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Droplet evaporation in finite-size systems: Theoretical analysis and mesoscopic modeling
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The classical D2-Law states that the square of the droplet diameter decreases linearly with time during its
evaporation process, i.e., D2(t ) = D2

0−Kt , where D0 is the droplet initial diameter and K is the evaporation
constant. Though the law has been widely verified by experiments, considerable deviations are observed in many
cases. In this work, a revised theoretical analysis of the single droplet evaporation in finite-size open systems
is presented for both two-dimensional (2D) and 3D cases. Our analysis shows that the classical D2-Law is only
applicable for 3D large systems (L � D0, L is the system size), while significant deviations occur for small
(L � 5D0) and/or 2D systems. Theoretical solution for the temperature field is also derived. Moreover, we
discuss in detail the proper numerical implementation of droplet evaporation in finite-size open systems by
the mesoscopic lattice Boltzmann method (LBM). Taking into consideration shrinkage effects and an adaptive
pressure boundary condition, droplet evaporation in finite-size 2D/3D systems with density ratio up to 328 within
a wide parameter range (K = [0.003, 0.18] in lattice units) is simulated, and remarkable agreement with the
theoretical solution is achieved, in contrast to previous simulations. The present work provides insights into
realistic droplet evaporation phenomena and their numerical modeling using diffuse-interface methods.

DOI: 10.1103/PhysRevE.105.025101

I. INTRODUCTION

Droplet evaporation is ubiquitous in various engineering
applications, natural phenomena, and pathological situations,
ranging from spray combustion in the internal combustion
engines [1], drying of raindrops on the surface of building
materials [2], to the spread of virus-laden droplets during the
COVID-19 pandemic [3]. Understanding the detailed droplet
evaporation dynamics helps to accurately predict the evapo-
ration rate and the droplet lifetime, and is beneficial to the
advancement of many fields of science and technology.

Though different complex factors are involved in realis-
tic droplet evaporation processes, such as multicomponent
diffusion [4], relative motion between droplet and surround-
ing gas [5], nanoparticle deposition [6,7], and contact line
pinning/depinning [8,9], it is worth investigating basic cases
as a first step. One canonical configuration is the single-
component single static droplet evaporation in an open
system. Such evaporation is symmetrically driven by the tem-
perature gradient from the liquid-vapor interface (Ts) to the
far-field (T∞). Assuming the process is quasisteady, the ther-
mophysical properties are spatially uniform, and viscous heat
dissipation and buoyancy can be neglected, thus the following
relation can be obtained based on the energy balance at the
interface [1,10]:

D2(t ) = D2
0 − KT t, (1)

*Corresponding author: linfei@ethz.ch

where D0 is the droplet initial diameter and KT =
8λ

ρl cp
ln(1 + BT ) is the evaporation constant, depending on ther-

mal conductivity λ, liquid density ρl , specific heat capacity cp,
and the Spalding number BT . The nondimensional Spalding
number BT is the ratio of sensible heat to the latent heat
(h f g) of the droplet fluid, i.e., BT = cp(T∞ − Ts)/h f g. Another
important configuration is the two-component isothermal
evaporation for a single static droplet in the surrounding gas
mixture (droplet vapor and environment air), where the evap-
oration is driven by the vapor concentration gradient from
the environment to the droplet surface. Similarly, under the
assumptions of quasisteady evaporation with constant thermo-
physical properties and noncondensation of the environment
air, another relation can be derivated based on the mass bal-
ance at the interface [1,10]:

D2(t ) = D2
0 − KY t, (2)

where the evaporation constant KY depends on the product
of gas mixture density and the binary diffusivity ρD, liq-
uid density ρl , and the mass transfer number BY by KY =
8ρD
ρl

ln(1 + BY ). The mass transfer number BY is related to
the mass concentration of the droplet vapor at the interface
Ys and the environment Y∞, i.e., BY = (Ys − Y∞)/(1 − Ys).
It is noted Eq. (2) is quite similar to Eq. (1): apart from
the difference between the mass transfer number BY and the
Spalding number BT , the two relations show essentially the
same form and become the same equation if the Lewis number
is unity (λ/cp = ρD). Therefore, a more compact expres-
sion with unified evaporation constant K is often used in the
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FIG. 1. 3D mid-plane or 2D schematic view of single static
droplet evaporation in a finite-size open system: (a) single component
evaporation driven by temperature gradient and (b) two-component
isothermal evaporation driven by the concentration gradient.

literature, namely D2(t ) = D2
0−Kt , which is also known as

the so-called D2-Law [1,10]. It was demonstrated in experi-
ments that, after a short initial stage, D2-Law works well for
the evaporation of fuel droplets at various ambient air temper-
atures [11]. Accordingly, the droplet lifetime is estimated as
td = D2

0/K . Droplet evaporation under more complex condi-
tions can be modeled step by step starting from the classical
D2-Law model [4,5,12].

