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We devise reduced-dimension metrics for effectively measuring the distance between two points (i.e., mi-
crostructures) in the microstructure space and quantifying the pathway associated with microstructural evolution,
based on a recently introduced set of hierarchical n-point polytope functions Pn. The Pn functions provide
the probability of finding particular n-point configurations associated with regular n polytopes in the material
system, and are a special subset of the standard n-point correlation functions Sn that effectively decompose the
structural features in the system into regular polyhedral basis with different symmetries. The nth order metric
�n is defined as the L1 norm associated with the Pn functions of two distinct microstructures. By choosing a
reference initial state (i.e., a microstructure associated with t0 = 0), the �n(t ) metrics quantify the evolution
of distinct polyhedral symmetries and can in principle capture emerging polyhedral symmetries that are not
apparent in the initial state. To demonstrate their utility, we apply the �n metrics to a two-dimensional binary
system undergoing spinodal decomposition to extract the phase separation dynamics via the temporal scaling
behavior of the corresponding �n(t ), which reveals mechanisms governing the evolution. Moreover, we employ
�n(t ) to analyze pattern evolution during vapor deposition of phase-separating alloy films with different surface
contact angles, which exhibit rich evolution dynamics including both unstable and oscillating patterns. The �n

metrics have potential applications in establishing quantitative processing-structure-property relationships, as
well as real-time processing control and optimization of complex heterogeneous material systems.
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I. INTRODUCTION

The time-dependent behaviors of materials under extreme
conditions (e.g., under ultrafast cyclic thermal loading in
additive manufacturing, or under chemically aggressive en-
vironment, or in the critical state of fracture) generally
depend on coupled (nonequilibrium) processes that induce
evolution of microstructural features on multilength and
timescales. Quantifying such microstructure evolution [i.e.,
four-dimensional (4D) material behavior] is a crucial first
step for understanding the physics governing the 4D material
behaviors and the design and optimization of the material
systems of interest.

One key challenge for microstructure quantification in-
volves the hierarchy of structural disorder across multiple
length scales [1]. Distinct from a crystalline or order system,
which only requires a small number of “representations” (such
as the set of lattice vectors) to uniquely and completely de-
termine the structure, disordered systems are typically much
more complex and require the specification of all degrees of
freedom (e.g., the coordinates of all atoms in a metallic glass,
or all pixel values for an image of a disordered composite
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material) for a complete description. Therefore, an alternative
approach to quantification of disordered materials is to derive
reduced dimension representations that statistically capture
the key features of the systems, e.g., those crucial to determin-
ing the physical properties, instead of a precise description all
of structural details [2–4].

Examples of quantitative representation of disordered
systems include Gaussian random fields [5], geometric de-
scriptors (e.g., grain or particle size and shape distribution)
[6–9], spectral density functions [10–12], and n-point cor-
relation functions [2,3,13–27], to name but a few. The
encoding process of these methods (e.g., extracting the
representations from available structural or imaging data)
are typically manually defined with clearly physical inter-
pretations. However, due to the manual definitions, these
representations often have limited degrees of freedom to ap-
proach completeness for arbitrary material systems [28–30].
On the other hand, machine learning (ML) techniques have
recently been extensively applied in representation learn-
ing for complex disordered material systems. Most of
these ML approaches propose either complete but non-
explainable, or explainable but incomplete representations.
The former include purely data-driven generative models,
e.g., restricted Boltzmann machines [31], variational autoen-
coders [32], and generative adversarial networks [33,34],
where a concise and near-complete representation is learned
through microstructure samples, yet the encoders of which
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are composed of general-purpose neural networks and are
nonexplainable.

Among other descriptors, the n-point correlation functions
Sn encode the occurrence probabilities of specific n-point con-
figurations in the microstructure [35]. The set of correlation
functions up to infinite orders fully characterizes a random
field [1,35], and is therefore asymptotically complete. While
it is empirically shown that some material systems can be
represented by concise sets of lower-order correlation func-
tions, e.g., metallic alloys, ceramic matrix composites, and
certain porous systems [36–43], there is currently a lack of
systematic tools for choosing a concise and nearly complete
set of correlations for any particular material system [44]. In
the case when standard lower-order functions, such as the two-
point correlation functions S2, are not sufficient to characterize
the system of interest, one can either incorporate nonstandard
lower-order functions encoding, e.g., clustering or surface in-
formation [4], or employ higher-order functions (e.g., S3) [27].
However, the complexity involved in computing higher-order
functions Sn with n � 4 strongly limits their applications in
material modeling.

