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Time-domain study of the synchrotron radiation emitted from electron beams
in plasma focusing channels
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This paper sheds light on the time structure of betatron radiation, emitted by electrons that undergo betatron
oscillations as they accelerate under the action of plasma wakefields. It is a common practice to assume that
the betatron pulses are as short as the electron bunch length, however we show that this is not a general rule.
Indeed, the betatron pulse length is affected by the betatron motion, which stretches and modulates the radiation
pulses already at the source level. Propagation in a vacuum, therefore, can greatly lengthen the betatron pulses by
orders of magnitude. In the wake of the above, the coherent emission of betatron radiation is studied. Coherent
betatron radiation has been found to propagate in an underdense region created by ponderomotive forces, thus not
suppressed by the overdense plasma absorption. This could be observed experimentally, revealing information
on the acceleration process and on key beam parameters.
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I. INTRODUCTION

Betatron radiation is the electromagnetic radiation emitted
from electrons that undergo transverse oscillations as they
accelerate under the action of three-dimensional plasma wake-
fields [1,2]. Synchrotronlike betatron radiation is commonly
defined as temporally incoherent due to the fact that the
emission spectrum can range from soft to hard x-rays (up
to the γ -rays) while the shortest electron bunch length can
normally range from several tens of microns down to 1 micron
(or even a fraction of it). These values were experimentally
determined in several experiments [3–8]. On the contrary, the
spatial coherence of the betatron radiation sources has been
widely demonstrated [9–13]. Although it is well known, at
least theoretically, that the betatron pulses can be as short as
a few femtoseconds, this duration has never been measured
directly. Determining the length of these pulses could benefit
experiments in which betatron radiation is used as a probe for
time-resolved studies [14,15]. In plasma wakefield accelera-
tors, measurement of the pulse length of betatron radiation
could allow for a noninvasive measurement of the electron
bunch length. In fact, the betatron radiation is emitted forward
and propagates at the speed of light c, as approximately also
relativistic electrons do. This means that under normal operat-
ing conditions, there is no significant phase-advance between
the particles and the radiation on the acceleration length scale.
In the same scheme of ideas, the duration of the radiation
pulse is approximately equal to the electron bunch length.
For the self-injection experiments, a simple formula was pro-

*acurcio@clpu.es

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

posed which, assuming a continuous and uniform injection of
electrons in the plasma wave, gives the electron bunch length
as [16]

τb = Lacc
c − vg

c2
= 3Laccne

2cnc
, (1)

where Lacc is the acceleration length, vg = c(1 − 3ne/2nc)
[17] is the laser group velocity in the highly nonlinear regime
of laser-plasma interaction, ne is the electron plasma den-
sity in the region of the wakefields, and nc is the critical
density. Equation (1) must be understood as the full width
at half-maximum (FWHM), and it could overestimate the
bunch length by at least a factor of ∼4 [4] if the injected
electron beam is high-quality and confined in the accelerating
and focusing region of the plasma wave bucket (for example,
obtained with a different injection scheme [18–20]). For typi-
cal parameters such as ne/nc ∼ 10−3–10−2 and Lacc = 1 mm,
and assuming a betatron pulse length τFWHM equal to the
electron bunch length, we therefore obtain τFWHM = τb ∼ 5–
50 fs. For longer acceleration lengths/buckets, the resulting
electron bunch length can reach several hundred femtosec-
onds. In summary, there is a wide range of values for the
betatron pulse length, which mainly depends on the electron
plasma density and injection scheme. Equation (1) cannot be
entirely satisfactory to understand the origin of the betatron
pulse length for several reasons. The first is that it is limited
to the self-injection regime. The second is that it is based
on strong assumptions, which in most cases cannot be con-
firmed experimentally. Furthermore, strictly speaking, Eq. (1)
represents the electron bunch length, which may differ from
the betatron pulse length in some conditions, as shown in
this paper. Numerical efforts have previously been made to
provide fine tools for calculating the electromagnetic radiation
[21,22]. In particular, numerical simulations of betatron radi-
ation pulses for different wakefield acceleration regimes and
laser-plasma interaction have been shown in [23]. To date, the
problem of pulse duration has never been tackled analytically.
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Here we provide an analytical and time-domain approach,
with the ultimate goal to obtain an illuminating expression
of the betatron pulse length, scalable for different experimen-
tal configurations. We delimit the space of the parameters
for which the assumption of a length of the betatron pulse
equal to the electron bunch length can be true. It turned out
that the betatron pulse length is determined by the electron
bunch length and by the electron beam emittance. Moreover,
we show how the pulse length changes dramatically as the
radiation propagates from the source to the detector. In ad-
dition, it is noted that the betatron pulses are modulated by
a nonlinear spectral phase, where, on average, the core of
the radiation pulse contains the highest photon energies, and
the neighboring tails contain the lowest radiation frequencies.
Closely related to the above, we have approached a study
of coherent betatron radiation, finding that it is not always
suppressed by overdense plasma absorption and it might be
observed experimentally. Coherent betatron radiation would
allow for simpler diagnostics of the electron bunch length
than time-domain measurements of incoherent x-ray betatron
pulses. Moreover, it would broaden the range of wavelengths
emitted in plasma acceleration schemes. The latter would be
part of the recent interest in designing compact light sources
for different applications, in particular providing intense and
ultrashort pulses (on the femtosecond scale) from near- to far-
infrared, depending on the electron bunch length. The paper is
organized as follows: in Sec. II we introduce a general formula
for the evaluation of the length of the electromagnetic pulses
starting from the knowledge of the spectral amplitude and the
spectral phase; in Sec. III we derive an expression for the spec-
tral amplitude and phase of the betatron radiation; in Sec. IV
we apply the pulse length formula presented in Sec. II in the
case of incoherent betatron radiation; in Sec. V we consider
the effect of the pulse stretching induced by the propagation
in a vacuum; in Sec. VI we determine the nonlinear spectral-
phase modulations along the betatron pulses; in Sec. VII we
consider the generation and propagation of coherent betatron
radiation in underdense plasmas and in a vacuum; in Sec. VIII
we calculate the pulse profile and length of the coherent be-
tatron radiation; in Sec. IX we discuss possible issues in the
detection of coherent betatron radiation, such as the emission
of coherent transition radiation at the plasma-vacuum bound-
ary and the electromagnetic shadowing, i.e., the destructive
interference between the radiation and the space-charge field
[24]. The conclusions are reported in Sec. X.

