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Rogue ocean waves and the St. Petersburg paradox
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Powerful rogue ocean waves have been objects of fascination for centuries. Elusive and awe-inspiring, with the
potential to inflict catastrophic damage, rogue waves remain unpredictable and imperfectly understood. To gain
further insight into their behavior, we analyzed 3 441 188 683 ocean surface waves to determine the statistical
height distribution of the largest waves. We found that the distribution of rare events which resolves the St.
Petersburg paradox also describes the relative height distribution of the largest waves. This result is expected to
contribute to the modeling of ocean surface dynamics and improve the accuracy of marine weather forecasts.
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I. INTRODUCTION

Rogue waves are exceptionally large, naturally occurring
waves, ranging from ocean surface waves [1,2] to waves in
optics [3], Bose-Einstein condensates [4], plasmas [5], and
even finance [6]. Although their emergence is infrequent, en-
counters with them are often catastrophic, underpinning the
need to anticipate them.

Considerable progress has been made over the last 70 years
in understanding and forecasting rogue waves. Yet, ambigui-
ties still exist regarding how well the established models fit
observations, particularly when the number of waves becomes
large [3,7–11].

To predict rogue waves, an effective description is needed
to relate the heights of waves to the number of waves N in a
set. It is standard practice to monitor the maximum normal-
ized wave height, Hmax/Hs, where Hmax is the maximum wave
height and Hs is the significant wave height. The significant
wave height Hs is the average height of the highest 1/3 of
the waves in the set. Rogue waves are those whose height
H is at least twice the significant wave height, that is, where
H/Hs > 2. Typically, rogue waves appear in sets where N is
large and increase in height with increasing N .

While many models have been developed to predict
Hmax/Hs for ocean surface waves, at least two models have
emerged over time which agree well with observations. The
Rayleigh model [12], developed by Longuet-Higgins, is based
on the postulate that rogue waves arise as the sum of contri-
butions from a large number of smaller waves with random
phases. Making use of the Rayleigh distribution, it proposes
a square root and logarithm dependence to predict the most
probable value, Hmax/Hs = α

√
ln(N ) + β where α and β are

constants. The Weibull model [7], introduced and empirically
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justified for ocean waves by Forristall, predicts a generalized
combination of a power law and logarithmic dependence,
Hmax/Hs = α(ln(N ))β .

Rather than pursuing a detailed model here, we follow the
approach of Weibull [13] and Forristall [7] and provide here
a simple empirical form which gives an excellent fit to the
data. Based on our analysis of the largest data set reported
to date, we demonstrate that the relative heights of ocean
surface waves appear to accumulate similarly to profits in
the St. Petersburg game [14]. These results may also have
applications in other scientific and engineering fields where
rogue waves are prevalent.

In the St. Petersburg game [15], a true coin is flipped until it
lands heads. If this happens on the nth flip, the player receives
2n dollars. The paradox is that although the expectation value
of the payout is infinite, the typical payout is small. A lucid
resolution of the paradox, provided by Feller [16], is that the
length of the longest run of tails, and hence the expected
payout per game, depends linearly on the logarithm of the
number of flips.

To form a correspondence between ocean surface wave
heights and the game, one can regard ocean waves as the
sum of small wavelets. If the height of waves is taken to be
the sum of heights of many small identical wavelets with the
same phase, then wave heights accrue similarly to lengths of
runs of tails in the St. Petersburg game. The expected number
of waves with dimensionless height h in a set of N waves is
(1 − p)2 phN , where p is the probability of a wavelet with a
given phase. Since there is only one wave with maximum
height hmax in the set, (1 − p)2 phmax N = 1, and the expected
maximum wave height hmax = −ln[N (1 − p)2]/ln(p), giving
the maximum normalized wave height [17],

Hmax

Hs
= αln(N ) + β. (1)

We call this hypothesis the Petersburg model. To verify
the proposed relationship between the maximum normalized
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wave heights and the number of waves by observation, data
spanning several orders of magnitude is required due to the
logarithmic dependence, as demonstrated in other applica-
tions of the Petersburg description [17–19].

