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Alternative method for measuring characteristic lengths in absorbing phase transitions
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We applied an alternative method for measuring characteristic lengths reported recently by one of us
[J. M. Kim, J. Stat. Mech. (2021) 033213] to the models in the Manna universality class, i.e., the stochastic
Manna sandpile and conserved lattice gas models in various dimensions. The universality of the Manna model
has been under long debate particularly in one dimension since the work of M. Basu et al. [Phys. Rev. Lett. 109,
015702 (2012)], who claimed that the Manna model belongs to the directed percolation (DP) universality class
and that the independent Manna universality class does not exist. We carried out Monte Carlo simulations for
the stochastic Manna sandpile model in one, two, and three dimensions and the conserved lattice gas model in
three dimensions, using both the natural initial states (NISs) and uniform initial states (UISs). In two and three
dimensions, the results for R(t ), defined by R(t ) = L[〈ρ2

a 〉/〈ρa〉2 − 1]1/d , L and ρa being, respectively, the system
size and activity density, yielded consistent results for the two initial states. R(t ) is proportional to the correlation
length following R(t ) ∼ t1/z at the critical point. In one dimension, the data of R(t ) for the Manna model using
NISs yielded anomalous behavior, suggesting that NISs require much longer prerun time steps to homogenize the
distribution of particles and larger systems to eliminate the finite-size effect than those employed in the literature.
On the other hand, data from UISs yielded a power-law behavior, and the estimated critical exponents differed
from the values in the DP class.

DOI: 10.1103/PhysRevE.105.025307

I. INTRODUCTION

The purpose of this paper is to study the critical behav-
ior of absorbing phase transitions (APTs) [1,2] for models
in the Manna universality class or, often called, conserved
directed percolation class [3], in dimensions below the critical
dimension of dc = 4, by applying an alternative method for
measuring characteristic lengths [4] coupled with a conven-
tional method. Several models such as various fixed-energy
sandpile models [5–7], conserved threshold transfer processes
[8,9], the conserved lattice gas (CLG) model [10–12], and
static diffusive epidemic processes [13–15] have been known
to share the same features of the critical behavior. For these
models, it was conjectured that in the absence of additional
symmetries the stochastic models with infinitely many absorb-
ing states and activity coupled to a nondiffusive conserved
field form a unique universality class [10].

Recently, Basu et al. [16] raised, based on numerical sim-
ulations in one dimension, the question of whether the Manna
universality class is indeed an independent class or is simply a
perturbation of the directed percolation (DP) class [17]. They
paid attention to the fact that for models in the Manna class
the estimates of critical exponents are scattered depending
on the authors and show anomalous scaling relations. The
decay of activity ρa(t ) ∼ t−θ starting from many activities
and of the survival probability of activity Ps(t ) ∼ t−δ starting
from a single seed are characterized by different exponents,
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whereas the order-parameter exponents β for the two cases are
consistent within errors [10,18]. Moreover the upper critical
dimension dc = 4 and the mean-field exponents in the Manna
class are the same as those in the DP class. In addition, the cor-
responding models with self-organized criticality are known
to be unstable against specific perturbation and generally flow
to DP [19]. They conjectured that the non-DP behavior is also
a transient phenomenon and all models with such behaviors
eventually show a DP critical behavior after a very long time.

In most models in the APTs, the system evolves from
a homogeneous distribution of particles. For example, for a
prototype in the DP class, i.e., for the contact process (CP)
[20], simulations have been carried out from the initial states
very close to or far from the absorbing state. In the CP, each
particle either creates an offspring on a neighboring site with
a rate λ or annihilates with a rate μ; if λ > λc, the system
remains in an active phase and, if λ < λc, the system falls into
an absorbing state of a vacuum. The system starts with either
a fully occupied lattice system or a single-particle system. The
former is called “static” simulation and the latter “dynamic”
simulation, and in both cases, the initial state is unique. While
in the CP the initial particle distribution is homogeneous and
uniform, that in models with a conserved field (fixed number
of particles) is not unique or homogeneous. The possible
concern might be whether the initial distribution influences
the critical behavior. Basu et al. realized such a possibility
from the earlier work by Jensen and Dickman who studied
the APTs of the pair-contact process [21]. In the pair-contact
process, the system starting from a random initial distribution
of particles exhibited considerably different dynamical behav-
iors from the system with particularly prepared initial states,
i.e., system-generated initial states. For a system-generated
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initial state, the simulation first ran on a smaller system over
a number of time steps, and then a larger system was set
up by combining copies of the smaller system. The particle
distribution of such initial states is random on a smaller scale
but is uniform on a larger scale. Earlier works for models in
the Manna class employed random initial states (RISs), and
the anomalous behavior such as violation of scaling relations
was observed [7,10,18,22,23]. In addition, particularly in one
dimension, the activity density in the supercritical region did
not monotonically decrease; it reached a minimum and then
slowly increased to a steady-state value for the particle den-
sity close to the critical density. The possible origin of the
“undershooting” is slowly varying distributions of inactive
background particles that exhibit long-range correlations.