Deviations from the classical D2-Law have been frequently
observed, especially in droplet evaporation experiments in
confined space [13] or in numerical simulations, e.g., evapora-
tion of nanosize droplets and/or under supercritical conditions
[14,15]. Among others, one reason accounting for the devia-
tion is that the classical D2-Law is established for large open
systems (L/D0 � 1, L is the system size), which is not always
the case in laboratory conditions, while simulations are in-
evitably limited to finite-size systems. It may be noted that the
term “open” system is not contradictory with the “finite-size”
system. Here, the former means free outflow of vapor from
the control volume while the latter indicates the system (con-
cerning temperature/concentration) is confined with Dirichlet
boundary conditions in a finite space (as shown in Fig. 1).
Recently, the mesoscopic lattice Boltzmann (LB) method has
been used more and more widely for studying evaporation
dynamics [6,8,16–19], mainly due to its advantages of natural
incorporation of micro/mesoscale physics, easy treatment of
liquid-vapor interface, and highly efficient algorithm [20–23].
Ledesma-Aguilar et al. [16] applied a phase-field LB method
to simulate sessile droplet evaporation, driven by a concen-
tration gradient, by manipulating the order parameter at the
boundary to induce a chemical potential gradient. Safari et al.
[17,18] modeled droplet evaporation in open systems based
on a phase-field LB method by adding a source term to
the mass equation in order to account for phase change due
to the temperature gradient or vapor concentration gradient.
Li et al. [8] investigated the contact line pinning-depinning
mechanism of an evaporating droplet on chemically patterned
surfaces based on the pseudopotential LB method, where the
evaporation is driven by the temperature field via the nonideal
equation of state. In addition, the LB method has been applied
to various evaporation phenomena, such as the self-propelled
motion of Leidenfrost droplets on ratchet surfaces [24], the
evaporation induced by pressure variations (cavitation) [19],

drying of porous media [25], three-dimensional (3D) nanopar-
ticle deposition by drying of colloidal suspension [6,7] and
contact line dynamics of droplets evaporating on microribs
[9]. A linear decrease of D2 with t has been observed in many
LB simulations [24–29], hence claiming the models to be vali-
dated against the classical D2-Law, although the slope was not
compared with the evaporation constant K . By substituting the
thermophysical properties into its definition, it was found that
the evaporation constant K predicted by the above-mentioned
LB simulations was smaller than its theoretical value. One
cause for this underestimation is the use of 2D simulations,
as the heating of a 2D droplet (liquid cylinder) is slower than
heating a 3D droplet for which the classical D2-Law is estab-
lished. In addition, the employed closed boundary condition
(e.g., the periodic boundary or bounce-back scheme for the
velocity field [25,27,28]) and small density ratio (e.g., order
of 10) may also have some effects. Also, it was reported by
Albernaz et al. [30] that the decrease of D2 with t was not
perfectly linear in 2D LB simulations.

As discussed above, the classical D2-Law is established
for large 3D systems, while a finite size and/or 2D sys-
tem is encountered in many situations, which has not yet
been systematically investigated. In experiments, examples of
finite-size systems are the evaporation of a single droplet in
microfluidic systems [13,31] or a dense collection of millimet-
ric/micrometric droplets in a macroscale combustion chamber
[32]. From the numerical simulation point of view, the system
size is always limited by the computational cost [14], and 2D
simulations are often considered for preliminary studies or
model validation [29]. To clarify the above issues, the present
work presents a revised analysis of single droplet evaporation
in open systems, taking into consideration the two effects
(finite size and 2D). Considering the rapidly increased use of
the mesoscopic LB method in the modeling of evaporation
phenomena, we will explore how to consistently simulate
single component droplet evaporation by this method, with
an emphasis on the proper boundary conditions treatment. LB
simulation results for different boundary schemes, in 2D and
3D (d = 2 and 3), are compared with the classical D2-Law,
and the present analysis. Besides, the distribution of the tem-
perature field, which is rarely discussed in the literature, will
also be analyzed and investigated.