II. RESULTS

The Coastal Data Information Program (CDIP) at U.C. San
Diego [20] has recorded 27 years of ocean surface wave data
from buoys located predominantly across the Pacific ocean.
We analyzed data from 156 buoys from the database, spanning
the period August 27, 1993, 16:32 (UTC)–June 30, 2020,
14:27 (UTC), resulting in 3 441 188 683 waves after filtering,
the equivalent of a single buoy collecting data for 6 1

2 centuries
(649 years).

A Python code was used on a desktop computer (128
GB RAM, 6-core 3.4 GHz processors, 32 TB hard drive) to
process all the data presented here [21]. Sensors on the buoys
recorded their movement relative to the still-water line (mean
value), produced by the waves as a function of time. The code
used a zero-upcrossing method to identify and measure the
height of each wave. The difference between the maximum
and minimum vertical displacements between consecutive
zero up-crossings determined the height of each wave. The
data collected by each buoy was filtered to remove spurious
events (data gaps, electrical noise, anomalous buoy motion,
or wave data flagged by CDIP) using standard quality control
methods [22]: the wave crest height was restricted to an upper
bound of <1.5 × Hs and a lower bound of Hs > 1 m, and the
wave kurtosis was restricted to an upper bound of <6. Unless
otherwise specified, the data sets were analyzed in standard
periods of T = 30 min, where Hs was determined every T
[20].

An illustrative example of the maximum and signifi-
cant wave heights per period, HT

max and Hs, is shown in
Fig. 1(a), highlighting the largest wave recorded in the CDIP
database (H = 25.53 m). The maximum versus significant
wave heights per period were determined for all the buoy data
sets; these are plotted in Fig. 1(b). The data were organized
into hexagonal bins (hexbins), where n is the number of waves
per bin, displayed as a blue color hue. The solid black line cor-
responds to the rogue wave threshold, HT

max/Hs = 2, resulting
in 615 978 rogue waves.

The maximum normalized wave height, HN
max/Hs, is the

largest H (N )/Hs encountered in N waves and is shown for
a single buoy (092) in Fig. 2(a) and for all the CDIP buoy
data sets in Fig. 2(b). To determine HN

max/Hs, it is useful
to define the normalized wave heights Ĥ = H (N )/Hs. These
were calculated initially, updating Hs every period. Normaliz-
ing H (N ) by Hs enables comparison over many time periods,
locations, and varying sea states. The normalized waves were
then sequentially analyzed per buoy. If Ĥ (N ) exceeded the
heights of all preceding waves, then Ĥ (N ) was used to replace
HN

max/Hs. These results are plotted in Figs. 2(a) and 2(b),
showing the maximum normalized wave height a stationary
observer (buoy) encounters in N waves.

The Petersburg, Rayleigh, and Weibull models were fit to
the data in Figs. 2(a) and 2(b). The adjusted coefficient of
determination, R̄2, was used as the figure of merit to determine
the best fit. As an example, for a single buoy (092), with data

FIG. 1. Maximum and significant wave height per period.
(a) Wave-height evolution for a 30-minute period from buoy 166
(50.017 N, 145.170 W) on December 2, 2016. (b) Hexbin plot of
the maximum wave height per period versus significant wave height
for all buoy data sets. The solid line is the rogue wave threshold and
n is the number of waves per hexbin.

consisting of over 110 000 000 waves, we find R̄2 is 0.946,
0.909, and 0.866 for the Petersburg, Rayleigh, and Weibull
models, respectively [Fig. 2(a)]. When data including all of
the waves from the CDIP database were examined [Fig. 2(b)],
we found that R̄2 is 0.892, 0.889, and 0.843 for the three
models.

The Petersburg model fits the total wave data best
[Fig. 2(b)], improving the capability to anticipate the maxi-
mum normalized wave height based on the number of waves
buoys encounter. HN

max/Hs is expected to be less than 1
for the first wave, near unity after ten waves, 2 (rogue)
by 10 000 waves and 3 by 30 000 000 waves. Temporally,
HN

max/Hs will be 1, 2, and 3 after approximately a minute,

025103-2



ROGUE OCEAN WAVES AND THE ST. PETERSBURG … PHYSICAL REVIEW E 105, 025103 (2022)

FIG. 2. Maximum normalized wave height versus wave number,
N . (a) Buoy 092 (33.61791 N, −118.31701 E), (b) Hexbin plot for
all CDIP buoy data sets, where n is the number of waves per hexbin
and (c) the adjusted coefficient of determination for subranges of N .

