both the GPE (5) and the
Galerkin-truncated systems of ODE describing both the
squeezing and splitting problems, given by Hamiltonians
(9) and (19), respectively, and compare the results. For both
problems we fix the time domain t ∈ [0, T ], T > 0, and
solve both the GPE and the reduced models using a control
of the form

u(t ) = (uT − u0)
t

T
+ u0, (22)

with u0 = 1, uT = 100, and T = 2.5 for the squeezing
experiment and u0 = 0, uT = 30, and T = 10 for the
splitting experiment.

In the ODE models we choose the initial conditions
[c0(0), c1(0)] to minimize the associated Hamiltonian subject
to the choice Md = 1, where u̇ is set to zero in the definition
of H in Hamiltonians (9) and (19). Thus the initial conditions
are taken to be the fixed point of the system before the control
is applied. The GPE is initialized as a superposition of the first
two even states,

ψ0(x) = c0(0)ϕ0(x, u0) + c1(0)ϕ1(x, u0),

so that it represents the same initial state.
We solve the GPE (5) using a second-order-in-time

split-step Fourier method using the midpoint method to
integrate the time dependence on the potential u(t )Vr (x)
and solve the ODE systems using MATLAB’s ode45, i.e.,
an adaptive-step fourth order Runge-Kutta method. To
compare the numerical solution of the GPE system with the
numerical solutions to the Galerkin truncated systems, we
define the projected solution and the instantaneous Galerkin
coefficients by projecting the numerical solution of GPE onto
the instantaneous eigenfunctions,

ψproj(x, t ) =
1∑

n=0

〈ψGPE(x, t ), ϕn(x; u(t ))〉ϕn(x; u(t ))

:=
1∑

n=0

cproj
n (t )ϕn(x; u(t )).

We may also construct the approximate solution to GPE
ψGalerkin by evaluating the Galerkin ansatz using the
numerically calculated values of c0(t ) and c1(t ).

Figures 4 and 5 show the results of these numerical ex-
periments. We present false color plots of |ψ |2, |ψproj|2,
and |ψGalerkin|2. These show excellent qualitative agreement,
especially the last two, showing that the main source of dis-
agreement comes from the truncation. They also show strong
agreement between c j and cproj

j . In particular, we find good
visual agreement in the Rabi frequency, i.e., the peak fre-
quency of mass transfer between the first two even modes.
This agreement is exhibited by the similar periodic behavior
between cn(t ), determined by system (8), and the projected
coefficients cproj

n (t ). Finally, they show a discrepancy of at
most 3% between the simulated and projected discrete masses
in either experiment. As seen in Figs. 4 and 5, this discrep-
ancy can be mainly attributed to the tails of the distribution
|ψGPE|2.

In visualizing the phase portraits associated with Hamil-
tonians (11) and (19), we use the same numerical setting as
that of Figs. 4 and 5. The phase portraits, shown in Fig. 6,
reveal how significant Rabi oscillations present in Figs. 4 and
5 are characterized by the distance between the final state
[q(T ), p(T )] and the stable fixed point (q∗, p∗) of Hamil-
tonian (11). We denote the initial and final Hamiltonians
H(q(0), p(0), u0), H(q(T ), p(T ), uT ) as H0, HT , respec-
tively, in Fig. 6.

In conclusion, this section provides numerical justification
for the large reduction of dynamic complexity, provided by the
truncation of the ansatz (6). In addition, the reduced dynamics
reveal that a successful control strategy should drive the state
of the condensate to the global minimum of its finite dimen-
sional Hamiltonian HT . Furthermore, suboptimality is almost
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FIG. 4. (a) Full numerical solution to Eq. (5) using the quadratic potential with time dependence (22), with |ψ |2 plotted versus x and
t . (b) The Galerkin truncation of this solution to the first two even eigenfunctions. (d) An approximate PDE solution constructed from an
equivalent solution to ODE system (8). (c) First two rows: |c0|2 and |c1|2 computed by solving the ODE system (blue) and solving the PDE
system and then projecting (red, dashed). Bottom row: relative error between the full PDE solution and the projection.

entirely characterized by the amplitude of simple harmonic
motion shown in Fig. 6.