In order to resolve such an anomalous behavior, Basu
et al. prepared the “natural” initial states (NISs) as follows:
first let the process run until the long-range correlations are
sufficiently smoothened out, and then reactivate the system
by allowing all particles to diffuse a single Monte Carlo
(MC) sweep. The initial states prepared in this way are ho-
mogeneous and resolve the problem of undershooting and
scaling anomaly, and in addition, the particle distribution is
known to be hyperuniform [24–26], in contrast to the ran-
dom distribution for RISs. The exponents associated with
dynamics of systems obtained using the NISs indeed differed
from those using the RISs and they were close to the DP
values in one dimension [16]. Since the work of Ref. [16],
the critical behavior of the lattice models in the Manna class
has been extensively studied in one and two dimensions.
In one dimension, due to the subtleties of preparation of
initial states, the reported critical exponents were dispersed
[16,27–29]. While some authors obtained static critical ex-
ponents indeed similar to those of the DP class and claimed
the Manna model to belong to the DP universality class [28],
there were other researchers who claimed, based on distinct
responses to the quenched disorder, the model to belong to the
independent class that is different from the DP class [27,30].
In two dimensions, the critical exponents also differed consid-
erably [31,32].

In this study, we apply an alternative method for measuring
the correlation lengths [4] to APTs. In APTs, researchers
have calculated the critical exponents associated with the
correlation lengths indirectly via the scaling relations and
scaling analysis because direct measurement of the correlation
lengths is highly nontrivial task. For models in the Manna
universality class, however, it is widely known that anomalous
critical behavior hampers the scaling analysis and, in addition,
the known scaling relation is violated when the initial distri-
bution of particles is not properly homogenized [7,10,16,18].
Therefore, the method employed in this work may serve as an
alternative way of measuring the critical exponents associated
with the correlation lengths. We study the critical behavior
of the Manna model in one, two, and three dimensions and
the CLG model in three dimensions, using the homogeneous
initial states. We first discuss the critical behavior in two and
three dimensions to validate our method. We then study the
Manna model in one dimension, focusing on the cause of the
scattered critical exponents. In Sec. II, dynamic rules and MC
methods for the studied models are presented, and the critical
behaviors of APTs are briefly described. In Sec. III, the results

are presented with relevant discussions, and conclusions are
derived in Sec. IV.

II. MODELS AND CRITICAL BEHAVIORS

The APTs of lattice models have been studied for long and
the simulation methods and critical behaviors are now widely
known. We thus review very briefly the models and simulation
methods.

A. Stochastic Manna sandpile model

The original Manna model was designed to study self-
organized criticality (SOC) with stochastic hopping. In the
original work of SOC by Bak, Tang, and Wiesenfeld (BTW)
[33], sand grains are added one at a time on randomly se-
lected sites in an initially flat substrate of a square lattice,
and sites that attain four or more grains are considered to
become active. As grains are added one by one, the height
of the grain column at each site gradually increases and, at a
certain moment, the system has a single active site when four
grains accumulate on one site. The dynamics start by toppling
grains from an active site into the four nearest-neighbor sites,
distributing one grain to each neighboring site. Neighboring
sites may then become active as they receive grains from the
toppling process. As the system evolves, a burst of toppling
activities, called an avalanche, occurs. The avalanche termi-
nates when all sites become inactive, at which point a new
grain is added. In this process, the toppling is determinis-
tic and grains on the boundary sites flow out of the system
and dissipate. A few years later, a stochastic Manna sandpile
model (MSM) was designed to study whether the stochastic
toppling alters the dynamics of SOC [34]. In [34], a two-state
version of the MSM was studied, in which no more than one
particle is allowed to be at a site in the stationary state. When a
new particle is added on the already occupied site, a hard core
interaction throws all particles out from that site and particles
are redistributed in a random manner among its neighbors.
Cascades are created when some of the neighbors were al-
ready occupied and continued until no occupancy higher than
one is present. It is known that the BTW model is Abelian;
i.e., interchanging the toppling sequence from the same initial
configuration leads to the same final configuration, whereas
the MSM is non-Abelian. The two models are known to ex-
hibit distinct critical behaviors.

The MSM has been modified to study the APT critical
behavior in a way that initially a number of particles of density
ρ are distributed at random over a given system with multiple
occupancy allowed, and the sites with two or more particles
are assumed to be active sites and empty or singly occupied
sites are inactive sites. All particles on active sites topple to
randomly selected nearest-neighbor sites. When particles on
the boundary sites are to be dissipated, they are assumed to
reenter the system from opposite sides by periodic boundary
conditions, thus keeping the number of particles constant [5].
Starting from the initial states prepared as described in the
subsequent subsection, an active site is selected at random
from the list. Particles on the active site hop to randomly
selected nearest-neighbor sites, with an increment of evolution
time t → t + 1

Na(t ) , Na(t ) being the number of active sites
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at time t . The mean and mean-squared activity densities are
saved whenever the evolution time first exceeds an integer
within a bin of width �(log10 t ) = 0.02. This allows us to save
disk space and place the data of ρ(tk ) evenly on a common-
logarithmic scale of Monte Carlo time steps, where tk is the
sampled (smallest integer) time step in the kth bin.