II. LENGTH OF A GENERIC ELECTROMAGNETIC PULSE

The starting point will be the following equation, which re-
lates the rms pulse length associated with any electromagnetic
pulse to its spectral amplitude |S(ω)| and spectral phase φ(ω)
[25]:

τ 2
rms =

∫
dω

(
d|S(ω)|

dω

)2

+
∫

dω|S(ω)|2
(

dφ

dω

)2

. (2)

The physical explanation of Eq. (2) is that the length of any
electromagnetic pulse is found by a Pythagorean-like theo-
rem, as if the square of the hypotenuse τ 2

rms were the sum of
the squared lengths of the two sides, the first related to the
variations of the spectral amplitude and the second to the vari-

FIG. 1. Geometry of the betatron radiation emission. The shaded
area indicates the plasma channel where electron oscillations occur
during plasma wakefield acceleration.

ations of the spectral phase. It is worth noting that the spectral
phase considered in Eq. (2) is the net phase after subtracting
the contribution relative to the propagation of the center of
mass of the pulse from the source to the observation point. As
for the incoherent betatron radiation, the spectral amplitude
is experimentally measurable, while the measurement of the
spectral phase would require very sophisticated methods of
phase retrieval applied to ultrashort x-ray pulses.

III. SPECTRAL AMPLITUDE AND SPECTRAL PHASE OF
BETATRON RADIATION

From the solution of Maxwell’s equations (see Ap-
pendix A), the magnetic field of frequency ω radiated at the
point �r by the electron current density �je is

�H (�r, ω) = �∇�r ×
∫

�je(�r′, ω)
ei ω

c |�r−�r′ |

4π |�r − �r′|d3r′. (3)

Since we are interested in the radiation emitted far from the
source, we consider the far-field limit:

�H (n̂, z, ω) = ω

4πc

ei ωz
c

z
n̂ × �̃je(�k, ω) (4)

where n̂ is the unit vector associated with the observation
direction. The radiation wave vector is defined as �k = n̂ω/c =
(ω/c)(sin θ cos ϕx̂ + sin θ sin ϕŷ + cos θ ẑ). The polar and az-
imuth angles θ and ϕ are represented in Fig. 1, and z is
the distance between the source and the observation point,
assuming that the observation takes place around the z-axis.

First, we recall the spatial Fourier transform of the cur-
rent density �j(�r, t ) = q�vδ(�r − �re(t )) associated with a single
electron of charge q, of velocity vector �v, whose motion is
described by �re(t ):

�j(�k, t ) = q�ve−i�k·�re , (5)

where �re = [rβ cos (ωβt + ψ )]x̂ + [vt + (vωβr2
β/8c2)

sin (2ωβt + 2ψ )]ẑ [1]. In Ref. [1], the initial condition is
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that the betatron oscillation amplitude is null at the origin
of time, while in the present paper it is considered different
from zero (in fact, the electrons injected off-axis, i.e.,
those that mostly contribute to the radiation yield, oscillate
with an amplitude different from zero at t = 0). Finally,
introducing ψ takes into account an injected particle with an
arbitrary phase in the plasma channel. Therefore, our betatron
trajectory expression is obtained from Ref. [1] with a time
shift t → t + π/2ωβ , choosing a nonzero phase lag as the
initial condition for the electron dynamics and considering
small betatron divergence. The betatron frequency ωβ is
related to the plasma frequency ωp through the Lorentz factor
γ , i.e., ωβ = ωp/