III. OPTIMAL CONTROL FRAMEWORK

We now state an optimal control problem for sys-
tems constrained by Hamiltonian dynamics, motivated by
Secs. II A and II B. To this end, we use the admissible
class of controls U = {u ∈ H1([0, T ]) : u(0) = u0, u(T ) =
uT }, where u0, uT ∈ R are boundary values for the control u.
The optimal control problem we study is

min
u∈U

J = min
u∈U

{
H(q, p, u)

∣∣∣∣
t=T

+ γ

2

∫ T

0
u̇2dt

}
, (23)

subject to Hamilton’s equations (12) and the initial conditions
q(0) = q0, p(0) = p0.

Recall, from Sec. I, the first term in objective J, called the
terminal cost, is used to penalize deviations from some desired
state and that the second term, called the running cost, is a
Tikhonov regularization on the control u.

Rewriting the terminal cost in (23) as a running cost sim-
plifies the process of computing gradients with respect to the
state and control variables. We convert terminal costs into

running costs through the fundamental theorem of calculus:

H
∣∣t=T

t=0 =
∫ T

0

dH
dt

dt

=
∫ T

0

(
∂H
∂q

q̇ + ∂H
∂ p

ṗ + ∂H
∂u

u̇ + ∂H
∂t

)
dt

=
∫ T

0

(
∂H
∂q

∂H
∂ p

− ∂H
∂ p

∂H
∂q

+ ∂H
∂u

u̇ + ∂H
∂t

)
dt

=
∫ T

0

(
∂H
∂u

u̇

)
dt .

Using Lagrange multipliers, we express the Hamiltonian op-
timal control problem in unconstrained form as

min
u∈U

J = min
u∈U

{∫ T

0

[
∂H
∂u

u̇ + γ

2
u̇2

+ λT
(

q̇ − ∂H
∂ p

)
+ μT

(
ṗ + ∂H

∂q

)]
dt

}

= min
u∈U

{∫ T

0
L(q, q̇, p, ṗ, u, u̇, λ, μ)dt

}
, (24)
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FIG. 5. Splitting experiment. All conventions here are consistent with Fig. 4, except, in this case, the dynamics are furnished by the
Hamiltonian (19).

where T denotes the matrix transpose and where the cost H|t=0
has been dropped since initial values for the state and control
variables are specified and therefore fixed when taking deriva-
tives. The necessary conditions for a locally extremal solution
to Lagrange problem (24) are given by the Euler-Lagrange
equations:

d

dt

⎛
⎜⎜⎜⎝

q
p
λ

μ

γ u̇

⎞
⎟⎟⎟⎠ = A

⎛
⎜⎜⎜⎜⎝

∂H
∂q
∂H
∂ p
λ

μ

u̇

⎞
⎟⎟⎟⎟⎠−

⎛
⎜⎜⎜⎜⎝

0
0
0
0

d
dt

∂H
∂u

⎞
⎟⎟⎟⎟⎠,

⎛
⎝q(0)

p(0)
u(0)

⎞
⎠ =

⎛
⎝q0

p0

u0

⎞
⎠,

⎛
⎝λ(T )

μ(T )
u(T )

⎞
⎠ =

⎛
⎝ 0

0
uT

⎞
⎠, (25)

where

A =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 0
−1 0 0 0 0
0 0 ∂2H

∂q2 − ∂2H
∂q∂ p

∂2H
∂q∂u

0 0 ∂2H
∂ p∂q − ∂2H

∂ p2
∂2H
∂ p∂u

0 0 ∂2H
∂u∂q − ∂2H

∂u∂ p
∂2H
∂u2

⎞
⎟⎟⎟⎟⎟⎠

=
( J 02×3

03×2 D
(

∂H
∂q ,− ∂H

∂ p , ∂H
∂u

) ),

with J denoting the corresponding skew-symmetric matrix
and D denoting the Jacobian matrix.