Recently, we have introduced a set of hierarchical n-point
polytope functions Pn [45,46]. The Pn functions provide the
probability of finding particular n-point configurations asso-
ciated with regular n polytopes in the material system, and
a special subset of the standard n-point correlation functions
Sn that effectively decomposes the structural features in the
systems into regular polyhedral basis with different symmetry,
and thus, encode partial higher-order correlation information.
We have successfully employed time-dependent Pn functions
to quantify evolving patterns during thin film deposition [47],
inspired by the work on time-dependent two-point correlation
functions [36,39,48,49].

Here, we further devise reduced-dimension metrics for
effectively measuring the distance between two points (i.e.,
microstructures) in the microstructure space and quantifying
the pathway associated with microstructural evolution, based
on the Pn functions. In particular, the nth-order metric �n is
defined as the L1 norm associated with the Pn functions of
two distinct microstructures. By choosing a reference initial
state (i.e., a microstructure associated with t0 = 0), the �n(t )
set quantifies the evolution of distinct polyhedral symmetries
and can in principle capture emerging polyhedral symmetries
that are not apparent in the initial state. To demonstrate their
utility, we apply the �n metrics to a two-dimensional (2D) bi-
nary system undergoing spinodal decomposition to extract the
phase separation dynamics via the temporal scaling behavior
of the corresponding �n(t ). Moreover, we employ �n(t ) to
analyze pattern evolution during vapor deposition of phase-
separating alloy films with different surface contact angles,
which exhibit rich evolution dynamics including both unstable
and oscillating patterns.

We note that the two-point correlation functions S2 have
been employed to analyze the dynamical scaling of evolving
systems by extracting a growing length scale �(t ) [36,50]. In
particular, it has been shown that S2(r; t ) ∼ f [r/�(t )], where
the functional form of f depends on the microstructure and
spatial correlations, and �(t ) ∼ (t − t0)α , where α is a uni-
versal constant only depending on the growth mechanisms
and not on the microscopic details of the system [50]. While

the length scale analysis directly provides information on
growth mechanisms, here our �n(t ) metrics also emphasize
microstructure information, and reflects the dynamic path of
the evolution of the system in the microstructure space.

The rest of the paper is organized as follows: In Sec. II, we
describe in detail the definition of the polytope functions Pn,
the associated metric �n, as well as the phase-field models
for generating microstructural evolution data. In particular,
we derive the temporal scaling of �n(t ) and its connection
to the temporal scaling of the volume fraction of the evolving
system that typically encodes the dynamics signature of the
underlying physics. In Sec. III, we present the analysis of a 2D
binary system undergoing spinodal decomposition and pattern
evolution during vapor deposition of phase-separating alloy
films, using the �n(t ) metrics. In Sec. IV, we provide con-
cluding remarks and discuss potential applications of �n(t )
in establishing quantitative processing-structure-property re-
lationships, as well as in real-time processing control and
optimization of complex heterogeneous material systems.

II. METHODS

A. n-point polytope functions

Without loss of generality, consider a heterogeneous ma-
terial system in d-dimensional Euclidean space Rd with an
evolving binary microstructure in a constant volume V . The
snapshot of the microstructure at specific time point t is
completely determined by the associated indicator function
L(i)(x; t ), i.e.,

L(i)(x; t ) =
{

1, x ∈ Vi

0, x ∈ Vi,
(1)

where x is a position vector in Rd , i = 1, 2 is the phase
indicator, and Vi indicates regions associated with phase i. The
standard n-point correlation function S(i)

n (x1, x2, . . . , xn; t ) is
defined as [1,35]

S(i)
n (x1, x2, . . . , xn; t ) = 〈L(i)(x1; t )L(i)(x2; t ) . . .L(i)(xn; t )〉

(2)

where 〈· 〉 denotes ensemble average. S(i)
n (Xn; t ), where Xn =

{x1, x2, . . . , xn} provides the probability of finding a specific
n-point configuration defined by Xn in the phase of interest
(i.e., phase i) at time t . In the subsequent discussions, we will
drop the phase indicator i for convenience and Sn(Xn; t ) is
always associated with the phase of interest.