√
2γ . The betatron amplitude is rβ . We have

assumed motion in the x-z plane, however the calculations
are equally valid for the y-z plane or intermediate planes,
due to the symmetry of the wakefield structure. For the more
general and three-dimensional case, when the motion may
not even be planar with some particles following helicoidal
trajectories, there are two betatron amplitudes, a horizontal
xβ and a vertical yβ : this case is analyzed in Appendix B,
but the main concepts shown below for the simpler planar
case remain the same. Therefore, we argue that the formalism
adopted here is sufficiently general to find the spectral phase
and amplitude of the betatron radiation and to show the
temporal characteristics of the betatron radiation. From now
on we interpret the betatron phase ψ as a dynamic variable.
This approach will turn out to be useful for evaluating the

radiation from a bunch of particles. This means that for a
ψ fixed along the betatron trajectory, we can select a short
interval of time where, locally, the argument of the imaginary
exponential function in Eq. (5) can be expanded as

�j(�k, t ) � q�ve
iθ2

β

ωω2
β

t3

6 f 2(ψ )−iω(1− 1
2γ 2 − θ2

2 + θ2
β

f 2 (ψ )

4 )t
eig(ψ ). (6)

With a standard procedure in polynomial calculus [26], the
quadratic phase term in time has been ruled out with a suitable
time shift of the order of 1/ωβ , in order to facilitate the deriva-
tion. This is always allowed when the number of betatron
oscillations is at least half. Please note that we have used
θ � θβ = ωβrβ/c 	 1, with θβ being the divergence of the
betatron source, and furthermore we already have considered
ψ 	 1, justified by Eq. (13) later in the calculations in this
section. We have also defined

f 2(ψ ) = cos (2ψ ) (7)

and

g(ψ ) = ω

2ωβ

tan (2ψ ). (8)

Equation (6) must be interpreted as the current associated with
a particle emitting in ψ phase of the betatron trajectory. The
Fourier transform of Eq. (6) gives the quantity we are inter-
ested in, for the calculation of betatron radiation by means of
Eq. (4):

�̃jx(�k, ω) = 2π iqrβ

(
2ωβ

ωθ2
β f 2(ψ )

) 2
3

Ai′
[(

3ω

4ωc(ψ )

) 2
3

(
1 + γ 2θ2 − γ 2θ2

β f 2(ψ )

2

)]
eig(ψ )

− 2πqrβ sin (ψ )

(
2ωβ

ωθ2
β f 2(ψ )

) 1
3

Ai

[(
3ω

4ωc(ψ )

) 2
3

(
1 + γ 2θ2 − γ 2θ2

β f 2(ψ )

2

)]
eig(ψ ),

�̃jy(�k, ω) = 0,

�̃jz(�k, ω) = 2πqv

(
2

ωω2
βθ2

β f 2(ψ )

) 1
3

Ai

[(
3ω

4ωc(ψ )

) 2
3

(
1 + γ 2θ2 − γ 2θ2

β f 2(ψ )

2

)]
eig(ψ ), (9)

where we introduced the Airy function of the first kind Ai(x)

and its derivative Ai′(x). The �̃jx component gives rise to syn-
chrotronlike radiation polarized in the plane of the betatron

oscillation, while the �̃jz component gives rise to a polariza-
tion perpendicular to that plane. Finally, the spectral angular
distribution of the radiated energy E emitted inside the solid
angle � as incoherent betatron radiation will be

d2E

dωd�
= μ0ω

2

16π3c
(|̃ �jx(�k, ω)|2 + θ2 |̃ �jz(�k, ω)|2), (10)

where μ0 = 1/ε0c2 is the magnetic permeability of vacuum.
The definition of critical frequency ωc(ψ ) is

ωc(ψ ) = 3
2γ 3ωβθβ f (ψ ). (11)

The above equation means that the critical frequency dynam-
ically changes along the betatron trajectory. The integral over

the solid angle of Eq. (10) can be performed:

|Sβ (ω)|2(ψ ) = dE

dω
�

√
3

4π

q2γ

ε0c

ω

ωc(ψ )

∫ ∞

ω
ωc (ψ )

K5/3(x)dx,

(12)
where |Sβ (ω)|(ψ ) is the spectral amplitude of the betatron
radiation for an electron associated with the betatron phase
ψ . The integral over the ω frequency of Eq. (12) instead gives

E (ψ ) = q2γ 4

3ε0c
θβωβ f (ψ ). (13)

Equation (13) states that the emitted energy oscillates along
the betatron trajectory. As shown in Fig. 2, most of the en-
ergy is radiated for the betatron phases ψ = nπ with n =
0, 1, 2, . . . , in agreement with the saddlepoint approxima-
tion described in Ref. [27]. Therefore, for an approximate
evaluation of the spectral phase, we consider ψ � 0. For
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FIG. 2. The dashed blue line represents the betatron amplitude
(normalized units) of a particle that emits radiation in the phase ψ

of its trajectory. The red line encloses the region where energy is
radiated by the particle, the level of the curve indicating the amount
of radiation. The emission of betatron radiation occurs mainly near
the turning points of the betatron oscillation.