From the perspective of optimal control theory, the equa-
tions for λ and μ are called the costate equations and are
solved backward in time from their respective terminal con-
ditions. The equation for the control u(t ), along with the
prescribed boundary conditions, is a two-point boundary value
problem. Since solving Eq. (25) in closed form is not possible,
we resort to numerical methods discussed in the Appendix in
order to solve the optimal control problem (23) by approxi-
mating the optimality condition (25).

IV. NUMERICAL RESULTS

In this section we apply computational optimization
methods, described in detail in the Appendix, in order to nu-
merically solve the optimal control problem (23). We find that
using the Tikhonov parameter γ = 10−4 is sufficient to render
the problem well conditioned. The global CRAB-DE method,
being a search method, provides no guarantee of reaching the
global minimizer. Indeed, we have found several results that
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FIG. 6. Phase portraits for the dynamics due to (a) the squeezing
Hamiltonian (11) and (b) the splitting Hamiltonian (21). Dashed
contours: the initial Hamiltonian, H0, initial conditions set at its
stable fixed point. Solid contours: the final Hamiltonian, HT , with
a blue star at its minimum. Black lines: numerical trajectories. Red
circle: the final state, [q(T ), p(T )].

are competitive in minimizing the objective, and, for the sake
of brevity, show some of the resulting control designs here.

A. Squeezing problem

To demonstrate the necessity of the hybrid method, we first
demonstrate what happens when we omit the first step—the
global search. We apply the descent method, Algorithm (3)
with p = 1, directly to the squeezing problem from Sec. II A
in order to compute a local minimum downhill from the linear
ramp used in Fig. 4.

Figure 7 shows the locally optimal control, the locally
optimal state dynamics, the corresponding numerical solution
of the GPE (5), the corresponding phase portrait for the re-
duced dynamics, and convergence of GRAPE. The procedure

Algorithm 1 Differential Evolution Mutation

Result: A vector z mutated from agents in a given generation as
required by the DE Algorithm 2.

Input: Four distinct members a, b, c, d from the current
generation of agents each with N components, the crossover
ratio RC ∈ (0, 1), and weight F ∈ (0, 2).

for j=1:N do
Compute a random variable rand
if rand < RC then
z[ j] ← a[ j] + F ∗ (b[ j] − c[ j])
else
z[ j] ← d[ j]
end
end

is moderately successful, approximately halving the objective
function, but it fails to eliminate a significant oscillation.

We now show the results of the full hybrid method. The
CRAB ansatz, detailed in the Appendix, requires a multi-
mode expansion and an admissible polynomial. We use 15
sine modes and an admissible linear ramp, setting candidate
controls

ur (t ) = u0 + (uT − u0)
t

T
+

15∑
j=1

ε j sin
( jπt

T

)
. (26)

We apply DE to determine effective coefficients ε j , with
parameters F = 0.8, RC = 0.9, NP = 40, and Nmax = 30 in
Algorithms1 and2.

Note that the value of HT depends on the quantity u̇|t=T .
Since we are interested in the case that H is constant for
t > T , the minimum value of the Hamiltonian we are truly
interested in is independent of any terms which depend on
the derivative of the control. For this reason, we choose to
minimize the Hamiltonian with u̇ set to 0 at t = T . We follow
this with a gradient descent algorithm in the space Ḣ2

0 ([0, T ]),

Algorithm 2 Differential Evolution

Result: A vector likely to be globally optimal with respect to an
objective J .

Input: A maximum number of iterations Nmax, crossover ratio
RC ∈ (0, 1), and weight F ∈ (0, 2).

while counter < Nmax do
Generate a population pop of Npop vectors.
for i = 1 : Npop do
CurrentMember ← Popi;
Choose three distinct vectors ai, bi, ci different from the vector
Popi;
Mutate ai, bi, ci, and the CurrentMember into the mutated vector
z using the mutation parameters RC, F and Algorithm 1;
if J (z) < J (CurrentMember) then
TemporaryPopi = z;
end
end
Pop ← TemporaryPop;
counter ← counter + 1;
end
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FIG. 7. Result of using the GRAPE algorithm of the Appendix in the space Ḣ1
0 ([0, T ]) with the linear ramp from Fig. 4 as an initial control.