In Refs. [45,46], we introduced a special subset of the
standard Sn, which we referred to as the n-point polytope
functions Pn(r; t ), i.e.,

Pn(r; t ) = Sn[Xn | Xn ∈ P (n; r); t], (3)

where P (n; r) is the set of vertices of a d-dimensional regular
polytope with n vertices and edge length r. Pn(r; t ) provides
the probability that all of the vertices of a regular n polytope
with edge length r fall into the phase of interest when the
polytope is randomly placed (both transitionally and rota-
tionally) in the material system at time t . For a statistically
homogeneous and isotropic system without long-range orders,
Pn(r = 0; t ) = φ(t ) and Pn(r → ∞; t ) = φn(t ), where φ(t ) is
the volume fraction (i.e., probability of a finding a randomly
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FIG. 1. Schematic illustration of the n-point polytope functions Pn.

placed point falling into the phase of interest) at time t (see
Fig. 1 for illustration). These behaviors allow us to introduce
a normalized form of Pn(r; t ), i.e.,

fn(r; t ) = Pn(r; t ) − φn(t )

φ(t ) − φn(t )
. (4)

It is clear from Eq. (4) that fn(r = 0; t ) = 1 and fn(r →
∞; t ) = 0.

We note that in R2, n can take any integer number greater
than d = 2; while in R3, there are only 5 regular polyhe-
dra (i.e., the Platonic solids, with n = 4, 6, 8, 12, 20) and 13
semiregular polyhedra (i.e., the Archimedean solids) that pos-
sess uniform lengths for all edges. It has been shown [45–47]
that the Pn functions can successively include higher-order
n-point statistics of the features of interest in the microstruc-
ture in a concise, explainable and computationally feasible
manner, and can be efficiently computed from given imaging
data of the material systems. In addition, the Pn functions
effectively “decompose” the structural features of interest into
a set of “polytope basis,” allowing one to easily detect any un-
derlying symmetry or emerging features during the structural
evolution. Their information content is also investigated via
inverse microstructure reconstructions [46].

B. Pn-based distance metrics �n for microstructure space

The polytope functions Pn allow us to compute correspond-
ing scalar metrics �n that effectively measure the “distance”
between to points (i.e., two distinct microstructures) in the
microstructure space. Without loss of generality, consider an
evolving microstructure M(t ) that is driven by some external
stimuli. We define the distance metric �n between the mi-
crostructure M(t1) and M(t2) as

�n(t ) = 1

N (L)

L∑
r=0

|Pn(r; t2) − Pn(r; t1)|, (5)

where | · | is the L1 norm, t = t2 − t1, L is the edge length of
the largest polytope considered, and N (L) is the number of

different sized polytopes. We note that �n defined in Eq. (5)
quantifies the distinctions between M(t1) and M(t2) with
respect to specific n-point correlations corresponding to the
n-polytope configurations. L1 norm is used here so that the
temporal scaling in the volume fraction can be preserved.
Similar metrics based on the L1 norm have been recently
employed by Lavrukhin et al. to probe the homogeneity
conditions implicitly assumed in the study of heterogeneous
materials [51].

In the analysis of an evolving microstructure, it is con-
venient to select a global reference point, e.g., the initial
microstructure M(t = 0). In this case, �n(t ) measures the
“distance” from the microstructure M(t ) at time t to the initial
microstructure in the microstructure space, i.e.,

�n(t ) = 1

N (L)

L∑
r=0

|Pn(r; t ) − Pn(r; t = 0)|. (6)

In the subsequent analysis, we will show that although the ac-
tual value of the �n metrics depend on the choice of the global
reference point, their temporal scaling behaviors encoding
dynamics of the evolving microstructure are independent of
the choice of the reference, when the dynamics governing the
evolution is temporally homogeneous.

It is also useful to consider the distance between two suc-
cessive snapshots of microstructures M(t ) and M(t − δt )
during the entire evolution process. This allows us to intro-
duce the metric δ�n(t ), i.e.,

δ�n(t ) = 1

N (L)

L∑
r=0

|Pn(r; t ) − Pn(r; t − δt )|. (7)

We note that δ�n(t ) is generally different from the differential
of �n(t ), i.e.,

δ�n(t ) �= d�n(t ) = �n(t ) − �n(t − δt ), (8)

unless Pn(r; t ) is a monotonic increasing function of t for all
r.

Although the �n metrics are introduced based on Pn

functions in this work, they can be readily generalized to
incorporate the widest class of known spatial correlation
functions for the evolving microstructure, e.g., including the
lineal-path function L [52], surface correlation functions Fss

and Fsv [53], cluster functions C2(r) [54], and the pore-size
distribution function P(r) [55]. Specifically, one only needs
to replace the function Pn in Eqs. (6) and (7) with the corre-
sponding correlation function of interest. The meaning of such
defined � metric corresponds to the distance between two
microstructures as measured with respect to the corresponding
correlation function. In addition, although our main focus here
is binary microstructures, the �n metrics can be readily gener-
alized for multiphase systems. For example, we can separately
compute �(i)

n for each phase i and compute the cross-phase
�

(i j)
n based on the proper cross-correlation functions.