For a given density of particles ρ, the density of active
sites ρa(t ) will decrease rapidly in time if ρ < ρc, ρc being
the critical particle density, and saturate to a steady-state den-
sity ρsat if ρ > ρc. Thus, ρ serves as a control parameter,
and ρa(t ) and ρsat are, respectively, the activity and order
parameter. At ρc, ρa(t ) decreases in time following the power
law ρa(t ) ∼ t−θ , and for ρ > ρc, ρsat (�) follows ρsat ∼ �β ,
where � ≡ ρ − ρc is the distance from criticality and θ and
β are, respectively, the decay and order-parameter exponents.
The temporal and spatial correlation lengths τ and ξ also
exhibit power-law behaviors, τ ∼ �−ν‖ and ξ ∼ �−ν⊥ , where
ν‖ (ν⊥) is the temporal (spatial) correlation-length exponent.
The critical exponents characterizing power laws of the sur-
vival probability Ps(t ) ∼ t−δ , number of active sites (particles)
Ns(t ) ∼ tη, and spreading distance of active sites Rs(t ) ∼ t1/z

can also be calculated from dynamic simulations. Either the
gyration ratio or the largest spanning distance of activity along
any coordinate direction are considered to be the spreading
distance. These critical exponents are not independent and are
associated with each other via the scaling relations, ν‖ = β/θ ,
z = ν‖/ν⊥, and d/z = η + θ + δ.

B. Conserved lattice gas model

In the CLG model, each lattice site can be occupied by at
most one particle; the particle is considered active if at least
one of its neighboring sites is occupied by another particle. If
all the neighboring sites are either empty or fully occupied,
the particle is considered inactive. Initially, ρLd particles are
distributed on a d-dimensional cubic lattice of side L. Each
particle is then determined if it is active or inactive, and active
particles are stored on the list. As dynamics proceed, the mean
and mean-squared densities of activity are sampled by the
same way as for the Manna model.

A number of researchers have studied the critical behavior
using the initial states with a random distribution of particles.
In one dimension, the hopping is known to be deterministic
on a chain because each active particle has a single empty
site, and the deterministic hopping is known to yield a critical
behavior different from that of the Manna model [35,36].
However, on a finite-width stripe and in higher dimensions the
hopping is stochastic, and the CLG model has been known to
exhibit the same critical behavior as the Manna model.

C. Preparation of initial states

In this subsection, we briefly describe how the initial states
are prepared in the MC simulations.

Random initial states. The simplest way of obtaining an
initial state is to randomly distribute ρLd particles, and each
lattice site is then analyzed if it is either active or inactive fol-
lowing the rule of the model. Particles on inactive sites do not
participate actively at the current time, but they become active
at later times by the activity of particles on the neighboring

sites. The role of the background particles is thus nontrivial
on the critical behavior of activities.

Natural initial states. The natural initial states are described
in Ref. [16]. Starting from a random distribution of particles,
let the dynamics continue until random initial fluctuations
are sufficiently smoothened out, i.e., until the time of the
cumulative density of particles becomes stationary, and then
the system is reactivated by allowing all particles to diffuse in
a single MC sweep. Apparently the decay of activity for the
NISs is much faster than that for the RISs because particle
distribution for NISs is close to that of the steady state or
absorbing state, and this yields a larger decay exponent. The
distribution of particles is known to be random on a short scale
and is hyperuniform on a larger scale [25,26].

Uniform initial states (UISs). In contrast to the NISs,
particles are initially distributed uniformly, with the inter-
particle distance (1/ρ)1/d in a d-dimensional lattice; in one
dimension, the position of the ith particle is x(i) = int(i/ρ).
In higher dimensions, we create a uniform distribution of
particles on a chain of length Ld and divide the chain into
Ld−1 shorter chains of length L. We then assemble orderly the
shorter chains to create a d-dimensional lattice. The coordi-
nate of the ith particle in d dimensions is

xk (i) = 1

Ld−k

[
int(i/ρ) −

k−1∑
j=1

x jL
d− j

]
, (1)

where xk (i) is the kth coordinate of the ith particle. To produce
active sites, an MC sweep is taken; i.e., all particles are moved
a single step to the nearest-neighbor sites selected at random.
In this initial state, the correlation length among particles is
very short and does not exceed few lattice constants, and the
distribution of background particles is uniform. The initial
decay of activity density depends on the initial states for a
short time, but the asymptotic critical behavior for NISs and
UISs should remain the same. On the other hand for the RISs,
the exponents associated with dynamics of the system such as
the decay exponent θ and dynamic exponent z are known to
differ from those of the homogeneous initial states.

D. Spatial correlations

Recently, an alternative method for measuring correlation
length on the surface models was introduced by one of us
[4]. Here, we apply it to Manna models and describe the way
of measuring the correlation length briefly. We consider rela-
tive variance of activity σ/〈ρa〉 to be proportional to 1/

√
N ,

where σ = (〈ρ2
a 〉 − 〈ρa〉2)1/2 and N is the independent num-

ber of samples. When the correlation length ξ (t ) is small
compared to the system size L, ρa is effectively averaged
over (L/ξ )d independent samples, i.e., σ/〈ρa〉 ∼ 1/

√
N ∼

(ξ/L)d/2, or equivalently, ξ (t ) ∼ L(σ 2/〈ρa〉2)1/d . Thus, the
quantity R(L, t ) is proportional to the correlation length, i.e.,

R(t, L,�) = L

( 〈ρ2
a 〉 − 〈ρa〉2

〈ρa〉2

)1/d

∼ ξ (L, t ), (2)

where the mean activity density 〈ρa〉 is identical to
ρa(t, L,�). The correlation length can thus be calculated
from the fluctuation of ρa(t, L,�). The data of R(t, L,�) for

025307-3



JIN MIN KIM AND SANG BUB LEE PHYSICAL REVIEW E 105, 025307 (2022)

sufficiently large systems at ρc behave as R(t ) ∼ t1/z, which
enables one to measure the dynamic exponent [4].