Conventions used here are similar to conventions used in Figs. 4 and 6. (a) The Galerkin coefficients which satisfy Eq. (6) with optimal control
u. (b) The numerical solution of the GPE with the optimal control u from panel (a) up until the dashed white line. The persisting dynamics are
computed with constant control u(T ). (c) The resulting phase portrait with the inset showing the persistent oscillation. (d) The convergence of
GRAPE.

i.e., Algorithm 3 with p = 2 in order to preserve both Dirchlet
and Neumann data. This allows us to perform a line search
for controls that minimize the modified Hamiltonian HT |u̇=0,

rather than the full terminal Hamiltonian HT .
The hybrid method performs significantly better, as seen

in Fig. 8. The value of the terminal Hamiltonian HT |u̇=0 is
one order of magnitude smaller than the terminal Hamiltonian
in Fig. 7. To further characterize optimality, we compute the
infidelity term from the Hohenester objective (3) between the
computed solution of the GPE and the time t = T , and ψd

the minimizer of the GPE energy. Figure 8 shows that the
hybrid method has reduced J infidelity by an order of magnitude
compared the linearly controlled condensate.

We notice the coefficients c0 and c1 resulting from the
hybrid method, shown in Fig. 8, lose a fair amount of regu-
larity at certain moments during the control process. For this
reason, we show another, slightly less optimal, result in Fig. 9
found by the same methodology, but where the dynamics
are smoother. Note that the dynamics lose smoothness at the
precise instant that u becomes very small. In a technolog-
ical setting, these irregularities can be more systematically

avoided by appending an inequality constraint to the admis-
sible space U or by further using a Tikhonov regularization on
the dynamics in the objective (23).

B. Splitting problem

Figure 10 shows similar results for the splitting problem
of Sec. II B. All conventions used here are the same as those
of Fig. 5. As discussed in the Appendix, we perform only the
global optimization and not the descent method. Despite not
applying a descent method, the global method significantly re-
duces the oscillations compared with the linear ramp control.

The squeezing problem takes an average of about 30 s on
a 2.6 GHz 6-Core Intel i7 Macbook Pro, while the splitting
problem takes 3–5 min. The splitting problem takes more time
since for each evaluation of the objective in Eq. (23) it must
compute the costly inner products of Eqs. (20).

V. CONCLUSION

We have demonstrated that reducing the GPE dynamics
to a single nonautonomous degree of freedom Hamiltonian
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FIG. 8. Result of using the hybrid optimization technique outlined in the Appendix on the squeezing problem of Sec. II A. The conventions
used here are identical to those used in Fig. 7. Panel (d) shows the infidelity (3) of the optimal control and infidelity of the linear control from
Fig. 4.

system and assuming a restricted form of the control is
an effective and inexpensive approach to optimal control
of two problems in the reshaping of a Bose-Einstein con-
densate. Moreover, we provide a complete characterization
of the physics of controlled condensates using standard dy-
namical systems techniques. The techniques described here
can be applied to other control problems constrained by
Hamiltonian PDE, and perhaps to problems where pos-
ing an optimal control problem is challenging, if not
impossible, without a visualization in a low dimensional
setting.

Several refinements of this work can be pursued. This
includes generalizing the form of the potentials shown in the
GPE (5) so that, for example, the optimization is performed
both over space and time. Also, a truncation of the Galerkin
expansion (6) at a higher order can be pursued to refine the
suppression of excitations that might have been missed by the
order of the reduction used in this paper. In addition, a com-
parison and/or inclusion of complementary approaches such
as the shortcut to adiabadicity, see, e.g., Refs. [32,33], may
be pursued in order to speed up computations. We also note
that adding a time-dependent coefficient to the nonlinear term
|ψ |2ψ , made physically possible through Feshbach resonance

management [34] generalizes the control problem and may be
explored as a means for increased control efficiency.