C. Time-dependent �n(t ) and temporal scaling of
volume fraction

The time-dependent �n(t ) metrics defined in Sec. II B
encode information of the evolution dynamics of the material
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system, which can be assessed from the temporal scaling anal-
ysis of these metrics. Here we show how the temporal scaling
of the volume fraction for the phase of interest is encoded and
can be extracted from the scaling behavior of �n(t ), under
certain conditions. We note that Eq. (4) allows us to express Pn

explicitly in forms of fn and φ. For simplicity, we first assume
that temporal evolution of Pn(r; t ) is solely due to φ(t ) [36],
i.e.,

Pn(r; t ) = [φ(t ) − φn(t )] fn(r) + φn(t ). (9)

Physically, this corresponds to the situation where the “corre-
lations” between the material phases are preserved while the
phase volume fractions of the system evolve, e.g., during the
early stage of growth following site-saturation nucleation.

Combining Eq. (9) with Eq. (6), we have

�n(t ) = 1

N (L)

L∑
r=0

| fn(r)γ (t ) + [1 − fn(r)]γn(t )|, (10)

where

γ (t ) = φ(t ) − φ(0) (11)

characterizes the temporal scaling of volume fraction and

γn(t ) = φn(t ) − φn(0). (12)

Since the volume fraction φ ∈ (0, 1), we have φn 	 φ

for higher-order n. Similarly, it is clear from the above two
equations that for higher-order n, |γn(t )| 	 |γ (t )|, and thus
the temporal scaling of �n(t ) is mainly dominated by |γ (t )|
(i.e., the scaling of volume fraction):

�n(t ) ∼ Hn|γ (t )|, (13)

where

Hn = 1

N (L)

L∑
r=0

| fn(r)|. (14)

We note that when the scaled function fn is also time depen-
dent, we have Hn(t ) and the scaling behavior of �n(t ) will
depend on both Hn(t ) and γ (t ).

Following the same analysis, we can obtain the temporal
scaling behavior for δ�n(t ), i.e.,

δ�n(t ) = 1

N (L)

L∑
r=0

| fn(r)ω(t ) + [1 − fn(r)]ωn(t )|, (15)

where

ω(t ) = φ(t ) − φ(t − δt ) = δφ(t ) (16)

and

ωn(t ) = φn(t ) − φn(t − δt ). (17)

Similar, for higher-order n, the scaling behavior of δ�n(t ) is
mainly determined by δφ(t ), i.e.,

δ�n(t ) ∼ Hn|δφ(t )|, (18)

where Hn is given by Eq. (14).

D. Phase-field models for microstructure evolution

To demonstrate the utility of the �n(t ) for quantifying
microstructure evolution, we will employ phas-field models
to generate 4D data for a variety of evolving material systems.
Specifically, we will consider a binary Cahn-Hilliard model
with a double-well potential, which has been widely used to
simulate phase separation in a simple binary system. First, we
will simulate the microstructural evolution of a 2D system
using the binary model. Next, we will employ a recently
developed ternary Cahn-Hilliard model [47] to simulate the
temporal evolution of a deposition process of a binary thin
film exposed to a vapor phase.

We note that in this section, the symbol φ is used as the
order parameter for the phase-field models, following the con-
vention in literature, which explicitly depends on the position
vectors, i.e., φ(x). It should not be confused with the phase
volume fraction discussed in the previous sections.

1. Binary Cahn-Hilliard model

Phase separation in a two-phase bulk system are governed
by minimizing the total free energy of the system, represented
by the equation

F =
∫

V

[
f (φ) + 1

2
κ|∇φ|2

]
dV, (19)

where φ is a conserved order parameter, representing the
composition of the phases, κ is the gradient free energy co-
efficient of the concentration fields, and the chemical free
energy density is defined by a double-well potential, f (φ) =
1
4W φ2(1 − φ)2. W is the well height which penalizes all states
other than 0 and 1. The kinetics of phase separation are sim-
ulated by solving the Cahn-Hilliard equation [56], given by

∂φ

∂t
= ∇ · (M∇μ), (20)

where μ denotes the chemical potential, and is given by
the variational derivative of the free energy functional with
respect to the order parameter, ∂F/∂φ. M denotes the mobil-
ity term, which is independent of composition in our study.
The temporal evolution of φ is obtained by incorporating
the variational derivative of the free energy functional in the
Cahn-Hilliard equation, with the expression

∂φ

∂t
= M∇2

(
1

2
W (2φ3 − 3φ2 + φ) − κ∇2φ

)
(21)

Equation (21) is made dimensionless by using reduced vari-
ables [57] which are given by x∗ = x/�x, M∗ = M/(M0kBT ),
∇∗ = (�x)2∇, W ∗ = W/(kBT ), κ∗ = κ/[(�x)2kBT ], and
t∗ = M0t/(�x)2, where �x is the grid spacing, M0 is an
arbitrarily defined temperature-dependent bulk mobility, and
kB is the Boltzmann constant.