Assuming R(t, L,�) to be a homogeneous function, the
scaling theory allows one to write

R(t, L) = t1/zF (t/bz, L/b) = LF (t/Lz ) (3)

at � = 0, where b is the scaling factor. On the other hand, for
a sufficiently large system of L 
 ξ ,

R(t,�) = t1/zG(�b1/ν⊥ , t/bz ) = �−ν⊥G(�t1/ν‖ ). (4)

As t → ∞, R(t,�) → Rsat (�) ∼ �−ν⊥ , and therefore, one
can calculate the correlation-length exponent ν⊥ by plotting
Rsat against � on a double logarithmic scale. Using the critical
exponent associated with fluctuation of activity

χ (ρa) = Ld
(〈
ρ2

a

〉 − 〈ρa〉2
) ∼ �−γ (5)

in Eq. (2), the known scaling relation γ + 2β = dν⊥ [18] is
attained from Eq. (4).

III. RESULTS AND DISCUSSION

The primary purpose of this paper is to measure the crit-
ical exponents associated with correlation lengths from the
numerical data of R(t, L,�) for the Manna and CLG models.
An advantage of using R(t ) is that, in addition to direct mea-
surements of the correlation lengths, the method may be used
to validate the critical point estimated by the conventional
methods particularly when the activity density decays slowly
in time. The critical point has been determined from the best
power laws of ρa(t ) and ρsat (�), and all the critical exponents
will be unreliable if the value of ρc is poorly determined; the
data of R(t ) may thus be used as an alternative method to
validate the value of ρc. It should be noted that the data of
R(t ) are much noisier than those of ρa(t ), and therefore, the
sample size should be much larger. The data presented here
are the averages of at least 2×103 independent samples for
larger systems and more for smaller systems.

We first present our simulation results for the Manna model
in two dimensions using both the NISs and UISs to validate
the known value of ρc and calculate the correlation-length
exponents. We also show that the critical exponents calculated
using the two initial states are the same, provided that the
homogeneity of particle distribution is properly achieved. We
then present new results for the Manna model using UISs
and the CLG model using NISs in three dimensions. The
two models are expected to exhibit the same critical behavior;
therefore, the results will serve for a consistency check. (Note
that the reported results in three dimensions were those from
RISs, and the correct critical exponents from homogeneous
initial states do not yet exist.) The delicate and controversial
Manna model in one dimension is discussed in the last sub-
section.

A. Manna model in two dimensions

The critical behavior of the Manna model was first studied
in [18] using RISs, and the critical density was estimated as
ρc = 0.68333(3). More recently, one of us extensively studied
this, employing both NISs and RISs [32], and the value of
ρc was found to be ρc = 0.68354 from the power laws of

FIG. 1. The surviving-sample average data of R(t ) for the Manna
model on a square lattice calculated using NISs at ρ = 0.68354
for systems of selected sizes, in comparison with the data at the
reported critical density of ρ = 0.68333 [18]. The dashed line is the
power-law fit over the data for L = 4000, giving the inverse dynamic
exponent 1/z = 0.660. The inset shows the effective exponents of
1/z defined in Eq. (6) calculated using the data in the main panel. The
horizontal dashed line is the mean of the data for L = 4000 within
the fitting region.

ρa(t ) and ρsat (�) on a square lattice of L = 6000. The critical
exponents θ , β, and β/ν⊥ were measured directly from the
numerical data and ν⊥ and ν‖ indirectly using the scaling
relations.

To validate our method, we carried out simulations on sys-
tems of sizes L = 500, 1000, 2000, and 4000 at ρc = 0.68354
using NISs and calculated the data of R(tk, L). The results
were compared with the data for ρ = 0.68333 on a system
of L = 4000; Fig. 1 shows the data of R(t, L) averaged over
those samples which survive up to the time t (surviving sam-
ples). The data for ρc = 0.68354 exhibit a clean power-law
behavior for all sizes and saturate to steady-state densities as
t → ∞, supporting that the known critical point is accurate,
whereas data for ρ = 0.68333 show an upward curvature sug-
gesting it to be subcritical. The saturating behavior at ρc is the
finite-size effect reflected from the saturation of activity on a
finite system. As the size of system increases, the power-law
region increases, and in the limit of L → ∞, the saturating
behavior is expected to diminish. On the other hand, the data
averaged over all samples (all-sample averages), including
those which survive up to time t and those which fall into
absorbing states, differ near and at ρc and diverge rather than
saturate. (Comparison of the two averages will be presented
in the subsequent subsection for the CLG model in three
dimensions.) The inset shows the effective exponents, defined
by

(1/z)eff = log10[R(tk+n, L)/R(tk, L)]

log10[tk+n/tk]
(6)

calculated using n = 50, which are equivalent to the local
slopes between the two points separated by �(log10 t ) ≈ 1
on a double logarithmic scale. The mean of the data within
the power-law region marked by the dashed line in the main
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FIG. 2. The surviving-sample average data of ρa(t ) (top) and
R(t ) (bottom) for the Manna model on a square lattice of L = 4000
calculated using UISs for particle densities of, from bottom to top
for ρa(t ) and from top to bottom for R(t ), ρ = 0.68352, 0.68354,
0.68356, 0.6836, 0.6837, 0.684, and 0.6845. The two data sets below
and above ρc = 0.68354 are deviated toward the opposite directions
from the power laws in both plots, and the dashed lines are the power-
law fits over the data for ρc. Plotted in the inset are the steady-state
values against the distance from criticality.

panel is 1/z = 0.660(7), giving the dynamic exponent z =
1.515(16). The error of 1/z is the standard deviation of
(1/z)eff values for L = 4000.