While we have applied the Galerkin truncation to the GPE
in one space dimension, the approach should still be appli-
cable to technologically relevant problems in two or three
dimensions. The speedup enabled by this reduction allows the
use of DE in these higher dimensional settings, which, in turn,
permits the exploration of a large class of controls.
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APPENDIX: NUMERICAL OPTIMIZATION METHODS

For the squeezing problem, we use a hybrid method:
a global, nonconvex method followed by a local, iterative
method. Hybrid methods, when used appropriately, can over-
come nonconvexity, yet still remain computationally efficient.

In both problems, applying the local iterative method re-
quires differentiating the projection coefficients with respect
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(a) (b)

(c) (d)

FIG. 9. Another result of using the hybrid optimization technique outlined in the Appendix on the squeezing problem of Sec. II A. The
conventions used here are identical to those used in Fig. 7. Panel (d) shows the infidelity (3) of the optimal control and infidelity of the linear
control from Fig. 4.

to the control u. In the case of the splitting problem, dif-
ferentiating the coefficients (20) with respect to the control
u requires an unmanageable implicit differentiation through
Tricomi’s function (16) and Eq. (17). Therefore, we omit the
second optimization step in the splitting problem.

The hybrid method here is similar to work by Sørensen
et al. [35] and allows for the use of a global search routine
based on stochastic optimization to overcome nonconvexity.
Global methods are known to converge slowly near a local
minimum [36]. Feeding the result of global methods into local
methods accelerates this slow convergence.

1. Global method

The first step in the hybrid method reduces the complexity
of the optimal control problem so that standard nonconvex
nonlinear programming (NLP) techniques can be applied.
This step, the CRAB method [28,29], constructs the control
from the span of an appropriately chosen finite set of basis
functions so that the optimization is performed over a small
set of unknown coefficients. We choose the basis to ensure that
the controls remain in the admissible space U of the control

problem (23), using

ur (t ) = P (t ; u0, uT , T ) +
N−1∑
j=0

ε jϕ j (t ; T ), t ∈ [0, T ],

(A1)

where P is a fixed function, {ϕ j (t )} j∈N , satisfying the bound-
ary conditions defining the admissible class U , is a set of
functions that satisfy homogeneous boundary conditions, and
the coefficients ε j are parameters to be optimized over.

The CRAB method can be viewed as a Galerkin method,
so we must choose the number of basis functions N simul-
taneously large enough to define an accurate approximation,
yet small enough so that the overall procedure remains com-
putationally inexpensive. We have found that a set of 15 basis
functions works well.

To solve the resulting NLP problem, we use differential
evolution (DE) [30]. DE is a stochastic optimization method
used to search for candidate solutions to nonconvex optimiza-
tion problems. The idea behind DE is inspired by evolutionary
genetics and is thus part of a class of so-called genetic algo-
rithms.

025311-11



J. ADRIAZOLA AND R. H. GOODMAN PHYSICAL REVIEW E 105, 025311 (2022)

(a) (b)

(c) (d)

FIG. 10. Result of using the CRAB method on the splitting problem of Sec. II A, using the conventions of Figs. 5 and 8.

Algorithm 3 Gradient Descent Method in Ḣ p
0 ([0, T ])

Result: Admissible control u which is locally optimal with respect
to the objective functional.

