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Efficient explicit numerical solutions of the time-dependent Schrödinger equation
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Explicit numerical solutions of the time-dependent Schrödinger equation are more efficient than those obtained
by commonly used implicit approaches. They are more practical, especially for a system with higher spatial
dimensions. To that end, we introduce a generalization of an explicit three-level method to obtain solutions
with spatial and temporal errors of the order of O[(�x)2r] and O[(�t )2M+3], where �x and �t are the spatial
and temporal grid elements, and r and M are positive integers. Sample calculations illustrate the efficacy and
stability of the algorithm.
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I. INTRODUCTION

Since solutions of the time-dependent Schrödinger equa-
tion are fundamental to understanding the behavior of
nonrelativistic quantum systems, methods of numerical solu-
tions as well as improvements on existing methods continue
to be explored. For example, we have investigated a general-
ization of the Crank-Nicolson method [1] and compared that
to an efficient method involving the Chebyshev expansion of
the time-evolution operator [2–4]. The former generalization
involves replacing the time-evolution operator by a factorized
Padé approximant and ordering the factors so that at each
stage, unitarity is maintained. This implicit approach calls
for solutions of systems of J linear algebraic equations in J
unknowns, where J is the number of spatial grid points. The
advantage of the generalized Crank-Nicolson approach is that
it preserves unitarity and is unconditionally stable. Spatial
integration may be accomplished by spectral, split-operator,
difference, or compact-high-order difference methods, as well
as other approaches [4].

The explicit, rather than implicit, methods basically in-
volve the determination of the wave function at a time in
terms of an algebraic expression of the wave function at earlier
times. The simplest forward-time-centered-space algorithm,
which is explicit and expresses the wave function at an in-
stant in terms of the wave function a time step earlier, is
unconditionally unstable [5]. A noteworthy modification of
this procedure, so that the wave function at a particular time
is expressed in terms of wave functions at two earlier times,
permits a stable scheme. This technique was discussed by
Askar and Cakmak [6]; subsequently, it was pointed out [7]
that the method was originally proposed by Harmuth [8].

In this paper, we exploit this approach to obtain a numeric
wave function that is accurate in time to the order of (�t )2M+3

for some non-negative integer M. If, furthermore, we use a
generalized forward-time-centered-space expansion, the re-
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sults will also be accurate to the order of (�x)2r for a positive
integral value of r. The approximation involves a polynomial
expansion of the time-evolution operator which is factored
into binomials. Even though unitarity is not manifestly pre-
served, this leads to an explicit solution at each stage, with
the obvious advantage of a much reduced number of basic
operations and a commensurate gain in computational speed
compared with the generalized Crank-Nicolson method. As it
turns out, the calculations can be very precise, and the lack
of assured unitarity may be used to advantage to monitor the
stability and reliability of the algorithm.

The method, its stability, and accuracy of the solution are
discussed in Sec. II, as well as extensions to higher spatial
dimensions. Section III consists of examples that illustrate the
efficacy of the approach; conclusions and comments are found
in Sec. IV.

II. METHOD OF INTEGRATIONS

The aim is to develop a straightforward, explicit, but ac-
curate, method of solving the time-dependent initial-value
Schrödinger equation,(

ih̄
∂

∂t
− H

)
ψ (r, t ) = 0, ψ (r, tinit ) = φ(r), (2.1)

with the time-independent Hamiltonian

H = − h̄2

2m
∇2 + V (r), (2.2)

where φ(r) is the wave function at initial time tinit . The be-
havior of the system in time can be expressed in terms of the
time-evolution operator acting on the wave function at time t ,
which yields the wave function at time t + �t , i.e.,

ψ (r, t + �t ) = e−iH�t/h̄ψ (r, t ). (2.3)

The simplest, lowest-order expansion of the time-evolution
operator gives

e−iH�t/h̄ = 1 − iH�t/h̄ + O[(�t )2]. (2.4)
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In this approximation, the wave function evolves according to
the forward Euler method,

ψ (r, t + �t ) = (1 − iH�t/h̄)ψ (r, t ). (2.5)

This leads to an explicit solution since the evolved wave
function is simply an operator acting on the wave function
at an earlier time. Unfortunately, if Eq. (2.5) is implemented
with a forward-time-centered-space numerical procedure, it is
found to be unconditionally unstable [5].

According to Askar and Cakmak [6], if the procedure is
extended so that it involves two distinct time steps, or levels,
it can lead to conditional stability. Thus, combining Eq. (2.3)
with

ψ (r, t − �t ) = eiH�t/h̄ψ (r, t ), (2.6)

they obtain

ψ (r, t + �t ) = ψ (r, t − �t )−(eiH�t/h̄ − e−iH�t/h̄)ψ (r, t )

= ψ (r, t − �t )−2i�tH/h̄ψ (r, t )+O[(�t )3].

(2.7)

Not only is the possibility of stability secured, the lowest-
order approximation has errors of the order of (�t )3 rather
than (�t )2.