2. Ternary Cahn-Hilliard model

In order to simulate temporal evolution of a binary film
exposed to a vapor phase, we adapt a ternary Cahn-Hilliard
model for vapor deposition [47,56,58,59], by assigning field
variables to the A-rich and B-rich phases within the film, and
the vapor phase within a film-vapor model framework. The
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evolution is governed by a phenomenological minimization
of the free energy functional, given by

F =
∫

V
Nv[ f (φA, φB, φv ) + κA(∇φA)2

+ κB(∇φB)2 + κv (∇φv )2]dV, (22)

where Nv is the number of molecules per unit volume (as-
sumed independent of composition and position) and κi (i =
A, B, and ν) are the gradient energy coefficients. We main-
tain mass conservation by imposing φA + φB + φv = 1. The
chemical free energy expression is based on a regular solution,
and written as

1

kBT
f (φA, φB, φv ) =

∑
i �= j

χi jφiφ j +
∑

i

φi ln φi, (23)

where χi j (i, j = A, B, v; i �= j) are the pairwise interaction
energies between the components, kB is the Boltzmann con-
stant, and T the absolute temperature.

The kinetics of phase separation are obtained via a conti-
nuity equation, given by

∂φi

∂t
= −∇ · Ji

′ (i = A, B, v), (24)

where Ji
′ is the total flux of each component in the system.

We adopt a formulation that incorporates the net vacancy
flux coupled with a Gibbs-Duhem relation as elaborated by
Raghavan et al. [47] and others [60–63] to derive the temporal
evolution of the A and B-rich phases,

∂φA

∂t
= MAA∇2[(∂ f /∂φA) − 2κAA∇2φA − 2κAB∇2φB]

+ MAB∇2[(∂ f /∂φB) − 2κBA∇2φA − 2κBB∇2φB]

(25)

and
∂φB

∂t
= MBB∇2[(∂ f /∂φB) − 2κBB∇2φB − 2κBA∇2φB]

+ MAB∇2[(∂ f /∂φA) − 2κAB∇2φB − 2κAA∇2φA],

(26)

where κAA = κA + κv , κBB = κB + κv , and κAB = κBA = κv

are the gradient parameters. MAA and MBB are the atomic
mobilities of A and B atoms in non-A-rich and non-B-rich
phases, respectively, while MAB and MBA are mobilities of A
atoms in B-rich phase and B atoms in A-rich phase, respec-
tively [61,62]. These are related to the diffusion coefficients
of the alloying components, Di, via a Nernst-Einstein relation
[47,64]

Mii = 1

kBT
Diφi(1 − φi) (i, j = A, B, v) (27)

and

Mi j = 1

kBT
Diφiφ j (i, j = A, B, v, i �= j). (28)

Equations (25) and (26) are first made dimensionless by us-
ing the relation l∗ = (κi/2kBT )1/2�x and t∗ = (kBT/M∗

ii l
∗2)

where l∗ and t∗ are the characteristic length and time, respec-
tively, and M∗

ii is the dimensional value of mobility for phases

i = A, B. The dimensionless forms of these equations are then
solved via an explicit finite difference scheme for temporal
and spatial derivatives.

The evolution of hillocks on the film surface are governed
by the interplay of the energies at the interface between A-rich
and B-rich phases, and the surface energy of the film. This
relationship is encapsulated within Young’s equation as

θ = 2 cos−1

(
σAB

2σ f v

)
, (29)

where θ is the contact angle at the surface, σAB is the inter-
facial energy between the phase-separated A-rich and B-rich
domains, and σ f v is the energy of the film surface in contact
with the vapor phase. f denotes the phase (A rich or B rich)
at the film surface which is in contact with the vapor phase.
The surface energies of both A-rich and B-rich phases in
contact with the vapor phase are assumed to be equal. The
methodology employed to calculate the contact angles and
other model-specific information is available in [47].

III. RESULTS

A. Analysis of binary double-well system in 2D

To demonstrate the utility of the �n and δ�n metrics, we
first apply them to quantify the evolution of a 2D binary
system driven by a Cahn-Hilliard model with a double-well
potential (see Sec. II D for details). It is well known that
such a system undergoes a rapid phase separation via spinodal
decomposition. For this system, it is natural to choose the
initial configuration as the reference state to compute �n(t )
via Eq. (6).

