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Droplet formation of biological non-Newtonian fluid in T-junction generators.
II. Model for final droplet volume prediction
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This work represents the second part of a two-part series on the dynamics of droplet formation in a T-junction
generator under the squeezing regime when using solutions of red blood cells as the dispersed phase. Solutions
containing red blood cells are non-Newtonian; however, these solutions do not behave in the same way as
other non-Newtonian fluids currently described in the literature. Hence, available models do not capture nor
predict important features useful for the design of T-junction microfluidic systems, including droplet volume.
The formation of a red blood cell-containing droplet consists of three stages: a lag stage, a filling stage, and
a necking stage, with the lag stage only observed in narrow dispersed phase channel setups. Unlike other
shear-thinning fluids, thread elongation into the main channel at the end of the necking stage is not observed for
red blood cell solutions. In this work, a model that predicts the final droplet volume of a red blood cell containing
droplets in T-junction generators is presented. The model combines a detailed analysis of the geometrical
shape of the droplet during the formation process, with force and Laplace pressure balances to obtain the
penetration depth (b∗

fill) and the critical neck thickness (2r∗
pinch) of the droplet. The performance of the model

was validated by comparing the operational parameters (droplet volume, the spacing between the droplet, and
the generation frequency) with the experimental data across a range of the dimensionless parameters (flow rate
ratios, continuous phase viscosities, and channel geometries).

DOI: 10.1103/PhysRevE.105.025106

I. INTRODUCTION

In the first part of this study [1], solutions with two dif-
ferent concentrations of red blood cells were examined in a
T-junction droplet generator in the squeezing regime. These
solutions were made by diluting a stock solution containing
10% (v/v) red blood cells with phosphate buffered saline.
Unlike Newtonian fluids where the channel geometry is what
primarily governs droplet formation in the squeezing regime,
droplets containing red blood cells were influenced by a
combination of channel geometry (h∗ = aspect rat io, � =
width rat io) and flow conditions (fluid viscosities and ϕ =
f low rate rat io).

Video analysis showed that the droplet formation consisted
of three stages: lag, filling and necking stages (see, Fig. 1).
In other work using non-Newtonian fluids as the dispersed
phase, an additional stretching phase was observed, where
a thread elongated into the main channel before detachment
[2–8]. However, with the droplets containing red blood cells,
there was no obvious thread elongation, and the droplets im-
mediately pinched off from the corner of the T junction at
the end of the necking stage. In the lag stage, the interface
of the droplets receded into the dispersed phase channel after
the previous droplet detached. Nevertheless, the receding in-
terface was only observed in the channel designs that had a
lower width ratio, which also resulted in a longer lag stage
and a larger spacing between droplets. In the filling stage,
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the interface penetrated the main channel and deformed. The
deformed droplet presented a characteristic shape, similar to
Newtonian fluid droplets [9], which, for the latter, has been
used in the estimation of droplet volume. Thus, it may be
possible to utilize a similar mathematical expression in our
model, taking into consideration two key parameters: the pen-
etration depth droplet (b∗

fill) and the critical neck thickness
(2r∗

pinch). The penetration depth at the end of the filling stage is
denoted as b∗

fill. In the necking stage, the neck thickness of the
droplet (2r∗

n ) reduces until reaching the critical neck thickness
of the droplet (2r∗

pinch) right before pinch-off. Contribution of
the necking stage to the final droplet volume was calculated by
defining the shape of the droplet at this stage and the critical
neck thickness of the droplet (2r∗

pinch) right before pinch-off.
The analysis of two critical variables (b∗

fill and 2r∗
pinch) helps

the development of a mathematical model.
In this work, we develop a model that predicts the final

droplet volume for droplets containing red blood cells, which
may provide insights into the design of droplet generators for
biomedical applications. To verify the capability of the model
on predicting the droplet volume, a comparison analysis of the
experimental data with the calculated data for all experiments
was performed. (All the variables, parameters and equations
are summarized in the Supplemental Material, S1 [10]).