In order to show that the two homogeneous initial states,
NISs and UISs, yield the same critical exponents, we also
carried out simulations using the UISs. In Fig. 2, the upper
plots show the data for ρa(t ) and the lower one for R(t ), for
the same selected particle densities on a system of L = 4000.
In both plots the data for the two selected densities below and
above ρc, i.e., for ρ = 0.68352 and 0.68356, deviate toward
the opposite directions from the power laws, indicating that
the UISs give the same critical density when determined from
the power laws of ρa(t ) and R(t ). The saturating behavior of
the subcritical data for ρ = 0.68352 in the long-time limit is
reflected from the saturation of activity for a finite system by
fluctuation.

The power-law plots over the data for ρc yield the critical
exponents θ = 0.515(8) and 1/z = 0.667(4), the errors of
which were determined from the standard deviations of the
effective exponents θeff and (1/z)eff , the former of which is

FIG. 3. The finite-size scaling plot of Eq. (3) (left) and off-
critical scaling plot of Eq. (4) (right) for the data in Fig. 2, using
the estimates ρc = 0.68354, z = 1.50, ν⊥ = 0.818.

defined by replacing R(tk ) → ρa(tk ) and taking the negative
in Eq. (6). The insets are the plots of the steady-state val-
ues against �, with the associated critical exponents β =
0.634(3) and ν⊥ = 0.818(3). The errors were estimated from
the variations of the estimates by shifting the fitting regions,
and there might be additional statistical errors not accounted
for. The estimates of θ and β are consistent with those of [32],
whereas the dynamic exponent z = 1.50(1) and correlation-
length exponent ν⊥ are slightly different. While in [32] the
values of z and ν⊥ were estimated from the finite-size and
off-critical scalings of ρa(t,�, L) and scaling relations, in
this paper we directly measured them using the values of
R(t,�, L). We therefore believe that our estimates are more
reliable with smaller errors.

The data of R(t, L,�) in Figs. 1 and 2 were analyzed by
finite-size scaling and off-critical scaling using the estimated
critical exponents; the left plot of Fig. 3 is the finite-size
scaling data and the right plot the off-critical scaling data.
In both plots, the scaled data collapse onto a single curve in
the asymptotes. It should be noted that data for ρ = 0.68356
and 0.68358 were not plotted in the off-critical scaling plot
because those data did not collapse due to the finite-size effect
near criticality.

We have shown that the two homogeneous initial states,
NISs and UISs, yielded the same critical behavior. In practice,
the UISs are much more efficient than NISs because UISs do
not require a prerun to homogenize the particle distribution or
need verification of homogeneity of the particle distribution.

B. Manna model and conserved lattice gas model
in three dimensions

In this subsection, we present the results for the APT
critical behaviors of the Manna and CLG models using ho-
mogeneous initial states, i.e., UISs for the Manna model and
NISs for the CLG model. Because the main interest lies in
whether the different critical behavior for the Manna model
is a perturbation of the DP critical behavior, researchers have
paid attention in lower dimensions. In higher dimensions, i.e.,
in three dimensions, the critical exponents in the Manna and
DP classes are not expected to be very different because three
dimensions are closer to the upper critical dimension dc = 4
of both universality classes at which all the critical exponents
remain the same. Therefore, the critical behavior in three
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FIG. 4. Data of ρa(t ) (left) and R(t ) (right) calculated for the
Manna model in three dimensions using UISs for the selected particle
densities on systems of L = 400, 600, and 800 for ρ = 0.600135
(black lines) and L = 400 for other values of ρ. The legends are of
the same order as the data from bottom to top for ρa(t ) and from top
to bottom for R(t ). The dashed line in each plot is the power-law fit
over the data of ρc.

dimensions is far from researchers’ interest, and the results
using the homogeneous initial states to be presented here are
new.

1. Manna model using UISs

The stochastic Manna model in three dimensions was stud-
ied decades ago by Lübeck and Heger, and the critical density
was found to be ρc = 0.60018(4) [18]. We calculated R(t ) and
ρa(t ) for various values of ρ close to and above the known
value of ρc to validate the critical density. The critical expo-
nents are then calculated at the critical point. Figure 4 shows
the data for ρa(t ) (left) and R(t ) (right) calculated on systems
of L = 400, 600, and 800 for ρ = 0.600135 and L = 400 for
other values of ρ. From both plots, it is clear that data show
clean power-law behavior at ρ = 0.600135 and the power-law
region becomes wider as the size of the system increases, indi-
cating ρc = 0.600135. The data of other values of ρ deviating
from the power law also support the value of ρc, that is close
to but slightly smaller than the value reported in Ref. [18].
The power-law plots yield the critical exponents θ = 0.850(6)
and 1/z = 0.601(7), or equivalently, z = 1.66(2). The steady-
state values of ρ(t ) and R(t ), ρsat (�) and Rsat (�), also yielded
the power-law behaviors, with the powers of β = 0.870(3)
and ν⊥ = 0.628(4) (not shown). The exponents associated
with dynamics θ and z are very different from the known
values, θ = 0.745(17) and z = 1.823(23), calculated using
the data of RISs [18], as expected for different initial states.
The static exponents β and ν⊥ also differ slightly from the
reported values, β = 0.840(12) and ν⊥ = 0.593(13). In the
earlier study, the numerical data were obtained using rela-
tively smaller systems with limiting facilities decades ago, and
we believe that our results are more reliable.