Input: Initial admissible control u, the objective functional J ,
tolerance tol, maximum number of iterations Nmax, and
reduction parameter r ∈ (0, 1).

while error > tol and counter < Nmax do
Evolve the state variable (q, p) from t = 0 to t = T , using
Eqs. (12);
Evolve the costate variables (λ, μ) from t = T to t = 0, using
Eq. (25);
Compute ∇uL via Eq. (A10) with source term d

dt
∂H
∂u given by

Eq. (25);
while inequality (A7) is false and α > tol do
α ← rα;
end
if α < tol then
break;
else
u ← u − α∇uL;
error ← J[u] − J[u + α∇uL];
counter ← counter + 1;
end
end

DE searches the space of candidate solutions by initializing
a population set of vectors, known as agents, within some
region of the search space. These agents are then mutated (see
Algorithm 1) into a new population set or generation. The mu-
tation operates via two mechanisms: a weighted combination
and a random “crossover.”

At each generation, Algorithm 1 generates a candidate z
to replace each agent y. In the mutation step, it chooses at
random three agents a, b, and c to create a new trial agent z̃
through the linear combination

z̃ = a + F · (b − c),

where F ∈ [0, 2]; see Fig. 11. In the crossover step, the can-
didate vector z is constructed by randomly choosing some
components and choosing an additional vector d from the cur-
rent population. The new vector z is constructed by randomly
choosing some components z̃ and others from an additional
randomly chosen agent d . If J (z) < J (y), then z replaces y in
the next generation.

DE ensures that the objective functional J of the opti-
mization problem decreases monotonically with (the optimal
member of) each generation. As each iteration “evolves” into
the next, inferior agents “inherit” optimal traits from superior
agents via mutation, or else are discarded. After a sufficient
number of iterations, the best vector in the final generation is
chosen as the candidate solution global optimizer.
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FIG. 11. Schematic of vectors used to construct the mutation
function in Algorithm 1. The unlabeled vectors are the linear com-
binations a + F (b − c), for 0.2 � F � 1.6, used in the crossover
defined in Algorithm 1 and used by Algorithm 2.

DE, and genetic algorithms more generally, belong to
a class of optimization methods called metaheuristics. Al-
though metaheuristics are useful for nonconvex optimization
problems, these methods do not guarantee the optimality of
candidate solutions. Since the algorithm is stopped after a
finite number of iterations, different random realizations re-
turn different candidate optimizers. As such, we use DE to

search for candidate solutions and use these candidates as
initial conditions for a descent method which guarantees local
optimality.

We show, in Fig. 12, an example application of DE for
minimizing MATLAB’s peaks function

fpeaks(x, y) = 3(1 − x)2e−x2−(y+1)2 − 1
3 e−(x+1)2−y2

− (2x − 10x3 − 10y5)e−x2−y2
. (A2)

We see that an initial, random population of vectors converges
to the globally optimal regions of the function fpeaks. At an
intermediate generation, the population vectors compete be-
tween two local minima, yet the population vectors eventually
converge collectively.

We provide a pseudocode of the general method in Al-
gorithm 2. A more detailed discussion about DE and further
implementation and benchmarking details can be found in the
book by Storn et al. [37].

We further demonstrate how DE overcomes nonconvexity
using a test problem which is much simpler to visualize than
the higher dimensional optimal control problem (23). The
Ackley function

fAckley(x, y) = − 20e−0.2
√

0.5(x2+y2 )

− e0.5(cos 2πx+cos 2πy) + e + 20, (A3)

shown by Fig. 13, is nonconvex, with many local minima
and a global minimum at the origin. Figure 13 shows the

FIG. 12. Iterates of the DE algorithm applied to the peaks function (A2). (a) The initial population. (b)–(d) The population after 1, 10, and
20 iterations. Parameters: F = 0.6 and RC = 0.9; number of agents: Npop = 20.
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FIG. 13. Minimization of fAckley (A3) using the evolutionary Al-
gorithms 1 and 2. (a) False color with the optimal member from each
iteration of Algorithm 2 denoted by stars. (b) The value at the optimal
member of each iteration.

convergence of DE, as outlined in Algorithm 2, to the global
minimum in less than 40 iterations using parameters Npop =
20, RC = 0.9, and F = 0.8.

Using DE with the CRAB method requires drawing the
coefficients ε j from the uniform distribution on an appropri-
ately constructed N-dimensional hyperrectangle. We choose
the half length of the jth side of the hyperrectangle to decay
quadratically as

l j = uT − u0

j2
.