II. MODEL

Scaling analysis of droplet volume for Newtonian fluids
can be calculated as the given Eq. (1) below [11]:

Vd
∗ = αlag + αfill + βϕ, (1)
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FIG. 1. Microscope images showing the formation cycle of a
droplet containing red blood cells in a T-junction generator. The cycle
starts with the lag stage and ends with the detachment of the droplet.
Continuous phase flow rate (Qc ) = 0.59 μl/ min. Dispersed phase
flow rate (Qd ) = 0.30 μl/min. Continuous phase capillary number
(Ca) = 0.0099. Continuous phase channel width (wc ) = 105 μm.
Dispersed phase channel width (wd ) = 102 μm. Main channel width
(wm ) = 105 μm. Channel height (h) = 62.9 μm. The droplet length
is denoted as Ld and its volume as Vd with a generation frequency f .
Spacing between droplets is denoted as λ.

where ϕ is the flow rate ratio, αlag and αfill are the volumes
added during the lag and filling stages, respectively, and β is
the dimensionless necking time which relates to the growth
of the droplet while the neck of the droplet collapses. For
droplets containing red blood cells, the shear thinning prop-
erty of the droplet impacted the filling and necking stages.
Therefore, we aimed to develop a similar three-term model
that accounted for the properties of the different dispersed
phase, and to validate the model based on experimental data.

The mathematical expressions of these factors are related
to the characteristic geometrical shape of the droplet which is
defined by van Steijn et al. [9] as in Eq. (2):

V = hA − h2

2

(
1 − π

4

)
l, (2)

where h is the channel height, A is the projected area, and
l is the perimeter of a droplet. Adapting the analysis to our
system, certain requirements and assumptions were needed.
First, the out of plane curvature of the droplet was assumed to
be h/2, which is valid for good nonwetting conditions [12].
Second, all the droplets were pluglike, and the sizes were
larger than the channel width. Third, any dynamic change
in interfacial tension was neglected by avoiding the use of
surfactant, and the interfacial tension was further assumed to
be at equilibrium throughout the formation process [13,14].
Additional variables that defined our system (see, Fig. 2),
included: the penetration of the droplet interface into the main
channel, bfill, which also defines the diameter of the half-circle
at the front of the droplet; the back circle radius, Rn; and the
distance from the droplet interface to the opposite corner of
the T junction, 2rn. In the following sections, mathematical

FIG. 2. Schematic of a 2D view of the characteristic shape of the
droplet (a) view from the top (b) view from the cross-section area of
the channel.

expressions for αlag, αfill and β factors expressed with respect
to these variables are explained.

A. Lag stage

In this stage, the droplet interface receded into the dis-
persed phase channel after the detachment of the previous
droplet. Then, the interface was pushed back to the entrance
of the junction. The contribution of this recovery to the final
droplet volume can be described based on the shape of the
interface of the droplet after the previous droplet detaches
(see, Fig. 3). By applying Eq. (2) to this shape, the lag phase
volume αlag can be calculated using the Eq. (3) given below:

V ∗
lag = αlag = L∗

lag� + 1

2

(
1 − π

4

)(
�2 + π�h∗

2

)
, (3)

where αlag is the dimensionless lag volume and L∗
lag is the di-

mensionless lag distance. The only unknown in this equation
was the lag distance. Since the lag distance has an undefined
and a complex relation with the flow conditions and the chan-
nel geometry, instead of defining a mathematical expression,
we used experimental data and inserted it into Eq. (3) in
the current model. Experimental observations showed that
the lag distance occurred when a narrower dispersed phase
channel was used. For wider channel designs, the droplet
interface remained right at the junction after pinch-off the
previous droplet and the lag distance became immeasurable
(L∗

lag ∼ 1–2 μm) (see, Fig. 3). Thus, the contribution of the
lag stage was considered only for the designs with � = 0.5,
while calculating the final droplet volume.

B. Filling stage

In this stage, as the interface penetrates the main channel,
the droplet interface is deformed and the viscous, pressure
and interfacial tension forces determine the characteristic
shape of the droplet [9,15]. For the droplets containing blood
cells, the characteristic shape consisted of two small circu-
lar geometries (see, Fig. 4). The first one was a half circle
located at the front of the droplet with a diameter bfill, and
the second one was a circular segment located at the back
of the droplet with a radius Rn. Depending on the width
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FIG. 3. Schematic of the droplet interface during the lag stage (on the left). Microscopic images of droplets of blood solutions before and
after the detachment for two different channel width ratios (on the right).

ratio of the channel, the radius of the circular segment at
the back was changing, and it became either equal to bfill

or wd (Rn = bfill; i f wd � bfill or Rn = wd ; i f wd > bfill ).
Thus, two different cases defined the volume at the filling
stage [see Figs. 4(a) and Fig. 4(b)]. Once Eq. (1) was ap-
plied to these geometries, the filling volume was defined for
wd � bfill as

V ∗
fill = αfill = 3

8
πb∗2

fill − h∗

2

(
1−π

4

)
(πb∗

fill + (b∗
fill − �)). (4)

FIG. 4. Schematic of 2D shape of the droplet at the end of filling
stage for two cases: (a) For cases where wd � bfill, the back half of
the droplet is a quarter circle with diameter equal to bfill; (b) For
cases where wd > bfill, the radius of the circular segment equals the
dispersed phase channel width.