the spectral amplitude that absorbs all the phase terms but
not g(ψ ) in Eq. (6), the spectral phase of the betatron ra-
diation field (including the propagation of the barycenter of
the pulse), considering also Eq. (4) and an observation point
R = √

x2 + z2 such that z � x, is

�(ω) � ω

c
(
√

R2 − x2) + g(ψ � 0) � ω

c
(R − rβθβ − ct0),

(14)
where we used x2 = r2

β + 2rβθβz + θ2
βz2 for the light rays

exiting the source with divergence θβ and also the fact that
for an arbitrary particle delayed by t0 with respect to the
reference particle placed at t = 0, the betatron phase lag can
be expressed as ψ = −ωβt0.

IV. PULSE LENGTH AND TIME STRUCTURE OF
INCOHERENT BETATRON RADIATION

We recall that in Sec. II, the spectral phase has been defined
as φ(ω) = �(ω) − ωR/c, i.e., subtracting the propagation
time of the pulse as a whole. Let us now evaluate Eq. (2) using
the normalization rule

∫
dω|Sβ (ω)|2 = 1 and considering the

maximum emission phase ψ = 0. Under usual experimental
conditions, the first term on the right side of Eq. (2) is of the
order of ∼1/ω2

c 	 ω2
βr4

β/c4, t2
0 , so it is negligible compared

to the second term. To obtain a reliable expression for the
betatron pulse length, the betatron radius, divergence, and
delay with respect to the reference particle must be considered
over the entire ensemble of electrons. We therefore define
the rms spectral phase φrms(ω) as the phase φ(ω) for which
the parameters θβ , rβ , and t0 undergo a process of root mean
square (rms) calculated over the beam distributions. �(θβ ),
R(rβ ), and T (t0) are, respectively, the distribution functions
of the betatron divergence, of the betatron radius, and of the
longitudinal electron position along the bunch:

φrms = −ω

(
τe + ε

c

)
. (15)

The rms betatron pulse length is found by inserting Eq. (15)
into Eq. (2) in place of φ while neglecting the first term of the

latter equation for the reasons discussed above:

τrms = τe + ε

c
. (16)

In Eq. (16) we recognized the rms electron beam emittance
ε = θ̂βσ , with θ̂β and σ the rms electron beam divergence and
the rms electron beam size, respectively. Indeed, the product
of beam size and beam divergence at a turning point is equal to
the beam emittance since the correlation in the phase space is
zero. Moreover, according to Ref. [28], ε should be multiplied
by a correction factor 2 in Eqs. (15) and (16). This factor
would derive from the expression of the effective rms beta-
tron amplitude over one oscillation cycle. Nevertheless, since
most of the photon emission is confined around the turning
point of the betatron trajectory, the real correction factor is
closer to 1. Finally, the rms betatron pulse length consists
of two terms, the first trivial, related to the electron bunch
length, and the second related to the phase retardation at the
observation point due to the finite emittance of the source.
The retardation term accounts for the dephasing occurring
among different source points in the plane transverse to the
emission, i.e., among different electrons distributed in the
plane transverse to the propagation. In other words, within
the observation cone determined by θβ , the rays emitted by
extremal points of the source will accumulate a relative delay
inducing a measurable pulse stretching. Equation (16) must be
considered when the electron bunch length is comparable to
the electron beam emittance, i.e., for ultrashort beams of poor
quality. For example, an electron beam emittance ε = 220 nm
would correspond to an elongation of the rms pulse length of
1 fs: for very short bunch lengths, the effect of the emittance
is relevant and must be taken into account. In conclusion,
and for the sake of clarity, the electron bunch length and the
beam emittance can evolve during the acceleration process,
therefore the final betatron radiation pulse carries integrated
information of such beam dynamics. It is worth noting that in
Ref. [23], a case is studied in which the FWHM duration of
the betatron pulse is shorter than the FWHM bunch length.
On the contrary, the analysis proposed in this paper considers
rms and integrated (along the acceleration path) quantities.
In this latter framework, the case of an incoherent betatron
pulse shorter than the electron bunch is physically suppressed
at relativistic energies.