Figure 2 upper panels show the selected snapshots of the
evolving system, from which one can clearly see the rapid
development of the dark phase during the initial stages of the
phase separation, which asymptotically slows down. Figure 2
lower panels show the Pn (with n = 2, 3, 4, 6, 8) for each of
these snapshots. A growing length scale can be clearly identi-
fied from all of the Pn functions, manifested as slower decay
of the functions associated with the snapshots corresponding
to the later stages of the phase separation. We note that an es-
timate of this growing length scale can be obtained by finding
the distance corresponding to the first local minimum in P2

[36], which clearly shifts to larger distance as the phase sep-
aration proceeds. The microstructures of this binary system
at all time points are composed of disordered interpenetrating
morphology typically seen in a spinodal decomposition, with-
out special symmetry emerging. Therefore, all Pn functions
rapidly decay to their corresponding long-range asymptotic
values with several oscillations at small r. This is distinctly
different from the patterns associated with the hillock growth
process analyzed in the subsequent section, where patterns
with significant fourfold symmetry emerge during the evolu-
tion.

Figure 3 shows the �n metrics in both linear scale (a)
and logarithmic scale (b). It can be seen from Fig. 3(a) that
all �n(t ) rapidly converge to their corresponding long-time
asymptotic values. We note that �2(t ) for the system is sig-
nificantly lower in values compared to �3(t ) and �4(t ). This
can be understood from Eq. (10): the coefficient H2 defined by
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FIG. 2. Upper panels: Snapshots of the evolving 2D binary system with the double-well potential at selected time points. Lower panels:
The associated n-point polytope functions Pn at the corresponding time points (indicated by the same color code). The unit of distance r is in
pixels.

(14) is small since P2(r) [i.e., f2(r)] is an oscillating function
of r with alternative positive and negative values, leading to a
small sum

∑
r f2(r) and thus, small H2. Therefore, the scaling

of �2(t ) is mainly dominated by its higher-order term, i.e.,
�2(t ) ∼ γ2(t ), leading to smaller values compared to �3(t )
and �4(t ). Material systems with H2 = 0 are called hyperuni-
form, which is a recently discovered exotic disordered state
in condensed matter systems [41,65]. The logarithmic plot
in Fig. 3(b) shows the similar timescaling behaviors for all
�n(t ), confirming the approximation (13). Based on (13) we
obtain �n(t ) ∼ tα where α ≈ 0.645.

Figure 3(c) shows δ�n(t ) for the system, which reflects the
differential change of the system as quantified by different Pn

functions as time increases. Based on Eq. (18), δ�n(t ) are
mainly determined by the differential change of the volume
fraction δφ(t ), which approaches 0 towards the later stages
of the phase separation (i.e., as volume fraction does not sig-
nificantly change anymore). This is consistent with the trend
for �n(t ) as well, which converge to the long-time asymptotic
values towards the later stages of the evolution.

B. Analysis of pattern evolution in thin film deposition

With the utilities of �n(t ) and δ�n(t ) illustrated and ver-
ified in the simple binary system discussed in Sec. III A, we
now employ them to analyze the pattern evolution in hillock
formation during vapor deposition of phase-separating alloy
films [57,66,67]. The evolution of the alloy films has been
investigated in detail in Ref. [47], which was simulated via
the phase-field model briefly described in Sec. II D. Figure 4
shows representative snapshots of the growing film containing
hillocks with contact angle θ = 32◦ at film-vapor interface
(see Ref. [47] for details). Here we will focus on the dynamics
of the top slices of the systems at different times during the
film growth. This is motivated by the fact that experimentally
the (nanostructured) top surface could be imaged via in situ
characterizations (such as scanning electron microscopy or
transmission electron microscopy). We note this is equiva-
lent to taking the x-y slices of the thin film configurations
associated with different height along the z axis starting from
the bottom with z = 0. Without loss of generality, we only
focus on characterizing one of the alloy phases (e.g., the blue

FIG. 3. �n metrics for the 2D binary system in both linear scale (a) and logarithmic scale (b) with least-square linear fits indicated by
dashed lines. δ�n(t ) for the system is shown in (c).
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FIG. 4. Representative snapshots of the growing film contain-
ing hillocks with contact angle θ = 32◦ at film-vapor interface (see
Ref. [47] for details).

phase). We also note that the characteristic length scale of the
alloy films analyzed here is a few hundred nanometers, and
thus, should be referred to as nanostructures. In the follow-
ing, we will still refer to them as “microstructure” with the
understanding that such microstructures contain features on
nanoscales.