A. Basic method in one spatial dimension

In order to approximate the solution in one spatial dimen-
sion, we discretize the wave function so that ψn

j = ψ (x j, tn),
where the spatial domain [x0, xJ ] is partitioned into intervals
[x j−1, x j] with x0 < x1 < · · · < xJ and x j+1 − x j = �x for
j = 0, 1, . . . , J − 1. The time is partitioned so that tn = n�t ,
n = 0, 1, 2, . . . , N . We will also adopt the notation of column
vectors �n = (ψn

0 , ψn
1 , . . . , ψn

J )T to represent the wave func-
tion at time tn. Since the Hamiltonian has the second-order
spatial derivative, we approximate the latter with central dif-
ferences as [1]

∂2ψn
j

∂x2
= 1

(�x)2

r∑
�=−r

c(r)
� ψn

j+� + O[(�x)2r], (2.8)

where c(r)
� are real rational constants independent of �x. A

simple scheme of obtaining the c(r)
� involves the identity

h2 f (2)(x) =
r∑

�=−r

c(r)
� f (x + �h) =

r∑
�=−r

c(r)
�

∞∑
i=0

(�h)i

i!
f (i)(x)

=
2r∑

i=0

hi

i!
f (i)(x)

r∑
�=−r

�ic(r)
� + O(h2r+2), (2.9)

where superscripts on f refer to the order of the derivative.
Equating coefficients of the terms with the same order deriva-
tive on both sides of the equation, and noting that c(r)

−� = c(r)
� ,

we determine the c(r)
� by solving equations [9]

−c(r)
0

2
δ0i + δ2i =

r∑
�=1

�2ic(r)
� for i = 0, 1, . . . , r. (2.10)

This approach can be generalized in a straightforward man-
ner for nonuniform spatial grids; see, for example, Ref. [10,

TABLE I. The coefficients c(r)
� up to r = 6.

r � = 0 1 2 3 4 5

1 −2 1

2 − 5
2

4
3 − 1

12

3 − 49
18

3
2 − 3

20
1

90

4 − 205
72

8
5 − 1

5
8

315 − 1
560

5 − 5269
1800

5
3 − 5

21
5

126 − 5
1008

1
3150

6 − 5369
1800

12
7 − 15

56
10
189 − 1

112
2

1925 − 1
16632

... · · ·

pp. 16-17]. A useful relation is the i = 0 equation, which
expresses c(r)

0 in terms of the other coefficients,

c(r)
0 = −2

r∑
�=1

c(r)
� . (2.11)

The lowest-order coefficients are listed up to r = 6 in Table I.
In terms of matrix terminology, the second derivative of the
wave function is the product of a (2r + 1)-diagonally banded
matrix and the discrete vector form of the wave function.

The lowest-order in time expression using Eq. (2.5) with
Vj = V (x j ) is

ψn+1
j = ψn

j − i
�t

h̄

[
− h̄2

2m(�x)2

r∑
�=−r

c(r)
� ψn

j+� + Vjψ
n
j

]
.

(2.12)
As we show later, this algorithm is unconditionally unstable.

Similarly, the lowest-order approximation in time of
Eq. (2.7) is

ψn+1
j = ψn−1

j − 2i
�t

h̄

[
− h̄2

2m(�x)2

r∑
�=−r

c(r)
� ψn

j+� + Vjψ
n
j

]
,

(2.13)
which leads to a conditionally stable procedure [6,11]. We
therefore generalize it to obtain an algorithm of higher order
of �t as well as �x. To achieve this, we rewrite Eq. (2.7) as

ψ (x, t + �t ) = ψ (x, t − �t ) − 2i sin(H�t/h̄)ψ (x, t ),
(2.14)

and consider the expansion of the sine function,

sin(z) = z

(
1 − 1

3!
z2 + 1

5!
z4 − · · · + (−1)M

(2M + 1)!
z2M

)
+ O(z2M+3)

= z
2M∏
s=1

(
1 − z

z(2M )
s

)
+ O(z2M+3), (2.15)

where the z(2M )
1 , z(2M )

2 , . . . , z(2M )
2M are the 2M zeros of the

2Mth-order polynomial approximation of sin z/z. These can
be calculated to the precision needed, a sample of which for
M = 1 to 3, each rounded to five decimal places, is given
in Table II. We use the operator form of the expansion of
sin(H�t/h̄) to derive a multilevel time algorithm. Define the
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TABLE II. The zeros z(2M )
s of the polynomial approximation of

sin z

z
for M = 1, 2, 3, etc.

M s = 1 2 3 4 5 6

1 −2.44949 + i0.00000 244949 + i0.00000
2 3.23685 − i0.69082 −3.23685 + i0.69082 3.23685 + i0.69082 −3.23685 − i0.69082
3 3.07864 + i0.00000 −3.07864 + i0.00000 4.43401 − i184375 −4.43401 + i184375 4.43401 + i184375 −4.43401 − i184375
... · · ·

operators

K (2M )
s ≡ 1 − H�t/h̄

z(2M )
s

for s = 1, 2, . . . , 2M, (2.16)

and, for notational convenience to include the case for which
M = 0, we also define K (2M )

0 = 1. In terms of the discretized
time, we write Eq. (2.14) as

�n+1 = �n−1 − 2iH�t/h̄
2M∏
s=0

K (2M )
s �n. (2.17)

For M > 0 given �n and �n−1, we calculate recursively

�n,s+1 = K (2M )
s �n,s with �n,0 = �n, (2.18)

for s = 0, 1, . . . , 2M − 1, and then evaluate

�n+1 = �n−1 − 2iH�t/h̄�n,2M . (2.19)

The average values of |z(2M )
s | become progressively larger

with increasing M, as shown in Fig. 1. Although a greater
number of steps is to be calculated as M increases, the size of
the time element can be made larger for similar convergence
to offset, at least in part, the greater number of arithmetical
operations.