In this case, the circular segment at the back was a quarter
circle. However, for cases where wd > bfill, the back cir-
cular segment became a half-circular segment, as shown in
Fig. 4(b). Thus, the volume calculation became

V ∗
fill = αfill = π

8
b∗2

fill + �2

4
(θ−sinθ )

− h∗

4

(
1 − π

4

)
(πb∗

fill + �θ ), (5)

θ = 2 arccos

(
1 − b∗

fill

�

)
(6)

In these equations, the only unknown variable was the
penetration depth b∗

fill at the end of the filling stage. Since the
hydrodynamic force defines the final shape of the droplet, a
mathematical expression for b∗

fill can be determined by force
balance calculations, which are explained in the following
sections.

C. Necking stage

In this stage, the droplet continues to grow as the neck of
the droplet collapses. Therefore, the final droplet size depends
on the shape of the droplet at this stage, the necking time
and the flow rate ratios. The dimensionless necking time was
defined as β in the current model, and it was correlated with
the fraction of the flow of the continuous phase that was
blocked by the interface. As the continuous phase pushed the
interface to the opposite corner of the T junction, the shape
of the fraction (control volume-red dashed area, see Fig. 5)
changed. Once the neck reached the critical point (2r∗

pinch), the
collapse of the droplet took place very fast. Thus, the shape of
the fraction needed to be known to calculate the dimensionless
necking time, β. Since the change in the control volume over
time was related with the bypassing flow rate and squeezing
flow rate of the continuous phase across the boundary of
the droplet, dimensionless necking time was obtained by the
following Eq. (7):

β = (
V

∗
cpinch

− V∗
cfill

)(
1−A∗

gap

h∗

)−1

, (7)
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FIG. 5. (a) Sequence of microscopic images of the droplet during the necking stage showing elongation of the droplet and the transforma-
tion of the back half of the droplet from a quarter-circle to a circular-segment after the continuous phase pinned at a distance wd . (b) Schematic
of the droplet under the necking stage showing the required variables to calculate the volume of the droplet at this stage.

where ((1 − (Agap
∗)/h∗))(−1) represents the fraction of the

continuous phase that pushes the interface of the droplet to
the opposite corner. The dimensionless bypass area, A∗

gap is
defined by the following Eq. (8):

A∗
gap = (1 − b∗

ave)h∗ +
(

1 − π

4

)h∗2

2
. (8)

Since the penetration depth is changing dynamically dur-
ing the necking stage, the average penetration depth, b∗

ave =
(b∗

pinch + b∗
fill )/2 is used to define the gap. V ∗

cpinch
is the final

dimensionless control volume at the pinch-off point, and V ∗
cfill

is the initial dimensionless control volume at the end of the
filling stage. Both control volumes can be obtained by apply-
ing Eq. (1) to the two-dimensional (2D) shape of the droplet
at those stages. V ∗

cfill
is given by Eq. (9):

V ∗
cfill

=(1−b∗)R∗
fill+

(
1−π

4

)
(R∗

fill )
2+πh∗

4

(
1−π

4

)
R∗

fill. (9)

In the model presented by van Steijn et al. for Newto-
nian fluids, the shape of the control volume at the pinch-off
point is approximated as a quarter circle. However, it was
found that due to the shear-thinning property of the blood
solutions, the droplet elongated into the main channel before
the detachment, and the quarter-circle shape was distorted.
The distorted shape of the blood droplet presented a similar
shape as that of a Newtonian liquid droplet formed under
the transition regime [16,17]. The neck shape first followed a
quarter-circle shape, and then was distorted as the continuous
phase started to penetrate the dispersed phase channel, and
became pinned at a distance, wd . With the continuous phase
becoming pinned in the dispersed phase channel, the droplet
elongated into the main channel and the neck radius increased
[R∗

n = R∗
pinch, see Figs. 5(a) and 5(b)]. As a result, the necking

duration increased as the neck radius increased. Furthermore,
unlike the droplets under the transition regime, it was found
that as the oil viscosity increased, the elongation of the droplet
increased, causing a larger neck radius. Thus, to develop a
mathematical expression for V ∗

cpinch
, a new description of the

shape of the back of the droplet was implemented using the
given variables in Fig. 5(b) and these variables were modified

based on the shear-thinning property of the droplet:

d∗ = b∗
pinch + �, (10)