2. CLG model using NISs

The CLG model in three dimensions was studied by
Lübeck and a collaborator [11,18] and more recently by one
of us [32], all using RISs, before the issue of different initial
states was raised in [16]. Because the steady-state values of

FIG. 5. Data of ρa(t ) (left) and R(t ) (right) for the CLG model
in three dimensions, both calculated at the critical density of ρ =
0.219559 for systems of three selected sizes. The decaying data on
the left and diverging data on the right are the all-sample averages
and the saturating data are the surviving-sample averages. The data
for ρ = 0.21791 are the averages over surviving samples. The dashed
line in each plot is the power-law behavior, with the power given in
each plot.

activity remain the same for various initial states, the static
critical exponents as well as the critical density should re-
main the same. The critical density of particles estimated
in [11] and [18] was ρc = 0.21791, whereas in [32] it was
ρc = 0.219559. In Ref. [11], the critical density was estimated
as follows: first let the simulation run until the system reaches
a steady state, and then the steady-state density 〈ρsat〉 was cal-
culated on systems of L = 16 ∼ 160. Close to the transition
point, 5×106 update steps were performed to reach the steady
state for the largest system of L = 160 and the density of ac-
tive sites was monitored for the next 5×105 update steps. The
critical density was determined from the best straight line of
〈ρsat〉 versus ρ − ρc on a double logarithmic scale, assuming
ρc as a trial value. In this procedure, the surviving-sample
averages appeared to have been used, and those samples that
survive up to the time of steady states must have been consid-
ered supercritical. Close to the transition point on finite-size
systems, the number of subcritical samples may also survive
by fluctuation up to the time for steady states; thus, the critical
point appeared to have been significantly underestimated. Our
data of R(t ) show that the critical density reported in [11] is
indeed subcritical.

We calculated R(t, L,�) using ρ = 0.21791 on a cu-
bic system of L = 400 and the more recent value of ρc =
0.219559 on systems of L = 100, 200, and 400, both using
NISs. Plotted in Fig. 5 are the data of ρa(t ) (left) and R(t )
(right); the decaying data of ρa(t ) and the diverging data of
R(t ) are the all-sample averages and the saturating data are the
surviving-sample averages. The two types of averages differ
in the large-t limit due to the finite-size effect. The diverg-
ing surviving-sample averages of R(t ) for ρ = 0.21791 show
that the earlier estimate of ρc is much smaller than the true
value. On the other hand, for ρc = 0.219559, the data for both
ρa(t ) and R(t ) show good power laws, with wider power-law
regions for larger system sizes. The power-law exponents are
calculated from the data within the region in which the two
types of samples coincide to eliminate the finite-size effect.
From the power-law fits, the critical exponents θ = 0.848(3)
and 1/z = 0.601(6) or z = 1.66(2) were obtained.
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FIG. 6. Data of ρa(t ) (left) and R(t ) (right) for selected values of
ρ in the CLG model on a system of L = 400 in three dimensions. The
dashed lines are the power-law fits over the data for ρc = 0.219559.
Plotted in the inset are the steady-state values against �, with the
dashed lines being the power-law fits over the data.

The values of ρa(t,�) and R(t,�) were also calculated
for selected values of ρ on a system of size L = 400 and
the results are plotted in Fig. 6; the insets are the plots of
the steady-state values against �, yielding β = 0.862(5) and
ν⊥ = 0.626(4), which are consistent with the earlier estimates
obtained using RISs. (Note that both are the static exponents
that are expected to be irrespective of the initial states.) With
the estimated values, ν‖ = β/θ = 1.01(1) is consistent with
the value ν‖ = zν⊥ = 1.04(2) within errors. The estimates
for the Manna and CLG models in three dimensions are
summarized and compared with those of the DP class in
Table I; it is clear from the data that the two models belong
to the same universality class that is distinct from the DP
class.

C. Manna model in one dimension

The Manna model in one dimension is the simplest model
in the Manna universality class, and researchers have studied
this model using various initial states. Although the asymp-
totic critical behavior is expected to remain the same for
NISs and RISs, the reported critical density of activity and
critical exponents scattered depend on the authors; even the
results from NISs also differed. The results for NISs and UISs
reported in the literature are summarized in Table II.

In order to examine the cause of such inconsistency, we
first carried out simulations on a system of a linear size
L = 2×105 for the reported critical densities using both RISs
and NISs: for ρ = 0.89236 [16] and 0.89216 [32] up to t =
107 and for ρ = 0.89252 [29] up to t = 108. The RIS data
were sampled after preruns of up to the largest assigned time

TABLE I. The estimates of the critical exponents for the Manna
and CLG models in three dimensions using the homogeneous initial
states, in comparison with those of the DP class.

θ z β ν⊥ ν‖

Manna 0.850(6) 1.66(2) 0.870(3) 0.628(4) 1.03(2)
CLG 0.852(3) 1.66(2) 0.862(5) 0.626(4) 1.04(3)
DPa 0.732(4) 1.90(1) 0.813(11) 0.581(5) 1.105(5)

aReference [2].