It should be pointed out that using Eq. (2.17) as the ba-
sic operation requires a numerical determination of H�. We
have chosen central differencing for the determination of the
kinetic energy term, which is convenient for the error anal-
ysis. Instead, one could use high-order-compact differencing
[12], a fast-Fourier spectral approach [4], differencing on a

 0
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 0  5  10  15  20  25  30

|z(2M)
|

2M

|z(2M)
avg  |

|z(2M)
min  |

|z(2M)
max  |

FIG. 1. The average, minimum, and maximum values of |z(2M )
s |

for each value of 2M.

nonuniform spatial grid [10], or some other approximation of
the second-order spatial derivative.

B. Stability

The usefulness of any numerical solution of a partial differ-
ential equation depends on its stability, i.e., its ability to avoid
amplification of the errors over time.

Consider the lowest-order algorithm of Eq. (2.12). Accord-
ing to von Neumann’s stability analysis [5], we can substitute
the expression for a Fourier mode,

ψn
j = ξ n(k,�t,�x)eikx j , (2.20)

for any real wave number k in Eq. (2.12) to obtain the growth
factor

ξ = 1 − ia, (2.21)

where

a = �t

h̄

[
2h̄2

m(�x)2

r∑
�=1

c(r)
� sin2(�k�x/2) + Vj

]
. (2.22)

Since a is real, the magnitude of the growth factor is greater
than one for all k,�x,�t ; hence the scheme is uncondi-
tionally unstable. Strictly speaking, unless the potential is
constant, the growth factor depends on j. For all j, however,
the growth factor is greater than one and the algorithm is
unstable. See, for example, a similar analysis to show the
stability of the Crank-Nicolson method in Ref. [5, Sec. 19.2].

Inserting the expression for the Fourier mode in the mod-
ified algorithm [Eq. (2.13)], we obtain an equation for the
growth factor [6],

ξ 2 + 2iaξ − 1 = 0, (2.23)

with solutions ξ = −ia ± √
1 − a2. Thus, for a2 � 1, |ξ | = 1,

and for a2 > 1, at least one of the roots yields |ξ | > 1. Hence
the algorithm is stable when a2 � 1, and unstable otherwise.

A recent article by Kumari and Donzis [13] generalizes
the von Neumann stability analysis to include the possibility
that the growth factor depends on time. In our scheme, the
time step from t = n�t to t = (n + 1)�t consists of 2M
substeps with distinct effective time elements �t/z(2M )

s . It is
not so much that the growth factor depends on time, as that
it depends on the effective sizes of time substeps. Not only
are the effective time substeps of differing magnitudes, they
may also be complex. Let us consider the growth factor when
�n,2M is calculated from �n,0 = �n. The growth factor over
one substep is

ξ (2M )
s = �̂n,s+1

�̂n,s
=

(
1 + a

z(2M )
s

)
, (2.24)
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where �̂n,s is the Fourier amplitude of the wave function with
wave number k. The growth factor of the product in the second
term of Eq. (2.17) is

ξ (2M ) =
2M∏
s=1

ξ (2M )
s =

2M∏
s=1

(
1 + a

z(2M )
s

)
, ξ (0) = 1. (2.25)

Note that

lim
M→∞

ξ (2M ) = lim
M→∞

2M∏
s=1

(
1 + a

z(2M )
s

)

= sin a

a
< 1 for a > 0, (2.26)

so that for sufficiently large M, the intermediate growth factor
is less than unity irrespective of the value of a. Given that
the set of zeros for a particular M includes their complex
conjugates, the magnitude of ξ (2M ) depends on a2. Assuming
a growth factor of ξ n in �n, we obtain an equation for the
growth factor,

ξ 2 + 2iaξ (2M )ξ − 1 = 0, (2.27)

from which the solutions

ξ = −iaξ (2M ) ±
√

1 − a2[ξ (2M )]2 (2.28)

determine the condition for stability to be (a|ξ (2M )|)2 � 1.
When that condition is satisfied, |ξ | = 1 and stability is as-
sured.

C. Unitarity

Since the scheme of this paper is not strictly unitary, we
explore the degree to which the normalization is conserved
[3,6,14]. Consider Eq. (2.14) with

sin (H�t/h̄) = S(H�t/h̄) + O[(H�t/h̄)2M+3], (2.29)

where S(H�t/h̄) represents the polynomial part of the sine
function; see Eq. (2.15). We express the algorithm as

�n+1 = �n−1 − 2iS(H�t/h̄)�n. (2.30)

Since �n−1 = eiH�t/h̄�n exactly,

�n+1 = [eiH�t/h̄ − 2iS(H�t/h̄)]�n. (2.31)

Hence,

〈�n+1|�n+1〉 = 〈�n|[e−iH�t/h̄ + 2iS]

× [eiH�t/h̄ − 2iS]|�n〉, (2.32)

and from this equation, it follows that

〈�n+1|�n+1〉 = 〈�n|1 − 4S sin(H�t/h̄) + S2|�n〉
= 〈�n|1 + O[(H�t/h̄)2M+4]|�n〉
= 〈�n|�n〉 + O[(�t )2M+4], (2.33)

where we have inserted the expression for S from Eq. (2.29) to
obtain the result. Thus the normalization is secured to the or-
der of (�t )2M+4, a result that is consistent with Ref. [6] when
M = 0. The deviation is not cumulative when the scheme is
stable.