TABLE I. (a) Summary of the individual buoy fits in Fig. 2(b).
(b) The effect of varying the period: Petersburg, Rayleigh, and
Weibull model fits to and for 60- and 15-minute periods over all of
the CDIP database.

(a) 

Model 

Number of 
buoys 
best fit 

Total number 
of waves 

Average 
number of 

waves/buoy 

Petersburg 74 1,670,245,198 22,570,881 
Rayleigh 66 1,516,934,178 22,983,851 
Weibull 16 304,220,375 19,013,773 

(b) T = 60 min 

Model α β
Petersburg 0.128 0.846 0.884 
Rayleigh 0.584 0.351 0.874 
Weibull 0.755 0.466 0.837 

 T = 15 min 

Model α β
Petersburg 0.118 0.872 0.888
Rayleigh 0.547 0.394 0.897 
Weibull 0.786 0.434 0.850 

a day (16 hours), and half a decade, respectively, assuming
3.4 × 109 waves/649 years.

The Rayleigh and Weibull models fit the full set of wave
data nearly as well as the Petersburg model. It is worth noting
that even with 3 441 188 683 measurements, there is only a
�R̄2 of 5.5% between the three models due to the intrinsic
scatter of the data. Albeit, one important distinction is as N
becomes large >105 (>1 week), the Rayleigh and Weibull
models diverge from the observed data, capturing only the
lower limit of the potentially largest and most destructive
rogue waves [Fig. 2(b)].

If the data in Fig. 2(b) is fit for different subranges
[Fig. 2(c)], where the starting value of N varies from 101 to
107, then the Petersburg R̄2 remains the best fit for each range.
The R̄2 values indicate a poorer fit overall for all three models
as the subranges decrease in size.

If the buoy data sets are fit individually [Table 1(a)], as
opposed to fitting the entire database [Fig. 2(b)], then the
Petersburg model also fits better for a larger number of buoys.

The significant wave height serves as a normalization con-
stant, yet Hs depends on period T as does the relationship
between HN

max/Hs and N . The most commonly used period is
30 min [20], and this was used in our analysis above. To probe
the dependence of the results on period T , the entire CDIP
database was analyzed; T was doubled to 60 min and halved to
15 min with results in Table 1(b). For the T = 60 min case, all
three models gave a poorer fit overall than in the T = 30 min
case, but the relative R̄2 rankings did not change. In contrast,
when T was halved to 15 min, the Rayleigh model fit the data
slightly better (�R̄2 = 0.9%) than the Petersburg model.

It appears that as the size of period T and hence the num-
ber of waves per period increases, so does the ratio of the
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adjusted coefficient of determination R̄2
Paradox/R̄2

Rayleigh from
0.98 at T = 15, to 1.00 at T = 30 min and 1.01 at T =
60 min. Distributions which depend on sample size are dis-
cussed by Feller [23] and Hayer and Andersen [24].

III. CONCLUSION

In addition to providing the best fit to the data, the advan-
tage of the Petersburg model is its simplicity. The empirical
logarithmic dependence of Eq. (1) is supported by nine
decades (3 441 188 683 waves) of oceanographic data. This
result suggests that the relative height of ocean surface waves
may accumulate similarly to profits in the St. Petersburg
game. Beyond ocean waves, it is interesting to ask whether
the Petersburg model will have utility in other research fields
where rogue waves are encountered. An open question is if the

Petersburg model will continue to provide the best description
for ocean surface waves as N continues to increase, assum-
ing other factors remain constant. Regrettably, indications of
climate changes make the latter condition unlikely. For now,
according to the analysis and statistical indicators used here,
the Petersburg model appears to be the best predictor of the
relative heights of ocean surface waves.
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