V. STRETCHING OF THE BETATRON PULSES
PROPAGATING IN A VACUUM

Equation (16) is valid only at the source level. The propa-
gation in a vacuum of the betatron pulse can affect its length.
This can be seen expanding the spectral phase while keeping
the corrections in the order of θ̂2

β :

φrms(ω) = −ω

c

(
cτe + ε + θ̂2

βz

2

)
, (17)

which yields a z-dependent expression of the rms betatron
pulse length via Eq. (2):

τrms(z) = τe + ε

c
+ θ̂2

βz

2c
. (18)
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FIG. 3. Comparison between the betatron pulse τrms (black line)
stretching during propagation in a vacuum, and the contribution from
the bunch length τe (dashed red) and from the beam emittance ε/c
(dashed blue) at the source level. Used parameters: ε = 220 nm, τe =
10 fs, and ωβ = 7.3 × 1012 s−1 corresponding to ne = 1019 cm−3 and
γ = 300, i.e., to a divergence θ̂β = 70 mrad.

For ultrashort pulses, as in the case of betatron radiation,
the propagation in a vacuum can be responsible for an im-
portant stretching of the pulse length from its initial value in
the plasma, connected only with the electron bunch length
and to a lesser extent to the electron beam emittance. For
example, with the parameters used in Fig. 3, the betatron
pulse is stretched by two orders of magnitude in less than
1 m of propagation in a vacuum. For smaller betatron diver-
gence and better beam emittance, the elongation is less critical
and the contribution from the beam emittance is completely
negligible, as shown in Fig. 4. Nevertheless it is extremely
remarkable that the pulse length measured at a certain dis-
tance from the source can be significantly longer than the
electron bunch length at the source (also the electron bunch
can elongate as it propagates in a vacuum with a divergence).
A simple physical explanation for the elongation in a vac-
uum is given below. Indeed, in the propagation of diverging
ultrashort pulses, this effect is to be expected. A photon
propagating in a vacuum over a distance L, on axis, would cor-
respond to a trajectory z = ct , i.e., to an arrival time t1 = L/c.

FIG. 4. Comparison between the betatron pulse τrms (black line)
stretching during propagation in a vacuum, and the contribution from
the bunch length τe (dashed red) and from the beam emittance ε/c
(dashed blue) at the source level. Used parameters: ε = 3.9 nm, τe =
10 fs, and ωβ = 7.3 × 1012 s−1 corresponding to ne = 1019 cm−3 and
γ = 300, i.e., to a divergence θ̂β = 10 mrad.

FIG. 5. Normalized critical frequency (green line) for an electron
bunch emitting betatron radiation. The betatron oscillation (dashed
blue, normalized units) is reported in the same plot. The frequency
modulation is approximately quadratic close to the phases ψ = 0, π

of maximum emission.

A photon propagating with a small angle θ 	 1, correspond-
ing to a trajectory z = vzt = c cos θt � ct (1 − θ2/2), has an
arrival time of t2 = L/c(1 − θ2/2) at the same plane. The
time difference (responsible for the pulse elongation) be-
tween the two photons is t2 − t1 � θ2L/2c, consistent with
Eq. (18), and the more complete one, Eq. (B4). To con-
clude, the short pulse lengths could be restored by using
a pinhole/aperture or proper focusing optics in front of an
irradiated sample/detector, but at the expense of photon flux
or possibly introducing other effects like, e.g., longitudinal
dispersion.

VI. NONLINEAR PHASE MODULATIONS

The betatron oscillations transduce into a nonlinear spec-
tral phase modulation along the betatron radiation pulse.
Indeed, the dominant frequency along the radiation pulse is
given by Eq. (11). Passing through the regions of maximum
emission, the electron bunch emits a radiation frequency that
is lower if coming from its head and its tail and higher if
emitted from its center, as shown in Fig. 5. The above trend of
the critical frequency along the betatron pulse is perfectly con-
sistent with the numerical results shown in Ref. [23], where it
is shown that the critical frequency is maximum at the peak
of the pulse and it decays along the front and the rear of it.
This information would be quite relevant when implementing
diagnostic techniques of the betatron pulse length and time-
resolved experiments whose reliability depends strongly upon
the frequency-time correlation along the radiation pulses. All
the above applies to the incoherent betatron radiation, and,
after proper treatment of the transduction of the pulse length
from electrons to radiation, it can simply be extended to the
coherent part of the spectrum, as shown below.

VII. PROPAGATION OF COHERENT BETATRON
RADIATION

Coherent betatron radiation (CBR) would extend to ω =
1/τe and beyond, which, for τe = 1 fs, would mean a coher-
ence bandwidth up to �0.66 eV (or even above 1 eV for a
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microstructured electron bunch [8]). The coherent spectrum
would cover much lower frequencies than the incoherent spec-
trum, normally ranging from a few to many keV. Therefore, it
would extend to the NIR-visible region. For the sake of rigor,
Eq. (4) should be modified for the presence of the plasma
medium in such a way that

�H (n̂, z, ω) =
√

ε(ω)ω

4πc

ei
√

ε(ω)ωz
c

z
n̂ × �̃je(�k, ω), (19)

where �k = √
ε(ω)ωn̂/c, and the plasma dielectric function is

defined as

ε(ω) = 1 − ω2
p

ω2
. (20)