D. Errors

Errors occur primarily because of the truncation of the
series expansions and therefore depend on the orders of the
method, i.e., r and M. Writing the wave function as a Taylor
series about x and t , we obtain

ψ (x + �x, t + �t ) =
p−1∑
i=0

1

i!

(
�x

∂

∂x
+ �t

∂

∂t

)i

ψ (x, t )

+ 1

p!

(
�x

∂

∂x
+ �t

∂

∂t

)p

ψ (x̄, t̄ ),

(2.34)

where the point (x̄, t̄ ) lies on the line segment that joins (x, t )
to (x + �x, t + �t ) in the xt plane. If one of the increments is
zero or much smaller than the other, this expression reduces to
the one-dimensional Taylor series. Neglecting the term after
the sum leads to a truncation error whose magnitude can be
estimated using the dropped term.

We separate the truncation errors due to the integration
over space and those due to integration over time. At a given
time t , the spatial integration with the rth-order expansion
yields a truncation error

e(r) ≈ C(r)(�x)2r, (2.35)

where C(r) is assumed to be slowly varying with r. Actually,
C(r) = |ψ (2r)(x̄, t )|/(2r!) for some x̄ in the range of the spatial
integration, and thus is model, or potential, dependent. If we
specify an acceptable error, the step size �x can be adjusted
to obtain that error. Since �x = (x0 − xJ )/J , an adjustment of
�x is equivalent to a change in J . Given that x0 − xJ is fixed,
we obtain

�x = x0 − xJ

J
≈

(
e(r)

C(r)

)1/2r

(2.36)

and

e(r) ≈ const

J2r
. (2.37)

The CPU time of the calculation is proportional to the num-
ber of basic computer operations. For one time step, this
involves multiplying a (2r + 1)-banded diagonal matrix and
a J-dimensional vector (2M + 1) times in Eq. (2.17). For the
time step �t with a particular M, the number of operations is
therefore proportional to rJ . Hence,

CPU time ∝ no. operations ∝ Jr ∝ r

(e(r) )1/2r
. (2.38)

This form gives a minimum (optimum) CPU time occurring
when

r ≈ − ln e(r)

2
. (2.39)

For the time integration, we assume a truncation error
independent of r. For a given r and �x, the error due to finite
�t according to Eq. (2.15) is

e(2M ) ≈ C(2M )(�t )2M+3, (2.40)

where again C(2M ) is assumed to be a slowly varying function
of M depending on the Hamiltonian. In the expansion of
sin(H�t ), we have factors involving �t/z(2M )

s rather than the
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�t in the elementary algorithm. For the purpose of estimating
the error for a particular M, we replace �t with �t/z(2M )

avg .
The relationship of z(2M )

avg with M can be seen in Fig. 1, where
z(2M )

avg ≈ M. Thus we can replace Eq. (2.40) by

e(2M ) ≈ C(2M )(�t/M )2M+3, (2.41)

where the constant C(2M ) is appropriately adjusted. If we take
the total time tmax = N�t to be fixed, then

CPU time ∝ (
e(2M )

)−
1

2M + 3 . (2.42)

This CPU time is a decreasing function as M increases.
In order to test the accuracy of the methods, we use models

for which the exact solutions are known. The error e2 is
obtained from the discretized spatial wave function using the
Euclidean norm,

(e2)2 =
∫ xJ

x0

dx |ψ (x, tfinal ) − ψexact (x, tfinal )|2, (2.43)

where tfinal is the final time. A further item of note is that al-
though explicit methods tend not to preserve normalization as,
for instance, the (generalized) Crank-Nicolson method does,
we find in the sample calculations that when the numerical
solution is precise, the normalization is also accurate. Unlike
Crank-Nicolson, for the algorithm proposed in this paper,
the accuracy of the normalization is a manifestation of the
precision of the solution.

E. Two spatial dimensions

For two spatial dimensions, the Hamiltonian is

H = − h̄2

2m

(
∂2

∂x2
+ ∂2

∂y2

)
+ V (x, y). (2.44)

We partition both x and y coordinates into J intervals as in one
dimension so that the discretized wave function is

ψn
i j = ψ (xi, y j, tn) for i, j = 0, 1, . . . , J, (2.45)

with �x = xi+1 − xi, �y = y j+1 − y j for i, j =
0, 1, . . . , J − 1. Since Eq. (2.18) holds for any spatial
dimension,

ψn,s+1
i j =

{
1 − �t

h̄z(2M )
s

[
− h̄2

2m

(
∂2

∂x2
+ ∂2

∂y2

)
+ V (x, y)

]}
ψn,s

i j

= ψn,s+1
i j − �t

h̄z(2M )
s

[
− h̄2

2m

r∑
k=−r

c(r)
k

(
ψn,s

i+k, j

(�x)2

+ ψn,s
i, j+k

(�y)2

)
+ Vi jψ

n,s
i j

]
, (2.46)

where Vi j = V (xi, y j ). For the final step, we set

ψn+1
i j = ψn−1

i j − i�tH

h̄
ψn′

i j , (2.47)

where ψn′
i j = ψn,2M

i j from Eq. (2.46). Generalization to cases
where the size and number of steps in the x and y variables

TABLE III. The choice of parameters in addition to ω =
0.2, A = 10, x ∈ [−40, 40], and tfinal = 110π that yields the results
shown in Fig. 2.