The paper is organized as follows. The theoretical analy-
sis is given in Sec. II. Section III briefly introduces the LB
method and the implementation of the boundary conditions.
Section IV presents the simulation results, comparisons, and
discussions. Finally, concluding remarks are given in Sec. V.

II. THEORETICAL ANALYSIS

As sketched in Fig. 1(a), a static droplet evaporates due
to the temperature difference between the boundary and the
droplet surface, i.e., �T = T2 − Ts. The theoretical solution
can be obtained based on the following assumptions: (i)
the evaporation process is quasisteady, (ii) the viscous heat
dissipation and the buoyancy force are negligible, (iii) the
thermophysical properties (λ and cp) are constant, and (iv) the
temperature inside the droplet is uniform and maintained at
the surface temperature Ts, equal to the temperature at vapor
saturation. Assumption (iv) works well when the evaporation

025101-2



DROPLET EVAPORATION IN FINITE-SIZE SYSTEMS: … PHYSICAL REVIEW E 105, 025101 (2022)

process is slow and quasistatic, and thus the heat transferred
from the vapor into the droplet is balanced by the liquid-vapor
latent heat [1,10]. With assumptions (i) and (ii), the governing
equation of heat transport in spherical coordinates can be
simplified as

ρcpvr
∂T

∂r
= 1

r2

∂

∂r

(
λr2 ∂T

∂r

)
, r � rs, (3)

where vr is the velocity component in the radial direction and
rs = D/2 is the radius of the droplet. According to assump-
tions (iii) and (iv), the energy balance at the droplet surface is

λ
∂T

∂r

∣∣∣∣
r=rs

= ρsvr,sh f g, (4)

where h f g is the latent heat of vaporization, ρs and vr,s are the
density and radial velocity at the droplet surface (indicated by
the index s). Using the continuity condition (r2ρvr = r2

s ρsvr,s)
and Eq. (4), and integrating Eq. (3) from rs to r, we obtain

r2
s ρsvr,s[cp(T − Ts) + h f g] = r2λ

∂T

∂r
. (5)

Separating the variables and integrating Eq. (5) from the
droplet surface to the boundary gives

r2
s ρsvr,scp

(
1

rs
− 1

r2

)
= λ ln(1 + B), (6)

with B = cp(T2 − Ts)/h f g. Substituting the continuity condi-
tion within the droplet (ρsvr,s = −ρl∂rs/∂t) and separating
the variables, Eq. (6) is rewritten as

d

[
r2

s

(
1

2
− rs

3r2

)]
= − λ

ρl cp
ln(1 + B)dt . (7)

Integrating the above equation over time, the time evolution
of D is obtained as(

1 − 2D

3L

)
D2 =

(
1 − 2D0

3L

)
D2

0 − Kt, (8)

where K = 8λ/(ρl cp) ln(1 + B). It is seen from Eq. (8) that,
for finite-size systems, the decrease of D2 with t depends on
the size L and does not follow the classical D2-Law as given
in Eq. (1).

The temperature field can also be obtained at a given
time (D = 2rs is fixed), by defining the index ξ3D = ln(1 +
B)/(1−D/L) and substituting it into Eq. (5), which gives

ξ3D
rs

r2
dr = dT

(T − Ts + h f g/cp)
. (9)

Integrating Eq. (9) from rs to r, we finally get

T = h f g

cp

{
exp

[
ξ3D

(
1 − rs

r

)]
− 1

}
+ Ts, r � rs. (10)

The temperature distribution outside the droplet shows an
exponential profile.

For the 2D situation (d = 2), similar derivations [see
Eqs. (A1)–(A6) in Appendix A] based on the energy transport
equation in the cylindrical coordinates can be conducted to get
the theoretical solution of D and T. The time evolution of D is

then expressed as follows:

[ln(L/D) + 1/2]D2 = [ln(L/D0) + 1/2]D2
0 − Kt, (11)

which is consistent with the analysis in Ref. [30]. Analo-
gously, introducing the index ξ2D = ln(1 + B)/ ln(L/D), the
temperature field is given as

T = h f g

cp

[( r

rs

)ξ2D − 1
]

+ Ts, r � rs, (12)

which indicates a power-law distribution of the temperature
field outside a 2D evaporating droplet.