We choose these coefficients to decay quadratically because
the Fourier series of an absolutely continuous function ex-
hibits the same type of decay [38]. In this way, the search
space of amplitudes ε j is not severely restricted, yet the con-
trols generated by the CRAB method remain technologically
feasible throughout each generation.

2. Local method

For the local search, we use a line search strategy. We
introduce here the basic ideas of a line search by discussing
the simpler setting of the optimization of a smooth function
on Rn, i.e., minx∈Rn J (x). Line searches are iterative methods

with two steps per iteration: first, identify a descent direction
pk, and then compute a step size αk which determines how far
xk should move along pk at the kth iteration. Put simply, line
searches determine pk and αk such that

J (xk+1) := J (xk + αk pk ) < J (xk ). (A4)

After a Taylor expansion of inequality (A4), we see that

〈pk,∇J (xk )〉Rn + O(αk ) < 0.

For this to hold uniformly in αk, we should choose the descent
direction pk such that 〈pk,∇J (xk )〉Rn < 0. The most natural
choice is pk = −∇J (xk ), in which case the line search is
called a gradient descent. Choosing pk = −H (xk )−1∇J (xk ),
where H is the Hessian of J and is assumed to be positive
definite, yields a damped Newton-Raphson method.

The task of determining αk remains. An exact line search
chooses αk to exactly minimize the subproblem

min
α∈R

J (xk + αpk ).

This is expensive, and it is usually better to allocate resources
toward computing better search directions pk and to approx-
imate the step size αk rather than to determine it exactly. A
reasonable approach to choosing αk is to start with some large
value and to then continually reduce it until some criteria is
met. Observe that

J (xk + αk pk ) = J (xk ) + 〈αk, pk∇J (xk )〉Rn + O
(
α2

k

)
.

This suggests it is reasonable to decrease αk until

J (xk + αk pk ) � J (xk ) + 〈αk pk∇J (xk )〉Rn . (A5)

This inexact line search is called backtracking and inequality
(A5) is called the Armijo-Goldstein condition.

We use the method of gradient descent since Newton’s
method requires a costly computation of J’s second deriva-
tives. Of course, there are many other options to choose from,
see, e.g., Ref. [36], but for our purposes, the basic method
of gradient descent with Armijo-Goldstein backtracking suf-
fices. The last thing we require for the hybrid method is to
generalize gradient descent from Rn to an appropriate affine
function space. Borzi and von Winckel introduce the gradient
descent pulse engineering (GRAPE) algorithm [24], which
automatically preserves the boundary conditions of the ad-
missible class U for the optimal control problem (23). It has
been used frequently in the quantum control literature; see,
e.g., Refs. [2,14,19,20]. The update in the GRAPE method is

uk+1 = uk − αk∇uL
∣∣
u=uk

, (A6)

where the step size α is chosen using backtracking, and the
Armijo-Goldstein condition for this problem reads

J[uk − α∇ukL(uk )] < J[uk] − α

2
‖∇ukL(uk )‖2

L2([0,T ]). (A7)

Until condition (A7) is satisfied, the value of the step size α

is decreased by some factor φ < 1. Since the gradient descent
(A6) depends on the function space in which ∇uL(u) is to
be understood, we review some basic facts about calculus on
infinite-dimensional (affine) spaces.

The Gateaux derivative of a functional J , evaluated at a
point u ∈ U in the direction of a displacement vector v ∈
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C∞
c ([0, T ]), is defined by

duJ[u; v] := lim
ε→0

J[u + εv] − J[u]

ε

and, if this exists for all admissible displacement vectors v,
the functional J is said to be Gateaux differentiable. Given the
uniform bound supu∈U |L(u)| � M for some finite M, a direct
calculation shows

duJ[u; v] = lim
ε→0

J[u + εv] − J[u]

ε

= lim
ε→0

1

ε

(∫ T

0
L(u + εv)dt −

∫ T

0
L(u)dt

)

= lim
ε→0

1

ε

∫ T

0

∫ 1

0
dsL(u + sεv)ds dt

= lim
ε→0

∫ T

0

∫ 1

0
L′(u + sεv)v ds dt

=
∫ T

0
∇uL(u)v dt := 〈δuJ, v〉L2([0,T ]),

using the bound on L in order to invoke the Lebesgue domi-
nated convergence theorem in the last equality.