M �t J �x M �t J �x

0 π/800 400 0.2 4 π/100 400 0.2
1 π/400 400 0.2 6 π/80 400 0.2
2 π/300 400 0.2 8 π/60 400 0.2
3 π/200 400 0.2 10 π/50 400 0.2

are different and to three or more Cartesian dimensions is
straightforward. Reformulation of the problem for different
coordinate systems can be done; for example, see Ref. [15]
in which the Hamiltonian is expressed in terms of polar coor-
dinates and integration occurs over the radial and polar angle
coordinates.

III. NUMERICAL EXAMPLES

A. Oscillation of a coherent wave packet

The oscillations of a coherent state in the harmonic os-
cillator well are described in Ref. [16]. The reliability and
precision of the numerical procedure are assessed by compar-
ing the numerical results of this system with exact ones [1,4].
The time-dependent Schrödinger equation is

ih̄
∂

∂t
ψ (x, t ) =

(
− h̄2

2m

∂2

∂x2
+ 1

2
Kx2

)
ψ (x, t ), (3.1)

and the initial state is the displaced ground-state wave func-
tion,

ψ (x, 0) = α1/2

π1/4
e− 1

2α2(x − A)2
, (3.2)

where α4 = mK/h̄2, ω = √
K/m, and A is the displacement

from the origin of the ground-state wave function. The closed
expression for the time-evolved wave function is

ψexact = α1/2

π1/4
exp

[
−1

2
(ξ − ξ0 cos ωt )2

−i

(
1

2
ωt + ξξ0 sin ωt − 1

4
ξ 2

0 sin 2ωt

)]
, (3.3)

where ξ = αx and ξ0 = αA.
We set h̄ = m = 1, ω = 0.2, and A = 10 and choose the

computational space such that x ∈ [x0, xJ ] = [−40, 40]. The
period of oscillation is then T = 10π . We allow the coherent
state to oscillate for 11 periods before comparing the numeri-
cal solution to the exact one by calculating the error e2 using
Eq. (2.43).

In Fig. 2, we plot e2 as a function of r for a select set of
M values. In all cases, �x = 0.2. We choose �t as shown in
Table III.

Remarkably, when r ranges from 1 to 30 and M from
0 to 10, we note 30 orders of magnitude decrease in the
error e2. Even at the top end of the ranges when M = 10
and r = 25, . . . , 30, the error e2 still shrinks five orders of
magnitude. Worth mentioning is the fact that the conditions
that are employed in many elementary calculations, such as
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FIG. 2. The error as a function of r for a select set of values of M
given in Table III. The parameters are h̄ = m = 1, ω = 0.2, A = 10.
The error is determined when t = 110π . In all cases, �x = 0.2.

in Ref. [6], are represented by the single point in the upper
left-hand corner of the graph when M = 0 and r = 1.

In order to test the efficacy, we aim for an error approxi-
mately equal to, but less than, 10−8 and determine the CPU
time1 for various values of r and M. In Table IV, we list the
CPU times when M is fixed at 10, �t = π/55, and the number
of space steps J is chosen to result in an error close to the
preset limit. Note that a minimum CPU time occurs when r is
approximately 11.

The efficiency as a function of M is a little less clear
because of the rapid increase in efficiency when M is rela-
tively small. Setting r = 10, �x = 0.4 and an error around
6 × 10−6, we adjust the time-step size to obtain the target error
along with the resulting CPU time. The results are tabulated
in Table V. We note that the CPU time reduces drastically for
M = 1 compared with the traditional M = 0 calculation.

For values of M greater than two, the error is robust. By
this is meant that the error remains the same for smaller �t ;
the values listed correspond to the largest �t that results
in a stable solution. The CPU time is an estimate and goes
down to approximately 1 s compared with 1000 s for M = 0.
Instability of the algorithm is evident when, during the time
stepping, e2 becomes large and the calculated wave function
is no longer normalized to unity.

To evaluate the method with the current state of the art,
in Table VI we compare CPU time to the Chebyshev method
which is claimed “to outperform all other methods for prob-
lems with time-independent Hamiltonians” [17], and two
other methods by van Dijk and Toyama (VT) [1] and by Shao
and Wang (SW) [18]. The latter two are generalized Crank-
Nicolson with central differencing and high-order-compact
differencing, respectively, of arbitrary order.

1The CPU time is dependent on the computer used and is relevant
for comparisons only if the calculations are done on the same com-
puter. The CPU model used for the calculations of this paper is the
Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz.

TABLE IV. Computation time (CPU) as a function of r when
the number of time steps is adjusted to obtain an error close to, but
smaller than, the preset limit of 10−8. Parameters are ω = 0.2, A =
10, tfinal = 110π .