From the above analysis, we observe that, for droplet
evaporation in finite-size open systems, the decrease of D2

with t depends on both the evaporation constant K and the
system size ratio L/D0, and the spatial dimension d , yielding
a deviation from the classical D2-Law. For the 3D system
(d = 3), the D2-t evolution [Eq. (8)] approaches the classi-
cal D2-Law asymptotically with increasing system size and
finally converges when L/D0 � 1. In contrast, for the 2D sys-
tem (d = 2), it is hard to get convergent solutions by simply
increasing L. For the isothermal two-component counterpart,
as illustrated in Fig. 1(b), the solutions of diameter evolu-
tion and concentration profile are essentially equivalent to the
single-component droplet evaporation driven by the tempera-
ture gradient [see Eqs. (B6) and (B8)–(B10) in Appendix B],
and we will not go into further detail.

III. NUMERICAL MODEL

A. Hybrid pseudopotential CLBM

The LB method can be viewed as a mesoscopic “computa-
tional fluid dynamics” approach that simulates complex fluids
by solving a specific discrete Boltzmann equation for the
density distribution function (DDF) fi [20,33–40]. A standard
LB algorithm consists of two steps: (i) the collision step,
representing the time relaxation towards the local equilib-
rium state due to molecular collisions, and (ii) the streaming
step, standing for molecular free streaming. The streaming
step is independent of the collision models, which streams
the postcollision DDF ( f ∗

i ) at space-time point (x, t ) to the
neighboring lattice point along the direction of the discrete
velocity ei within a time step �t , i.e.,

fi(x + ei�t, t + �t ) = f ∗
i (x, t ). (13)

The hydrodynamic variables (density ρ and velocity u) are
updated after the streaming step by the following definitions:

ρ =
∑

i

fi, ρu =
∑

i

fiei + �tF/2, (14)

where F is the total force exerted on the fluid.
Various collision models can be chosen to suit the prob-

lems under investigation, which have been reviewed in detail
and can be integrated into a unified framework [21]. In the
present work, we use the cascaded collision model [41], which
possesses very good numerical stability and therefore helps
to conduct simulations at large liquid-vapor density ratios.
In the cascaded lattice Boltzmann model (CLBM), the DDF
is first projected onto the central moment space, then the
central moments of different orders are relaxed separately,
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and finally, the postcollision DDF is reconstructed. To make
the implementation more efficient, the collision step can be
described as follows [42,43]:

f ∗
i (x, t ) = fi(x, t ) − (M−1N−1SNM)

[
fi(x, t ) − f eq

i (x, t )
]

+ �tM−1N−1(I − S/2)NMRi, (15)

where f eq
i is the equilibrium DDF, M is a transformation

matrix, N is a lower triangular shift matrix, I is the unit
matrix, S is a (block) diagonal relaxation matrix, and Ri rep-
resents the forcing term in the discrete velocity space. The
explicit formulations of M, N and their inverses depend on
the discrete velocity model and the adopted central moments
set. In this work, we use a set of natural central moments
originally proposed in Ref. [43], which gives very concise and
sparse expressions for M and N. Besides the computational
efficiency, such a central-moment set possesses an excellent
portability across different lattices/dimensions [43,44]. For
example, a 2D model can be directly obtained from a 3D
model by extracting a subset of the 3D central moments and
the corresponding rows and columns in M and N, which
makes it very convenient in the following simulations with
different spatial dimensions.

To simulate multiphase flows, four main types of multi-
phase LB models have been developed: the color-gradient
model [45,46], the pseudopotential model [47,48], the free-
energy model [49,50], and the phase-field model [51]. For
detailed descriptions of these models, interested readers are
directed to the comprehensive review papers [20,22,23].
Among them, the phase-field and pseudopotential models
have been widely used in evaporation simulations [20]. To
simulate evaporation based on the phase-field model, a source
term is usually added to the continuity or Cohn-Hilliard
equation to define the evaporation rate [17,18,52], which im-
plies the evaporation rate is an input rather than output. In
contrast, the pseudopotential model has no such limitation:
the liquid-vapor phase change can be driven by tempera-
ture deviation from equilibrium via the nonideal equation of
state [8,24,25,53]. In this work, the pseudopotential model is
adopted, where the fluid-fluid interaction force is mimicked
by a pseudopotential-based interaction force [47,48]:

F = −Gψ (x)
∑

i

w(|ei|2)ψ (x + ei�t )ei, (16)

where w is the weight, and the square-root form pseu-
dopotential ψ = √

2(pEOS − ρc2
s )/Gc2 is used [54], which

incorporates the nonideal equation of state (EOS) pEOS into
the system. For such a choice, the interaction strength is
fixed to be G = −1, and c and cs are the lattice speed and
sound speed, respectively. As discussed in Refs. [42,43], the
interaction force F can be consistently incorporated into the
CLBM via the forcing term Ri.