From direct inspection of Eq. (19) it is clear that any fre-
quency ω < ωp propagates as an evanescent wave, hence the
plasma is said to be overdense. For an electron plasma density
ne = 1 × 1019 cm−3, the plasma frequency is ωp � 0.18 PHz,
corresponding to a photon cutoff energy of ∼0.12 eV (in a
wavelength 10.7 μm). This means that CBR photons with
energy eV (or a fraction thereof), propagating in the region
of electron density ne, should not be suppressed for such
experimental conditions, and therefore CBR should be ob-
servable. Furthermore, the situation is even more favorable
due to the fact that within the emission region, the electron
plasma density is strongly suppressed by the ponderomotive
forces. This means that the dielectric function of the plasma
must be evaluated replacing the electron plasma frequency
ωp with the ion plasma frequency ωp,i, which is over one
order of magnitude smaller. As for the propagation out of the
plasma, technically speaking the temporal coherence of the
betatron radiation pulse, inversely proportional to the spectral
bandwidth, is not affected by the stretching in the vacuum,
since the latter does not introduce longitudinal dispersion. The
divergence is such that it angularly disperses the pulse, which
locally maintains the same degree of temporal coherence.
Eventually, refocusing the radiation beam could restore pulse
length and coherence, but it may introduce other effects like
interference or longitudinal dispersion. What is affected by
the divergence is also the degree of spatial coherence, which
is inversely proportional to the source divergence, although
it also increases with the radiated wavelength, so the co-
herent betatron source remains nevertheless highly spatially
coherent. Indeed, the divergence of CBR is not θβ but it is
frequency-dependent [1]:

θd = 1

γ

(
ωc(0)

ω

)1/3

. (21)

Given typical values θβ = 10 mrad, γ = 300, and ωβ = 7.3 ×
1012 s−1, as in Fig. 4, the above formula gives θd = 39 mrad
at the radiated wavelength 1 μm, θd = 83 mrad for 10 μm
radiation, and θd = 130 mrad for 100 μm radiation. It is
evident that coherent betatron radiation is more divergent than
incoherent betatron radiation, and that it could suffer from
more severe pulse elongation.

VIII. TEMPORAL PROFILE OF COHERENT BETATRON
PULSES

Referring to the method adopted in Sec. IV, where the in-
coherent current was �je ∝ √

Ne exp (−iωτe), for the coherent
wavelengths the current density becomes

�je(�k, ω) = qvNeP(�k, ω)ẑ = qvρ(�k, ω)ẑ, (22)

where we introduced the so-called form factor ρ(�k, ω) =
NeP(�k, ω), with Ne the number of electrons in the emitting
bunch, and P(�k, t ) the temporal profile of the electron current
density. The τe-dependent spectral phase term of the betatron
radiation field disappears, now embedded in the spectral am-
plitude. Thus, for coherent betatron radiation we obtain

φrms = −ωε

c
(23)

and
d|S|
dω

= |S1|
ωc

+ |S2|τe � |S2|τe, (24)

where we again considered ωc much larger than all the other
frequencies of the problem, justified by normal working con-
ditions (ωcτe � 1). We have defined |S1|/ωc and |S2|τe as the
slowly varying and rapidly varying parts of the derivative of
the spectral amplitude of betatron radiation |S|, which now
contains information on both coherent and incoherent pho-
tons. The coherent betatron pulse length is finally found via
Eq. (2):

τrms = ατe + ε

c
, (25)

where α is a factor ranging between 0 and 1, which depends
on the temporal profile of the electron bunch. The definition of
this parameter is α = [

∫
dω|S2(ω)|2/ ∫

dω|S(ω)|2]1/2, where
the normalization rule

∫
dω|S(ω)|2 = 1 holds. Recall that

Eq. (25) refers to the betatron pulse length at the source, while
the z-dependent term appearing in Eq. (18) must be added
when evaluating the pulse length far from the source, at a
distance z from it. When passing from incoherent to coherent
radiation, the contributions from the beam emittance and from
the propagation in a vacuum do not change. The only different
term is the one related to the electron bunch length, carrying
information on the bunch form factor. The temporal profile
Tβ (t ) of the coherent betatron pulses in the conditions where
the emittance is negligible in Eq. (25), as well as close enough
to the source for avoiding pulse stretching, is given by

Tβ (t ) ∝
∣∣∣∣ 1

2π

∫
dω S(ω)e−iωt

∣∣∣∣2

, (26)

where the symbol ∝ has been used to denote the fact that
the left and right sides of Eq. (19) are equal up to a normal-
ization constant. Since |S(ω)| � |Sβ (ω)|P(ω), the incoherent
spectral amplitude |Sβ | acts as a transfer function between the
electron bunch (characterized by P) and the radiation pulse
(characterized by |S|). It is possible to see that this transfer
function can modify the shape of the pulse when passing from
the particles to the radiation, and that for coherent radiation
the pulse length is < τe, i.e., α < 1, due to the fact that
Tβ (t ) ∝ j2(t ). The above is shown in Fig. 6, obtained through
Eq. (26), where the radiation profile is similar to the square
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FIG. 6. Temporal profile of a CBR pulse (black line) correspond-
ing to a Gaussian current density profile with rms length τe. The
timescale is expressed in units of τe. For comparison, the normalized
current density profile is reported (dashed red line) as well as the
square of it (dashed blue line).