M r J �x �t e2 CPU (s)

10 30 152 0.52632 π/55 8.695 × 10−9 7.095
10 25 161 0.49689 π/55 9.387 × 10−9 6.477
10 20 176 0.45454 π/55 9.903 × 10−9 5.905
10 15 206 0.38835 π/55 9.231 × 10−9 5.445
10 13 227 0.35242 π/55 9.351 × 10−9 5.241
10 11 260 0.30769 π/55 9.287 × 10−9 5.240
10 10 284 0.28169 π/55 9.482 × 10−9 5.303
10 9 317 0.25237 π/55 9.576 × 10−9 5.624
10 8 364 0.21978 π/55 9.841 × 10−9 5.734

Clearly, the latter two methods become much less efficient
as the spatial dimension increases. From the entries in the
table, it is evident that the Chebyshev method, which uses
fast-Fourier transforms to calculate the second-order spatial
derivative of the wave function and in which the wave function
is determined only at the end of the total time interval, is
remarkably efficient. However, if one needs the wave function
at various times to investigate the time behavior of observ-
ables, the Chebyshev method requires more time, although the
precision does not change. The Chebyshev method with 440
equal time intervals requires a CPU time of 0.488 s, and with
4180 intervals, a CPU time of 1.650 s. Although the relative
magnitudes of these CPU times are not precise, they are typ-
ical, approximate indications. A comparison of the methods
to determine time-dependent wave functions is model and ap-
plication dependent. With that caveat, we mention the recent
comparison of the CPU times incurred when computing the
time-dependent quantum states of bilayer graphene in a mag-
netic field using either the Chebyshev method or an improved
split-operator method [19]. Qualitatively, the efficacy of the
two methods is comparable, although if expectation values at
small time intervals are required, the Chebyshev method loses
efficiency and the split-operator method can be preferable.

Split-operator methods for linear Schrödinger equa-
tions with unbounded potentials, such as the one used in
this section, have been investigated in Ref. [20]. With two-
dimensional systems, they compare the error as a function of
temporal step size using split-operator approximations of the

TABLE V. Computation time as functions of M and
the corresponding �t . Parameters are ω = 0.2, A = 10, x ∈
[−40, 40], tfinal = 110π .

M �t J r e2 CPU (s)

0 π/100, 000 200 10 5.773 × 10−6 499.7
0 π/200, 000 200 10 6.054 × 10−6 992.8
1 π/1, 000 200 10 6.197 × 10−6 9.714
2 π/150 200 10 6.159 × 10−6 2.504
4 π/40 200 10 6.161 × 10−6 0.904
10 π/22 200 10 6.161 × 10−6 1.513
15 π/16 200 10 6.161 × 10−6 1.577
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TABLE VI. Comparison with other methods.

Sine (expans.) Chebyshev VT SW

r, M 16, 4 16,5 6,5
J 228 127 255 255
e2 × 1010 0.831 0.223 0.174 0.116
CPU(s) 1.650 0.193 2.298 0.565
N 4180 1 440 440

order of 2, 4, and 6. Higher-order split-level operator methods
have significant complexity [21]. Table III displays a similar
relationship, i.e., higher order accommodates larger step size,
but with no corresponding increased complexity.

B. Wave-packet scattering

For further comparison of a known exact solution with
the numerical one, we consider the analytic solution of the
free potential [V (x) = 0], i.e., the Hermite-Gaussian traveling
wave function [22,23], and allow it to scatter from a finite
potential. The free wave function is

�n(x, t ) = Nn(α)einθ√
1 + iα2γ

Hn(ξ ) exp(−ξ 2/2)

× exp

{
i

[
α4γ (x − A)2 + 2k0(x − A) − k2

0γ

2(1 + α4γ 2)

]}
,

(3.4)

where

γ = h̄(t − t0)/m, θ = − arctan(α2γ ),

ξ = α[(x − A) − k0γ ]√
1 + α4γ 2

, Nn(α) =
(

α√
π2nn!

)1/2

. (3.5)

The integer n = 0, 1, . . . labels a wave function that at t =
t0, is the nth energy state of the harmonic oscillator centered
at x = A with an oscillator constant K = h̄2α4/m. The initial
time tinit can have any positive or negative value; t increases
starting from tinit . The quantity k0 is the wave number since
the expectation value of the momentum is 〈p〉n = h̄k0.

As an example of the propagation of the Hermite-Gaussian
wave function, we take parameters k0 = 3, α = 0.3, A = 0,
and t0 = 15. Initially, at t = 0, the center of the wave packet
is at x = −45 (assuming h̄ = m = 1), and at t = 15 it has
moved to x = 0, and subsequently at t = 30 it is at x =
45, as shown in Fig. 3. For the numerical calculation x ∈
[−200, 200],�x = 0.25, and �t = 0.05.

For this calculation, we take M = 15, r = 30, resulting in
an error of the final wave function e2 = 2.3 × 10−6. Note that
the minimum spatial uncertainty of the wave packet (width)
occurs at x = 0, but this point could be chosen elsewhere by
adjusting t0.