θ = 2 arccos

(
1 − � + b∗

pinch

R∗
pinch

)
, (11)

a∗ = η
√

d∗(2R∗
pinch − d∗), (12)

2r∗
pinch − ε = R∗

pinch −
√

(a∗ − �)2 + (R∗
pinch − b∗

pinch )2,

(13)

where a∗ is the elongation length, θ is the angle, ε is the round-
ness of the corner of the T junction and, η is the viscosity ratio
of the phases. The roundness of the channel must be included
to minimize the error (the corner of the T junction is always
not perfectly 90 due to the fabrication). In shear thinning fluids
(i.e., fluids with red blood cells), as the shear increases, the
viscosity reduces, resulting in a dynamic viscosity rate ratio,
η. However, the viscosity of the blood solutions varied only
slightly under a wide range of shear rate. Therefore, the effect
of the dynamic viscosity change was minimal, and the average
viscosity value of the blood solutions calculated in this study
provided enough accuracy for the analysis.

In the analysis of Glawdel et al. for droplet generation
under the transition regime, it was shown that the shape of
the droplet after the continuous phase penetrated the dispersed
phase channel at a distance, wd , was not a quarter circle [11].
Instead, the shape was a function of the critical neck thickness
(2r∗

pinch), which depended on the viscosity ratio of the fluids
and the channel geometry, for which an iterative approach
using Eqs. (10)–(13) was taken to calculate R∗

pinch for a spe-
cific 2r∗

pinch. However, our analysis showed that 2r∗
pinch was

independent of the fluid viscosities and only changed when
the aspect ratio of the channel was changed. The reason that
a constant quarter-circle shape was not observed throughout
the necking stage in our case was due to the elongation of the
droplet. Therefore, the neck radius before pinch-off (R∗

pinch)
was calculated by iterating the elongation length (a∗) of the
droplet under different shear rates instead of 2r∗

pinch. Hence,
as the oil viscosity increased, the shear stress acting on the
droplet increased resulting in a lower viscosity ratio, an elon-
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gation of the droplet, and a larger neck radius R∗
pinch. This also

explains why longer neck durations were observed under the
more viscous continuous phases. After defining the back half
of the droplet, the control volume at the pinch-off V ∗

cpinch
could

be calculated by

V ∗
cpinch

= (1 − bpinch
∗)a∗ + (1− �)a∗−

(
R∗

pinch
2

4

)
(θ − sin θ )

+ θh∗

4

(
1 − π

4

)
R∗

pinch. (14)

As the final step, the calculated V ∗
cpinch

and V ∗
cfill

were sub-
stituted into Eq. (7) to determine β. In summary, α, ϕ, and
β factors have been determined. However, there are still two
mathematically undefined variables (b∗

fill and 2r∗
pinch) exist. In

the following section, these two quantities are defined.

D. Calculation of b∗
fill and 2r∗

pinch

1. Force balance analysis of the emerging droplet

Droplet formation is governed by three major forces: inter-
facial tension force, viscous force, and pressure force. Once
these forces are balanced, the characteristic shape of the
droplet is formed. This point can be calculated by doing an
overall force balance, and result in the penetration depth b∗

fill.
The necking begins when the sum of the viscous shear and
pressure forces exceed the interfacial tension force. Therefore,
forces are required to be known to define the unknown pene-
tration depth, b∗

fill.
The interfacial tension force resists the deformation of the

emerging droplet. To calculate it, the projected area of the
emerging droplet at the end of the filling stage is multiplied
by the Laplace pressure difference between the upstream and
downstream ends of the droplet. The curvature of the down-
stream end is kdown = 2/bfill + 2/h; the upstream curvature is
kup = 1/Rn + 2/h, and, the projected area is approximated as
A ≈ bfillh. The resulting interfacial tension force is thus given
by Eq. (15):

Fγ ≈
(

−γ

(
2

bfill
+2

h

)
+γ

(
1

Rn
+2

h

))
bfillh ≈ −γ h. (15)