The gradient of L with respect to the L2([0, T ]) inner
product can be identified with the functional derivative δuJ
calculated and expressed through the last entry in Eq. (25),
i.e., ∇uL = δuJ in the space L2([0, T ]). However, were one
to perform a gradient descent on an initially admissible con-
trol uk , the increment αk∇uL|u=uk

would fail to satisfy the
boundary conditions and the updated function would leave the
admissible set U . We can avoid this problem by drawing the
update from a more carefully chosen function space.

Since Taylor’s theorem must hold for all sufficiently regu-
lar functionals on Hilbert spaces, the Taylor series

J[u + εv] = J[u] + εduJ[u, v] + O(ε2)

= J[u] + ε〈∇uL(u), v〉X + O(ε2)

holds term by term for all spaces X . The Borzi and von
Winckel method relies on choosing X to be the traceless and
homogeneous Sobolev space Ḣ1

0 ([0, T ]), i.e., the vector space
of measurable functions, that vanish on the boundary of [0, T ]
such that the norm ||�||Ḣ1([0,T ]) induced by the inner product

〈�, �〉Ḣ1([0,T ]) :=
∫ T

0
(∂t�)†(∂t�)dt

is finite. This implies, by equating the Gateaux differential
with respect to L2([0, T ]) and with respect to Ḣ1

0 ([0, T ]),

〈δuJ, v〉L2([0,T ]) = 〈∇uL(u), v〉Ḣ1
0 ([0,T ])

=
∫ T

0
∂t∇uL∂tv dt

= −
∫ T

0
∂2

t ∇uLv dt

= −〈∂2
t ∇uL, v

〉
L2([0,T ]), (A8)

where integration by parts is used once along with the bound-
ary conditions of v. Since this holds for all displacements v ∈
C∞

c ([0, T ]), we conclude that, in order to perform a gradient
descent at the current control u, we must first solve the strong
form of (A8)

∂2
t ∇uL = −δuJ, ∇uL(0) = ∇uL(T ) = 0 (A9)

in order to determine the admissible gradient of the objective
with respect to the control.

Note that the boundary value problem (A9) yields a control
gradient with homogeneous Dirichlet boundary conditions.
This implies that the use of an iterative method which uses
this control gradient in an update automatically preserves the
boundary conditions of the control, as desired. In order to
solve the two-point boundary value problems for the control
gradients, we use spectral methods such as the Chebyshev
collocation [38].

We provide a straightforward extension to the GRAPE
method, appropriate for problems where, in addition, Neu-
mann boundary data is specified for the admissible class U .
We encounter a problem of this type in Sec. II A. The idea
is to use the inner product on Ḣ2

0 ([0, T ]), so that we are
instead tasked with solving an inhomogeneous biharmonic
equation with homogeneous boundary data:

∂4
t ∇uL = δuJ,

∇uL(0) = ∇uL(T ) = ∂t∇uL
∣∣
t=0 = ∂t∇uL

∣∣
t=T = 0.

Once again, the gradient ∇uL(u) preserves the appropriate
boundary data when using a line search. In fact, it is also clear
that the boundary value problem

∂
2p
t ∇uL = (−1)pδuJ,

∂
j

t ∇uL
∣∣
t=0 = ∂

j
t ∇uL

∣∣
t=T = 0, j = 0, 1, . . . , p − 1,

(A10)

generalizes the GRAPE method to the space Ḣ p
0 ([0, T ]), for

p ∈ Z+. This method is summarized by Algorithm 3.
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