To explore the scattering of the Hermite-Gaussian wave
function, we consider the Pöschl-Teller potential [24,25],

V (x) = V1sech2(βx), (3.6)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

–80 –60 –40 –20  0  20  40  60  80

|�(x,t)|2

x

t=0
t=15
t=30

FIG. 3. The numerical results for the square of the modulus of
the free Hermite-Gaussian wave function at the times indicated. Note
that k0 = 3, α = 0.3, A = 0, x ∈ [−200, 200], �x = 0.25, and �t =
0.05.

which yields transmission and reflection coefficients from a
time-independent analysis,

T (PT)
stat (k) = q2

1 + q2
, R(PT)

stat (k) = 1

1 + q2
, (3.7)

where

q = sinh(πk/β )sech

(
π

2

√
4V1

β2
− 1

)
. (3.8)

Numerically, the scattering coefficients are determined using
the asymptotic time-dependent wave functions after they have
exited the scattering, or potential, region. Hence the transmis-
sion and reflection coefficients are

T (k) =
∫ ∞

b
|ψ (x, t )|2 dx, R(k) =

∫ −b

−∞
|ψ (x, t )|2 dx,

(3.9)

where b > 0 is larger than the range of the potential centered
at the origin. The wave number k is taken to be the expectation
value k0 of the Hermite-Gaussian wave function.

Figure 4 displays the analytically and numerically
calculated transmission and reflection coefficients. The
parameters that determine the graphs are V1 = 13, β = 1,
α = 0.05, A = 0, t0 = 150/k, x ∈ [−300, 300], �x = 0.375,

�t = 0.05, tinit = 0, and tfinal = 300/k.
For the numerical computation, M = 15 and r = 30. There

is good agreement between the time-independent scattering
coefficients and the numerically determined ones. The pro-
gression of the wave packet in time is shown in Fig. 5 for the
case when k0 = 3.6.

The nodal character of the transmitted and reflected packets
is similar to that of the incident packet. The relation of the
shape of the scattered packet compared to that of the incident
packet is discussed in Ref. [23].
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FIG. 4. The transmission and reflection coefficients
calculated numerically using Eq. (3.9) and analytically using
Eq. (3.7) with V1 = 13, β = 1, α = 0.05, A = 0, t0 = 150/k, x ∈
[−300, 300], �x = 0.375, �t = 0.05, tinit = 0, k = k0, and
tfinal = 300/k.

C. Two-dimensional model

The potential of a simple solvable two-dimensional model
that has been employed to test numerical methods [12,26,27]
is

V (x, y) = −(3 − 2 tanh2 x − 2 tanh2 y), (3.10)

which has an exact solution,

ψ (x, y, t ) = 1
2 ieit sech(x)sech(y). (3.11)

Here we assume h̄ = 2m = 1. With a domain of spatial inte-
gration of [−40, 40]2 and of the time integration of [0,1], we
take the time-step size for different values of M as shown in
Table VII.

In all cases, J = 400 and �x = �y = 0.2, but for M > 1,
larger �t gives convergent results. As in the one-dimensional

 0

 0.01

 0.02

 0.03

 0.04

-200 -100  0  100  200

|�(x,t)|2

x

t=0
t=41.67
t=83.33

FIG. 5. The wave packet before, during, and after scattering from
the Pöschl-teller potential. The parameters are those of Fig. 4 with
k0 = 3.6.

TABLE VII. The number of spatial grid points (J) and the total
number of time intervals (N) for different values of M in Fig. 6.

M J N �t M J N �t

0 400 500 0.0033̇ 10 400 50 0.0200
1 400 150 0.0066̇ 15 400 50 0.0200
5 400 100 0.0100

applications, the instability of the integration is indicated by a
drastic concurrent increase of the error and the normalization
while stepping through the time intervals. Thus one can deter-
mine the stability of the numerical solution by monitoring the
normalization. It is extremely unlikely that a runaway error
occurs while the normalization remains unity.

The patterns of the dots representing errors in Fig. 6 show a
consistent behavior of a sharp decline for smaller values of r,
followed by a linear portion with negative slope, which in turn
is followed by a slow nonlinear decline. With the exception of
the M = 0 case, the linear portion starts at smaller values of
r for larger values of M. By using smaller time increments,
we achieve a universal curve which asymptotically matches
the curves of the dots shown (see M = 10 and 15 cases). The
salient conclusion is that significant improvement of accuracy
is possible when M > 0. The rogue point on the graph corre-
sponding to M = 1 and r = 28 is an instance of the onset of
instability: both e2 and the normalization start to increase at
some point in the course of time stepping and do so at an even
larger rate for r = 29 and 30.

The figure also displays the CPU time as a function of
r. For the cases shown when M = 1, one obtains the most
efficient calculation, although slightly greater accuracy may
be had with higher values of M and CPU time. Note that the
CPU times for M = 5 and 10 with different �t are nearly the
same, but the M = 10 case gives greater accuracy.
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FIG. 6. The error and CPU time(s) as functions of r for different
values of M for the potential of Eq. (3.10). The space increments are
�x = �y = 0.2 and the time increment is as shown in Table VII.
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FIG. 7. The deviation from normalization and the error as a func-
tion of time for M = 10 and various values of r for the potential of
Eq. (3.10). The space increments are �x = �y = 0.2 and the time
increment is as shown in Table VII.