1. Pattern evolution with surface contact angle θ = 32◦

Figure 5 (upper panels) shows representative snapshots of
the top surface patterns associated with the blue phase at dif-
ferent time points during the film growth. It can be clearly seen
that the evolving patterns exhibit a fourfold symmetry, which
is inherited from the initial configuration [47]. In Ref. [47],
we have shown that after an initial “transition” period, the
surface patterns for both alloy phases start to oscillate as time
proceeds, e.g., one of the phases starts to grow from smaller
seeds and dominate the pattern which is then gradually taken
over by the other phase. Figure 5 (lower panels) shows the
corresponding Pn functions for the snapshots. Different from
the simple binary system analyzed in Sec. III A, the fourfold
symmetry of the patterns is clearly manifested as the strong
peaks in both P2 and P4, associated with the same distance
r. The fourfold symmetry and the resulting periodicity of the
structures also lead to the strong peaks observed in P3, P6,

and P6, albeit the distances associated with these peaks are
different from those in P2 and P4.

Figure 6 shows the �n metrics in both linear scale (a)
and logarithmic scale (b), with the reference pattern chosen
at t = 0. It can be seen from Fig. 6(a) that all �n(t ) exhibit
almost periodic oscillations for the entire evolution, while the
peak values of the oscillations fluctuate during the early stages
of the evolution and subsequently converge to a steady value.
These features are consistent with the observed dynamics of
the top surface pattern of the system: the initial fluctuations of
the peaks values correspond to the “transition” period of the
pattern evolution. On the other hand, the steady peak values
correspond to steady oscillations of the top surface patterns
resulted from alternating dominant red and blue phases as
described above. In addition, the magnitude of �n(t ) at a
fixed t decreases as n increases, due to the smaller magnitude
of Pn(r) (for r > 0) as n increases. All �n(t ) exhibit similar
timescaling behaviors, as can be seem from the logarithmic
plot shown in Fig. 6(b). We note that since �n(t ) are oscillat-
ing functions of t , we only focus on the temporal scaling of
the peak values with respect to the corresponding long-time
asymptotic limit �n(∞), i.e., |�n(t ) − �n(∞)| ∼ tα where
α ≈ 0.557.

Figure 6(c) shows δ�n(t ) for the system, which exhibits a
very similar trend as seen in �n(t ). In particular, all δ�n(t )
exhibit almost periodic oscillations; the peak values of these
oscillations fluctuate during the early transition stages of the
evolution and subsequently converge to a steady value. A
closer inspection reveals the peak positions of δ�n(t ) corre-
spond to valleys of �n(t ), where the largest rate of change of
�n(t ) occurs. These features indicate that the fastest structural
dynamics are associated with the valleys of �n(t ), corre-
sponding to patterns reminiscent of the initial configuration
at t = 0.

For an oscillating system, the choice of initial reference
state is not unique. Figure 7 shows the �∗

n(t ) metrics for the
system with a different reference state, which is chosen to
be the one corresponding to the highest peak of �2(t ) for

FIG. 5. Upper panels: Representative snapshots of the top surface patterns associated with the blue phase at different time points during
the film growth with contact angle θ = 32◦. Lower panels: The associated n-point polytope functions Pn at the corresponding time points
(indicated by the same color code). The unit of distance r is in pixels.
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FIG. 6. �n metrics for the evolving surface patterns during the film growth with contact angle θ = 32◦ in both linear scale (a) and
logarithmic scale (b) with least-square linear fit shown as a dashed line. δ�n(t ) for the system is shown in (c).

all t , denoted by M∗
0. Based on the physical interpretation

of �n, which is an effective measure of the distance between
two microstructures in the material microstructure space, M∗

0
represents the microstructure that has the largest distance, or
in other words, distinct most from, all the other microstruc-
tures (patterns) during the evolution. We note that the effective
distance between two microstructures can be different based
on different Pn measures. These features are all reflected in
Fig. 7(a). In particular, one can clearly see that all �∗

n(t )
exhibit coherent converging behavior as t increases, and each
�∗

n(t ) converges to a set of distinct asymptotic lower and
upper bounds for their steady oscillations, indicating different
distances to M∗

0 as measured via different Pn. Figure 7(b)
shows the logarithmic plot of �∗

n(t ), from which we extract
the temporal scaling behavior |�∗

n(t ) − �
∗
n(∞)| ∼ tα∗

where
α∗ ≈ 0.594, which is consistent with α ≈ 0.557 estimated
above, and �

∗
n(∞) is the long-time asymptotic limit of �∗

n(t ).
These results indicate that the key behaviors of the system
encoded in �n metrics do not depend on the choice of the
reference states.