The viscous force acts on the interface of the droplet to
deform the droplet. The viscous force is given by the product
of the shear stress acting on the droplet, and the associated
area (A ≈ bfillh) on which that stress applies. The shear rate is
approximated by the product of the continuous phase viscos-
ity with the average velocity (ugap = Qc/(wc − bfill )) of the
continuous phase flowing through the gap τ ≈ (μcugap)/h the
the resulting viscous force is

Fτ ≈ μCugap

h
bfillh ≈ μCQc

h(wc − bfill )
bfillh ≈ bfill μCQc

(wc − bfill )
. (16)

The pressure force occurs due to the resistance of the
dispersed phase to the flow of the continuous phase. As the
dispersed phase blocks the interface, the resistance to the
continuous phase flow increases and the pressure drops. Thus,
the pressure force depends on the area A ∼ (bfillh) of the given
distance (wgap = wc − bfill ), and the magnitude of the pres-
sure drop. The pressure drop can be approximated by using
the lubrication analysis for pressure-driven flow in a thin-gap

based on the Hagen-Poiseuille relation (
P = Q. Rhyd ) [3].
Q is the flow rate, Rhyd(12μbfill/(hwgap)2) is the the hydraulic
resistance of the channel, and 
P (Qc12μbfill/(hwgap)2 is the
pressure drop. Although this relationship is more compli-
cated in the presence of non-Newtonian fluids, the current
approximation provided enough information to determine the
penetration depth at the end of the filling stage accurately.
Based on this estimation, the resulting pressure force becomes

Fp ≈ (
PA) ≈
(

12μCQcbfill

h2(wc − bfill )
2

)
(bfillh) ≈ 12μCQcbfill

2

h(wc − bfill )
2 .

(17)

It is noted that the viscous force is ∼0–5% of the pressure
force ( Fτ

Fp

wc−b f ill

12b f ill
) and therefore it was neglected in order to

develop a simpler equation for the penetration depth. Once the
balance of these forces was achieved, a relationship between
the penetration depth and the capillary number was obtained,
which agrees with that presented by Christopher et al. [15].

1

Ca
≈ b f ill

∗

(1 − b f ill
∗)3 . (18)

The capability of the model to predict the penetration
depth, Eq. (18) was validated by comparing the experi-
mentally measured penetration depths across six cases that
captured the influence of both geometric and flow conditions.
Moreover, the penetration depths at a different capillary num-
ber of these six cases were included in the fitting. As shown
in Fig. 6(a), fitting of the experimental data was satisfactory.
Figure 6(b) presents the accuracy of the calculated penetration
depth for all cases under the same flow rate ratios. Most of
the data falls within an error range of ±10%. It should be
noted that some error may be attributed to the measurement
of variables during video analysis.

2. Laplace pressure balance of the emerging droplet

van Steijn et al. have demonstrated that the necking starts
once the continuous phase bypassing the emerging droplet
reverses direction due to the Laplace pressure difference from
the tip and neck of the droplet. This additional flow speeds up
the necking process, and pinch-off occurs immediately. There-
fore, the critical neck thickness before pinch-off (2r∗

pinch) was
defined by the Laplace pressures on both sides of the droplet.
In this work, the definition of the Laplace pressures required
slight modifications. The pressure at the neck of the droplet
was defined as Pneck = γ [1/Rn + 1/rn,)] and the pressure at
the tip of the droplet was defined as Ptip = γ (2/h + 2/wc).
Once the sum of these forces equals zero, the flow reverses
the direction, and the critical neck thickness is given by

2rpinch
∗ = h∗

1 + h∗ . (19)

The given expression suggests that the neck thickness was
only a function of the channel geometry. The experimental
data in part I presented a similar trend where the neck thick-
ness was the function of the channel height only (see, Fig. 5 in
part I). Calculated results from Eq. (19) were compared with
six experimental cases spanning different Capillary numbers
to predict the critical neck thickness. As shown in Fig. 7,
the given expression agrees with the experimental data well,
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FIG. 6. Plots represents the performance of the model presented
in Eq. (18). (a) Comparison of the experimental data with the model.
The experimental data of six cases under different capillary numbers
are fitted with the model developed during force balance analysis. (b)
Parity plot of the penetration depth for all cases under the same flow
rate ratio ∼0.04. The solid line represents the perfect parity, and the
dashed lines are ±10%.

where all data falls into ±15%. Since pinch-off occurs sud-
denly, there is an error that comes in determining the exact
frame of the pinch-off point.