As a measure of the deviation from the exact normaliza-
tion, we compute the quantity

η2 =
√∣∣∣∣1 −

∫ b

−b

∫ b

−b
dxdy |ψ (x, t )|2

∣∣∣∣ (3.12)

with b = 40. In Fig. 7, η2 and e2 are plotted as functions of
time for M = 10 and indicated values of r from 1 to 12. For
the smaller r, the orders of magnitude of the error and the
deviation from the norm are nearly the same, whereas for
larger r, the error is smaller by one order of magnitude. In
the cases shown, the normalization is preserved to within one
order of magnitude of the error. Since the normalization is
not rigorously conserved, it can be monitored as a check for
runaway error when no exact solution is available [3].

IV. CONCLUSIONS AND COMMENTS

We have presented a method of numerically solving the
time-dependent Schrödinger equation that is simple, explicit,
stable, and flexible in terms of obtaining pertinent accuracy.
The method allows calculations of higher order in time with-
out additional and complicated analysis. In spite of the fact
that the usual limitations of time-stepping methods in terms
of the size of the time and spatial increments apply, the ef-
ficacy is comparable to those methods and may exceed it in
multidimensional systems.

Advantages of explicit over implicit methods have been
discussed in the literature; see, for example, Ref. [6]. Implicit
methods require the inversion of matrices of dimension equal
to the number of spatial grid points, whereas the explicit ap-
proach involves the product of a banded-diagonal matrix and
a column vector. This is especially beneficial when dealing
with higher spatial dimensions. An implicit method, such as
Crank-Nicolson, is inherently unitary and normalization is
preserved in spite of the error. Thus the magnitude of the
wave function is correct, regardless of the (im)precision of
the phase. We find, however, that although the normalization

is not guaranteed in the explicit method, when it deviates it
signals an unacceptable error.

We have shown that high-precision stable numerical so-
lutions are possible with explicit methods by combining the
stable algorithm for explicit solutions [6] with a factorized
polynomial expansion of the propagator. Given the central
differences approach to the spatial integration that we em-
ploy, we can characterize the precision of the solutions in
terms of errors of O[(�x)2r] and O[(�t )2M+3] for arbitrary
r and M. The stability of the algorithm and the precision
of the solution have been tested with simple examples and
indicate that the monitoring of the normalization is a way of
ensuring accurate solutions. The proposed method is another
among many others for consideration in practical applications.
An interesting higher-order exponential split-operator method
[28] also determines solutions to O[(�t )2M+1]. However, for
M � 3, the calculations become prohibitive due to the number
of exponential function evaluations.

It is evident from this work that calculations with large r
and M are practical because of the simplicity of the algebraic
operations; furthermore, higher values make a significant
difference for the accuracy of the solutions. The algorithm
requires two input states, say at t = 0 and t = �t . For the
examples of this paper, the exact solutions give the input.
When there is no exact solution, the second time-stepped state
may be obtained using an approach analogous to the one of
this paper by factoring the exponential propagator to derive
a two-level process. For the lowest-order term (M = 0), this
algorithm is unstable, but it can be shown to be stable for
higher M. We anticipate reporting on this work presently.

Alternative to the central-difference approach of the spatial
integration is the Fourier spectral technique which employs
fast-Fourier transforms. However, the time (or number of
arithmetical operations) of this approach is proportional to
J ln J as compared to rJ for central differencing. Gaspar
et al. [29] have compared the two approaches for two-
dimensional systems using the alternating-direction-implicit
central-difference and the fast-Fourier-transform implementa-
tion for a specific example and have found that the former is
about three times faster.

An alternative to Eq. (2.14) as an expression of the time
propagation is

ψ (x, t + �t ) = −ψ (x, t − �t ) + 2 cos(H�t/h̄)ψ (x, t ),

(4.1)

which is the starting point of Gray and Balint-Kurti [30]
to generate the time evolution of the real part of a wave
packet. This is useful to generate S-matrix elements which
can be determined from the real part of the wave function.
This cannot be done with an expansion of the cosine, as
with the sine, since the expansion involves complex roots.
Thus, for the purpose of obtaining S-matrix elements, the
work of this paper calculates the imaginary part of the
wave function superfluously and hence is less efficient and
demands double the memory allocation. However, often the
time dependence of the complex wave function is required to
obtain time-dependent observable quantities.

In this analysis, we have assumed wave functions that van-
ish at the spatial boundary. There are approaches of including
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nonzero boundary conditions for higher-order methods, but
they tend to depend on the order. For instance, the method
of summation by parts and the simultaneous-approximation
term [31,32] give a matrix representation of the second-
order derivative which is modified for the first few rows and
columns to account for the spatial boundary condition. It is
not clear how to systematically implement this approach to
arbitrary order.

Furthermore, the boundary effect when the wave packet
exits the computational space is dealt with using absorbing
or transparent boundary conditions. In its simplest form, the
complex absorbing potential is employed [33] as a negative

imaginary potential at the asymptotic regions that is added
in the Hamiltonian so that the wave function is absorbed
and vanishes (approximately) at the computational bound-
ary. Alternatively, the transparent boundary condition allows
the wave function to exit the computational space without
reflection. This approach is discussed by Moyer [34] and a fre-
quently used method was introduced by Basakov and Popov
[35] and later applied to two- and three-dimensional Cartesian
systems [36,37]. Since both approaches depend on the values
of the wave function near or at the grid boundary, their appli-
cability and limitations can be tested using the wave functions
obtained with the explicit method discussed in this paper [38].
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