TABLE II. Summary of the critical exponents for the Manna
model in one dimension, in comparison with the present estimates
and DP values. The upper three sets are for the NISs and the fourth
set for the UISs.

ρc θ β ν‖ z ν⊥

Ref. [16] 0.89236(3) 0.159(3) <0.31 1.75(5) 1.51(5) 1.095(5)
Ref. [27] 0.89216(3) 0.158 0.380(5) 2.405
Ref. [28] 0.89255(2) 0.146(2) 0.278(2) 1.9(1) 1.73(18) 1.10(15)
Ref. [29] 0.89252(5) 0.162(3) 0.311(6) 1.92 1.32 1.450(5)
This work 0.89255(3) 0.148(2) 0.30(1) 1.80(2) 1.50(2) 1.198(3)
DP valuesa 0.1594 0.2764 1.733 1.5807 1.0969

aReference [2].

steps, and afterward, the homogeneous NISs were prepared by
sweeping all particles to diffuse a single MC step. Although
107 prerun time steps might be insufficient to homogenize
the distribution for the first two cases, we realize that the
cumulative particle density was found to be leveled out after
108 time steps for the last case [27]. Figure 7 shows the data
for R(t ); the upper set is for NISs and the lower set for RISs.
From the plots, we realize that none of the data using the
NISs yield a power-law behavior, suggesting that the sampled
data may not be sufficient to calculate the critical exponents.
For ρ = 0.89252, even though the cumulative densities of
particles were found to be stationary after t = 108 steps, the
assigned prerun time steps appear to be insufficient to ho-
mogenize the distribution of particles. This may be supported
from the hyperuniformity, defined by the fluctuation of density
of particles within a window of size �, 〈ρ2

� 〉 − 〈ρ�〉2 = �−χ .
The hyperuniformity exponent of the steady-state particle
distribution in the one-dimensional Manna model is known
to be χ ≈ 1.425 [25], indicating that the distribution is hy-
peruniform but not perfectly uniform; if the distribution is
uniform, the value of χ will essentially be infinity. Thus,

FIG. 7. Data of R(t ) defined in Eq. (2) for the Manna model in
one dimension, calculated on a system of L = 2×105 using NISs
(upper set) and RISs (lower set) for the reported values of the critical
exponent.
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inactive background particles are still correlated, and such
correlation may lead nontrivial effects to the critical behavior
in one dimension, whereas it does not appear to affect the
critical behavior in higher dimensions. The slow decay of
activity during preruns, i.e., small decay exponent for RISs
(<0.15 [18]), requires a large number of prerun time steps
to homogenize the distribution in one dimension. As the time
step increases, the correlation length also increases in time and
may exceed the system size; thus, the employed system size
may not be large enough to eliminate the size effect. In higher
dimensions, on the other hand, the decay of activity with
larger decay exponent (>0.45) appears to yield correlation
rapidly dying out. Neglecting these subtleties, the value of
ρc determined from the best power laws of ρa(t ) and ρsat (�)
appeared to differ depending on the authors in one dimension,
and accordingly, the critical exponents also differed. This
might be the cause of the scattered values of ρc and critical
exponents. The data of R(t ) from RISs, on the other hand,
exhibit fairly good power-law behavior for ρ = 0.89252 as
shown with a dashed line in Fig. 7, whereas data for the other
two values were about to deviate upward, suggesting that ρ =
0.89252 is close to the critical density and the other two values
are subcritical. The power, however, gives a wrong value of
1/z ≈ 0.59 that may yield a scaling anomaly, as explained in
Sec. I.

Because the static critical exponents such as β and ν⊥
remain unchanged for different initial states as was explained
in Sec. I and found in two dimensions, the critical density
should also remain the same for different initial states. In
addition, the critical exponents for NISs and UISs should be
the same, provided that the particle distribution is properly
homogenized. With this expectation, a simple way to avoid
subtleties on homogenization discussed earlier is to employ
the UISs. We therefore carried out simulations using UISs
on a system of size L = 3×105 up to t = 3×107. Plotted in
Fig. 8 are the data of ρa(t ) (upper plots) and R(t ) (lower plots)
for five selected values of ρ very close to ρc at which those
data are expected to show the best power-law behaviors in the
asymptotes. However, the local slopes of both the data of ρ(t )
and R(t ) plotted on a double logarithmic scale vary slowly,
making it difficult to estimate the powers. Focusing on the
data in the asymptotic limit, it appears that the best power
laws are observed for ρc = 0.89255. The effective exponents
were calculated from the data of both ρa(t ) and R(t ) generated
at ρc and the results obtained using n = 10 were plotted in the
smaller insets. (Note that a smaller value of n was used to
reflect slowly varying local slopes.) The effective exponents
indeed vary in time and become stationary for t > 5×105

as marked with arrows; thus the critical exponents should
be estimated in this region and they are θ = 0.148(2) and
1/z = 0.666(10), the errors of which are the standard devi-
ations of the effective exponents. If the decreasing trend of
θeff is assumed for longer time steps, the value of θ will be
even smaller and farther from the DP value and the value of
[16]. The smaller estimate of θ than that in [16] appears to
be attributable to a larger value of ρc. Plotted in the larger
insets are the steady-state values as a function of �. [Note
that the original data of ρa(t ) and R(t ) were not shown in
the main panel.] The power-law fits yield β = 0.30(1) and
ν⊥ = 1.198(3). It is worth emphasizing that the value of β