of the current density profile except for a small tail at late
times. In Appendix C, it is shown that for a Gaussian current,
α = √

2/3. In general, the electron bunch may be composed
of a microstructured pattern with more than one dominant fre-
quency in the spectrum: in that case, Tβ would inherit the same
structure. The temporal profile is determined by the coherent
part of the spectrum, which extends beyond ω = 1/τe. The
coherent spectrum can also show resonances at frequencies
ω � 1/τe in the presence of microstructures in the electron
bunch profile. Such modulations could also be artificially
induced via electromagnetic pulses [29]. It is interesting to
estimate the number of photons emitted in the coherent part
of the spectrum compared to the number of photons emitted
in the incoherent region. This can be achieved by recalling
that the low-frequency scaling for synchrotronlike emission
is |Sβ (ω)|2 ∼ (ω/ωc)1/3 [see Eq. (10) and Refs. [30,31]],
while we can consider |Sβ (ω)|2 ∼ 1 for frequencies ω ∼ ωc.
Therefore, the number of coherent photons will be Ncoh ∝
N2

e (ω/ωc)1/3 while the number of incoherent photons will be
Ninc ∝ Ne. The ratio between the two photon populations is
Ncoh/Ninc ∼ Ne(ω/ωc)1/3. For ω corresponding to 1 eV and
ωc corresponding to 5 keV, we obtain (ω/ωc)1/3 ∼ 6%. For
Ne = 108, the coherent emission is at least six orders of mag-
nitude more intense than the incoherent counterpart.

IX. THE TRANSITION RADIATION ISSUE

One problem that can occur in the CBR detection is that
CBR can get confused with coherent transition radiation
(CTR) at the plasma-vacuum boundary. The criterion for de-
termining whether CBR is more important than CTR is based
on comparing radiation yields. The radiation yield of CBR can
be estimated via Eq. (13) after multiplying by the number of
turning points along the acceleration path, which is roughly
2Laccωβ/c:

YCBR = 2Laccq2γ 4θβω2
β

3ε0c2
. (27)

The yield of CTR for a very sharp plasma-vacuum transition
is obtained as [32]

YCTR = q2γωp

12πε0c
. (28)

The ratio between the two yields is

Y = YCBR

YCTR
= 24πLaccγ

3θβω2
β

3ωpc
= 12πLaccγ

2θβωp

3c
. (29)

For typical experimental parameters of electron plasma accel-
eration, evidently Y � 1. Moreover, for sufficiently smooth
plasma down-ramps (decaying over a distance comparable to
or greater than the CTR wavelengths), the CTR is further
suppressed compared to the CBR. Due to the finite transverse
size of the CTR source, a correction due to coherent diffrac-
tion radiation (CDR), very critical at low frequencies [33,34],
should also be considered. The above confirms once again
the feasibility of a CBR detection experiment, which from a
practical point of view could ease the determination of the
betatron pulse length, as well as of the electron bunch length.
To get information on coherent radiation yields, we have used
the expression of incoherent radiation yields [Eqs. (27) and
(28) refer to a single emitter]. This is justified by the fact that
the incoherent yield is proportional to the intrinsic probability
of the emission process occurring, both incoherently and co-
herently. A more rigorous treatment would require knowledge
of the form factor, such that the coherent yields can be com-
pared directly. Nevertheless, the result for the relative yield Y
would be very similar, given the fact that the coherent region
of the spectrum would be approximately the same for the
two mechanisms (CBR and CTR), but not the probability of
photon emission. Finally, the spectral detection of CBR would
directly reveal microbunching and/or multibunch structures.
Bending the electrons before the radiation detector could also
solve electromagnetic shadowing problems, separating the
electrons from the radiation [24] and allowing the measure-
ment of the latter while avoiding destructive interference.