2. Pattern evolution with surface contact angle θ = 51◦

Following the same procedure, we now employ �n(t ) to
characterize the pattern evolution during the thin film growth
with contact angle θ = 51◦. Figure 8, upper panels, show

representative snapshots of the top surface patterns associated
with the blue phase at different time points during the film
growth; and Fig. 8, lower panels, show the corresponding Pn

functions at selected time points. Similar to the system with
θ = 32◦, the patterns exhibit significant fourfold symmetry
inherited from the initial pattern, which leads to the signifi-
cant peaks in Pn functions. Figure 9 shows the �n(t ) in both
linear (a) and logarithmic scales (b). It can be seen that all
�n(t ) exhibit a shorter transition zone and rapidly converge to
the steady oscillation stage. We extract the temporal scaling
behavior |�n(t ) − �n(∞)| ∼ tα where α ≈ 0.689, which is
larger than the corresponding scaling parameter for the sys-
tem with θ = 32◦, indicating faster converging behaviors. The
δ�n(t ) metrics are shown in Fig. 9(c), which again exhibits
a very similar trend as seen in �n(t ). The peak positions of
δ�n(t ) also correspond to valleys of �n(t ), indicating the
largest rate of change of �n(t ) and the fastest structural dy-
namics occur at these patterns.

IV. CONCLUSIONS AND DISCUSSION

In summary, we have introduced a set of reduced-
dimension metrics, referred to as �n which are based on
the set of hierarchical n-point polytope functions Pn, for ef-
fectively measuring the distance between two points (i.e.,
microstructures) in the microstructure space and quantifying

FIG. 7. The �∗
n(t ) metrics for the the evolving surface patterns during the film growth with contact angle θ = 32◦ with a different reference

state. (a) respectively shows the original reference (upper panel) and the new reference (lower panel). (b) shows �∗
n(t ) in linear scale and

(c) shows �∗
n(t ) in logarithmic scale with linear fitting shown as a dashed line.
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FIG. 8. Upper panels: Representative snapshots of the top surface patterns associated with the blue phase at different time points during
the film growth with contact angle θ = 51◦. Lower panels: The associated n-point polytope functions Pn at the corresponding time points
(indicated by the same color code). The unit of distance r is in pixels.

the pathway associated with microstructural evolution. By
choosing a reference initial state (i.e., a microstructure as-
sociated with t0 = 0), the �n(t ) set quantifies the evolution
of distinct polyhedral symmetries and can in principle cap-
ture emerging polyhedral symmetries that are not apparent in
the initial state [45]. We have also investigated the temporal
scaling behaviors of �n(t ) and showed that the evolution dy-
namics revealing the physical mechanics of the systems can be
extracted from the scaling behaviors of �n(t ). To demonstrate
their utility, we have applied the �n metrics to characterize
a 2D binary system undergoing spinodal decomposition and
extract the evolution dynamics via the temporal scaling be-
havior of the corresponding �n(t ). We have also employed
�n(t ) to quantify pattern evolution during vapor deposition
of phase-separating alloy films with different surface contact
angles, which exhibit rich evolution dynamics including both
unstable and oscillating patterns.

We note that the �n metrics are merely a special ex-
ample of correlation function–based distance measures of
microstructure space. Similar metrics can be defined for
special lower-order functions [4] such as two-point cluster
function C2(r), the surface-surface correlation function Fss(r),
the lineal-path function L(r), and the pore-size distribution

function P(r), to name but a few. The corresponding � metric
quantifies the effective distance between two microstructures,
mainly resulted from the distinction of the structural features
quantified by the specific correlation functions. For example,
the metric �C based on the cluster function C2 distinguishes
two microstructures based on their degrees of clustering,
while these two microstructures may possess identical P2 and
�2 = 0 [29,30].

The �n metrics, when combined with in situ microstruc-
tural characterization tools (such as x-ray tomographic
microscopy), allow one to quantitatively monitor the struc-
tural evolution in real time. During a manufacturing process,
this will enable us to apply real-time control of the pro-
cessing conditions in order to control the microstructure
evolution pathway, which is highly desirable for mate-
rial optimization. In this work, we have used the L1

norm in the definition of �n, which allowed us to extract
temporal scaling that characterizes the dynamics of the struc-
tural evolution. This can also be generalized to use more
sophisticated weighted norms that approximately connect the
Pn functions to the physical properties of the material sys-
tem [45]. We will explore these directions in our future
work.

FIG. 9. �n metrics for the evolving surface patterns during the film growth with contact angle θ = 51◦ in both linear scale (a) and
logarithmic scale (b) with least-square linear fitting shown as a dashed line. δ�n(t ) for the system is shown in (c).
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