FIG. 8. Data of ρa(t ) (upper plots) and R(t ) (lower plots) for
five selected particle densities for, from bottom to top in the upper
plot and from top to bottom in the lower plot, ρ = 0.8925, 0.89254,
0.89255, 0.89256, and 0.8926. Data for ρc = 0.89255 show the best
power-law behaviors in both plots. Plotted in the smaller insets are
the local slopes defined in a similar way to Eq. (6) calculated using
the data in the main panels. The critical exponents and errors were
estimated from the data within the regions marked by the arrows. The
data in the larger insets are the steady-state values of ρa(t ) and R(t ),
and the red solid line is for comparison with the DP value.

is less reliable because data of ρsat yield curvature and may
become smaller if the data of smaller � are sampled. On
the other hand, data for Rsat (�) exhibit a good power-law
behavior and yield the power which is larger than the DP
value. If the value of ν⊥ for the Manna model is compatible to
the DP value, the data of Rsat should lie on the red solid line
or, at least, fluctuate around the line; however, it is not likely.
If the power-law fitting is examined with a smaller value of ρc

such that the estimate of θ is close to the DP value (as in [16]),
the value of ν⊥ will become larger and the data will deviate
farther from the DP line. In Ref. [28], the authors obtained
β = 0.278(2) and ν⊥ = 1.1(1), both of which were consistent
with the DP values and, with these values, they favored the
DP universality class, despite the exponents associated with
dynamics depending on the initial states. However, the plot of
Rsat (�) appears to rule out such a possibility. The finite-size
scaling and off-critical scaling of the data for R(t, L,�) in
Fig. 9 confirm our estimates.
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FIG. 9. Data for the (a) finite-size scaling of Eq. (3) and (b) off-
critical scaling of Eq. (4) for the data of R(t ) in the Manna model
in one dimension. Data for various size systems collapse in (a) and
those for different particle-densities fall onto a single curve in the
asymptotes in (b), when scaled with the estimated critical exponents
of ν⊥ = 1.198 and 1/z = 0.666. In (b) the chosen system sizes
L > 10 × (ρ − ρc )−ν⊥ were found to be sufficient to eliminate the
finite-size effect.

IV. SUMMARY AND CONCLUSIONS

We have studied APT critical behavior for the models in the
Manna class in one, two, and three dimensions, by employ-
ing an alternative method for measuring correlation lengths
coupled with a conventional method, using the two types of
homogeneous initial states. We have calculated R(t, L,�) by
MC simulations that is directly proportional to the spatial
correlation lengths for the Manna and CLG models using NISs
and UISs. The two initial states are expected to yield the same
critical behaviors provided that the initial particle distribution
is successfully homogenized.

In two dimensions, we have shown that data for R(t, L,�)
in the Manna model from the two initial states yielded con-
sistent critical exponents. In three dimensions, we presented
the critical exponents for the Manna model using UISs and
CLG model using NISs. The critical exponents of the two
models were found to be consistent, indicating that the two
models belong to the same universality class and the two
initial states yield the same critical behavior. The estimates
however differed from the values in the DP class.

We finally discussed controversial critical behavior of the
Manna model in one dimension. In the Manna model in one
dimension, the known critical density varied depending on
the authors; as a result, the critical exponents were scattered.
We first carried out MC simulations and calculated R(t ) for
the known critical densities using both RIS and NIS and

found that none of the data for the known critical densi-
ties exhibited the power-law behavior R(t ) ∼ t1/z when NISs
were employed. On the other hand, data from RISs yielded
a good power-law behavior for ρ = 0.89252, and those for
ρ = 0.89233 and ρ = 0.89215 deviated. This observation is
contrasted to that in higher dimensions where R(t ) for both
RISs and NISs yielded power-law behaviors at criticality but
with different powers. The cause of such an anomalous be-
havior was conjectured to be attributable to the correlations
among background particles. Although the homogeneity of
the distribution of inactive background particles has been ex-
amined by cumulative density fluctuation in the earlier works,
the background particles seemed to have been still correlated
in one dimension. We further studied the model using UISs
in which the correlations among background particles die out
within few lattice constants. The critical exponents estimated
from the data of R(t,�), 1/z 
 0.66, and ν⊥ 
 1.20 differed
slightly from the DP values of 1/z 
 0.63 and ν⊥ 
 1.1.
Although the difference is not large enough for classification
of different universality classes, the data of Rsat (�) appeared
not likely to follow the fitting line that is compatible to the
DP value. Considering this observation and together with the
results in higher dimensions, we concluded that the Manna
model belongs to the universality class that is distinct from the
DP class and the Manna universality class is an independent
class.

We have shown that R(t ) effectively gives critical expo-
nents associated with correlation lengths that are consistent
with those which were obtained from the conventional meth-
ods. Summarizing the advantages of using R(t ), it gives a
power-law behavior at the critical point; therefore, the data
of R(t ) may serve to accurately determine the critical point,
or at least, they can serve as an alternative method. R(t )
at the critical point and Rsat (�) in the supercritical region
enable one to measure directly the dynamic exponent and
spatial correlation-length exponent. The data of R(t ) may also
provide relevant information on the finite-size and crossover
behaviors at or near the critical point. We believe that similar
analysis can be applicable to other related problems in the
critical phenomena.
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