X. CONCLUSIONS

The temporal characteristics of the betatron radiation emit-
ted by relativistic electrons accelerated in the plasma channels
have been reviewed with a fully analytic approach. The study
revealed interesting features, such as the fact that the finite
duration of the betatron radiation pulses is determined, in the
general case, by the electron bunch length, as already known
from previous literature, but also by the beam emittance.
We demonstrated the presence of a nontrivial frequency-time
correlation along the pulse, also visible in the simulation
results reported in Ref. [23]. We discussed the issue of
the pulse elongation during the propagation in a vacuum,
which, through the divergence of the source, acts by de-
laying the external rays relative to the internal ones by a
dramatic amount. Such stretching of the betatron pulses can
reach several orders of magnitude on typical experimental
distances. This phenomenology is completely described by
Eq. (18) for the 1D case, while the 3D case is described
in Appendix B resulting in Eq. (B4). This last equation can
explain the value measured in Ref. [16], although the experi-
ment reported therein was limited by the diagnostic apparatus.
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Furthermore, we highlighted the relevance and the charac-
teristics of temporally coherent betatron radiation. In fact,
CBR in the visible/infrared/THz domain (according to the
interaction regimes) can be emitted and propagated outside
the source, making possible a new class of beam diagnostics
and/or compact light sources. In conclusion, the paper sheds
light on the temporal properties of betatron radiation pulses,
aiming to obtain information and scalable formulas for diverse
experimental conditions. The work is meant to be of interest
to researchers in the field of electron beam diagnostics for
plasma accelerators as well as for the radiation users who
leverage betatron pulses to perform time-domain studies of
dynamic samples.
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APPENDIX A: DERIVATION OF EQ. (3)

The Maxwell equation for the magnetic field �H is

�∇ × �H = �j + ε0∂t �E , (A1)

where �j is an electric current density and �E is the electric field.
We first consider the curl of Eq. (A1):

∇2 �H = −�∇ × �j − ε0∂t �∇ × �E . (A2)

Furthermore, using the Maxwell equation for �E :

�∇ × �E = −μ0∂t �H (A3)

and then switching to the frequency domain, we obtain

−ω2

c2
�H − ∇2 �H = �∇ × �j. (A4)

The retarded Green function of Eq. (A4) is [31]

�(�r − �r′, ω) = ei ω
c |�r−�r′ |

4π |�r − �r′| . (A5)

Thus, considering the curl of the current density as a source
term, the final solution of Eq. (A4), i.e., the magnetic field �H
radiated by the current density �j, is

�H (�r, ω) = �∇�r ×
∫

VR

�(�r − �r′, ω)�j(�r′, ω)d3r′. (A6)

APPENDIX B: SPECTRAL PHASE AND AMPLITUDE IN
THE THREE-DIMENSIONAL CASE

The 3D parametrization of betatron trajectory is

x(t ) = xβ cos (ωβt + ψx ),

y(t ) = yβ cos (ωβt + ψy),

z(t ) = vt − v

8c
[xβθx sin (2ψx ) + yβθy sin (2ψy)]

+ v

8c
[xβθx sin (2ψx + 2ωβt )

+ yβθy sin (2ψy + 2ωβt )], (B1)

where θx,y and ψx,y are the betatron divergence and the phase-
lag in the horizontal and vertical plane, respectively. Similarly
to Sec. III, we obtain

�j(�k, t ) � q�vei
ωr2

β
ω4
β

t3

6c2 [cos2 ϕ cos (2ψx )+sin2 ϕ2 cos (2ψy )]

× e
−iωt (1− 1

2γ 2 − θ2

2 + γ 2θ2
β

2 [cos2 ϕ cos (2ψx )+sin2 ϕ2 cos (2ψy )])

× e
iω

2ωβ
[tan (2ψx )+tan (2ψy )]

. (B2)

The nontrivial dependence upon ϕ now makes the integral
over the solid angle less straightforward, thus we define

|Sβ (ω)|2 =
∫ 2π

0

∫ π

0
dϕ dθ sin θ

d2E

dωd�
, (B3)

where d2E/dω d� follows from Eqs. (10) and (B2). The
resulting rms pulse length of betatron radiation is finally

τrms(z) = ατe +
√

ε2
x + ε2

y

c
+ θ̂2

βz

2c
, (B4)

where εx and εy are the horizontal and vertical rms emittances,
respectively, and we recall that z is the distance from the
betatron source to the detector. α = 1 for incoherent radiation
and 0 < α < 1 for coherent radiation.

APPENDIX C: DURATION OF COHERENT BETATRON
PULSES GENERATED BY GAUSSIAN ELECTRON

BUNCHES

Given a Gaussian electron current density, the Fourier
transform of the bunch profile associated with it is

P(ω) = τe√
2π

e− ω2τ2
e

2 . (C1)

The betatron spectral amplitude is by consequence

|S(ω)| = 1√
NS

(
ω

ωc

)1/6
τe√
2π

e− ω2τ2
e

2 , (C2)

where NS is a normalization constant such that∫
dω|S(ω)|2=1. The rapidly varying part of the spectral

amplitude is found by taking the derivative of Eq. (C2) while
neglecting the term ∝1/ωc,

|S2(ω)| = −ωτe|S(ω)|. (C3)

Via its definition, the α parameter is calculated as

α2 =
∫

dω|S2(ω)|2∫
dω|S(ω)|2 = τ 2

e

∫
dωω2|S(ω)|2∫

dω|S(ω)|2 = 2

3
. (C4)

Close to the source and neglecting the emittance contribution,
the rms betatron pulse length (coherent) is

τrms =
√

2

3
τe. (C5)
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