FIG. 7. The parity plot of critical neck thickness for all experi-
ments under the flow rate ratio equals ∼0.04.

III. MODEL VALIDATION

Once the two variables b∗
fill and 2r∗

pinch were determined, by
substituting these variables into Eqs. (4), (5), (13) the volume
contributions of the filling (αfill), and the necking stages (βϕ)
could be calculated. The volume contribution of the lag phase
(αlag) was only accounted for in the channel designs having a
lower width ratio. For cases where � = 0.5, the final droplet
volume was estimated using Eq. (1) (V ∗

d = αlag + αfill + βϕ).
However, for the cases with � = 1, Eq. (1) was modified,
and the final droplet volume was estimated without the con-
tribution of lag phases (V ∗

d = αfill + βϕ). Validation of the

FIG. 8. Parity plots for model validation for three major op-
erational parameters, (a) droplet volume, (b) droplet generation
frequency, and (c) spacing between droplets for all experimental data.
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physical model was analyzed using parity plots, as shown
in Fig. 8(a). All the experimental data for T junctions � =
0.5−1 and h∗ = 0.4−0.6 under conditions ranging from η =
0.06−1 and Ca = 0.001−0.019 fell within ±20%. This sug-
gests that the performance of the model was successful in
predicting the final droplet volume formed in the T-junction
generators under the squeezing regime.

The performance of the model was investigated on other
operational parameters for the T-junction generator, such as
spacing between droplets and generation frequency. The spac-
ing between droplets, λ, was estimated by assuming that
droplet length was proportional to the volume (V ∗

d ∼ L∗
drop):

λ = Ldrop + Lc ≈ λ∗ = (αlag + αfill )

(
ϕ + 1

ϕ

)
+ (ϕ + 1)β.

(20)
The generation frequency was approximated using the re-

ciprocal of the total generation time. The total formation was
the sum of the duration of each stage t∗ = t∗

lag + t∗
fill + t∗

neck or

t∗ = αlag + αfill

ϕ
+ β. (21)

Rearranging to obtain the frequency yields

f ∗ = ϕ

αlag + αfill + βϕ
. (22)

As shown in Figs. 8(b) and 8(c), the predictions for droplet
spacing and generation frequency were in good correlation
with the experimental data. We should note that the volume
contribution of the lag phase was only included for � = 0.5
cases for both the spacing and the frequency calculations
given in Eq. (20)–(22).

The discrepancies between the measured and model pre-
dicted frequency and spacing [Figs. 8(b) and 8(c)] come
from the errors in image analysis and the model assumptions.
During droplet volume calculation, it was assumed that the

radius of the droplet curvature was half of the channel depth
due to the unique droplet shape in the rectangular channel.
The cross-sectional area, therefore, can be approximated as
A = wh − (1−π

4 ) h2

2 . To estimate the error in droplet volume,
one can consider an extreme condition where the droplet
fully touches the wall, and the cross-sectional area becomes
A = wh. Then, for h∗ = 0.5, the maximum error would be
around 10.7%. However, the gutter regions of the channel
provide more controlled wetting conditions, which reduces
the error to ∼2–5%. In addition, since the channel height is
correlated with the penetration depth, the accuracy of the mea-
sured channel height highly influences the calculated volume
results. Therefore, considering the listed error, the model fits
well with the experimental results.

IV. CONCLUSION

In this second part of the two-part series, a physical model
that describes the droplet formation of blood solutions in a
T-junction generator under the squeezing regime was pre-
sented. The developed model can be utilized to predict the
final droplet volume containing red blood cells. Since the
major contributor of non-Newtonian behavior of blood is the
red blood cell, the model can be extended to other blood
solutions and similar biological non-Newtonian fluids based
on the given channel geometry and flow conditions. The
model was developed in three steps. First, the characteristic
shape of the blood droplet at the end of the filling stage
and during the necking stage was determined. Then, force
and Laplace pressure balances were performed to define the
penetration depth, b∗

fill and the pinch-off point, 2r∗
pinch, which

were substituted into the volume calculations of the droplet
at the filling and necking stages. Finally, the experimental
data was compared with the model predictions. It was shown
that the model’s predictions are in good agreement with the
experimental data for various conditions such as different the
flow rate ratios, viscosity ratios, blood cell concentrations,
channel geometries, and capillary numbers.
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