The temperature governing equation for the liquid-vapor
phase-change process can be written as [55],

∂T

∂t
= −u · ∇T + 1

ρcv

(λ∇2T + ∇λ · ∇T )

− T

ρcv

(
∂ pEOS

∂T

)
ρ

∇ · u. (17)

In the evaporation simulations, the multiphase flow field
is solved by the pseudopotential CLBM [Eqs. (15) and (16)],
while the temperature field [Eq. (17)] is solved by the finite
difference method. The second-order Runge-Kutta scheme
and the isotropic central scheme are used for the time march-
ing and spatial discretization, respectively. The flow and
temperature fields are coupled via a nonideal Peng-Robinson
EOS [54],

pEOS = ρR̄T

1 − bρ
− aϕ(T )ρ2

1 + 2bρ − b2ρ2
, (18)

where R̄ = 1 is the gas constant, and ϕ(T ) =
[1 + (0.37464 + 1.54226	 − 0.26992	 2)(1 − √

T/Tc)]2,
with the acentric factor 	 = 0.344 in this work. The
critical pressure pc and temperature Tc are determined by
a = 0.4572R2T 2

c /pc and b = 0.0778RTc/pc. Consistent with
the analysis by Li et al. [56], the interface thickness W is
approximately proportional to 1/

√
a. When the reduced

temperature Tr = T/Tc is given, the saturated liquid density
ρsat

l and vapor density ρsat
v can be obtained using Eq. (18)

based on the Maxwell construction. Two density ratios are
considered in this work: (i) ρr = ρsat

l /ρsat
v ≈ 71 (a = 1/45,

b = 2/21, Tr = 0.75, with W ≈ 3.6) and (ii) ρr ≈ 328
(a = 1/125, b = 2/21, Tr = 0.65, with W ≈ 4.6). The
saturated coexistence densities can be correctly reproduced
by the mechanical stability adjustment method developed by
Li et al. [56,57]. The hybrid formulation was subsequently
extended to CLBM and systematically verified [53,58].
Moreover, it was shown that the resulting hybrid multiphase
CLBM had superior stability and was able to simulate
large-scale pool boiling [53] and forced-convection boiling
[58] systems covering the complete boiling curve and typical
boiling regimes. In this study, the treatments proposed
by Saito et al. [58] and Fei et al. [53] are combined
and adopted for both 2D and 3D simulations. Using the
Chapman-Enskog analysis, the following macroscopic
equations can be recovered:

∂tρ + ∇ · (ρu) = 0,

∂t (ρu) + ∇ · (ρuu) = −∇(
ρc2

s

) + ∇ · [ρν(∇u + (∇u)T)

+ ρ(νb − 2ν/d )(∇ · u)I]

+ F − 2G2c4σ∇ · (|∇ψ |2I), (19)

where ν and νb are the kinetic and bulk viscosities, re-
spectively, and the last term is the additional tunning term.
The tunning parameter is chosen as σ = 0.109 and 0.113
for the case with ρr = 71 and 328, respectively. By absorb-
ing the last term into the pressure tensor, the mechanical
stability condition can be adjusted so that the liquid-
vapor coexistence densities are consistent with the Maxwell
construction.

B. Shrinkage effect

Like other diffuse-interface numerical models, the adopted
LB model also suffers from shrinkage effects, meaning that
droplets below a critical size shrink spontaneously due to the
redistribution of interface and bulk energies to minimize the
system energy [59–61]. The critical size D∗ is defined as the
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FIG. 2. Illustration of the shrinkage effect. (a)–(d) An initial droplet with D0 = 16 in four configurations, i.e., (L = 200, W = 3.6, 2D),
(L = 200, W = 4.6, 2D), (L = 100, W = 4.6, 2D), and (L = 100, W = 4.6, 3D), respectively. The maximum magnitude of the velocity field
is indicated by the reference vector. (e) The critical droplet size D∗ changes with domain size L. (f) D∗ changes with (VW )1/(d+1), where W is
the interface thickness, V is the system volume, and d is the spatial dimension.

size when shrinkage starts to take place and depends on the
system size L, interface thickness W for suspending droplets
[59,60], and also on the contact angle for sessile droplets [61].
Such a shrinkage effect needs to be carefully addressed in the
present investigation. Therefore, the critical droplet size D∗
is first determined iteratively by changing D0 in small steps
for each case until the limit between stable and shrinking was
attained.

Figures 2(a)–2(d) shows the density contours and ve-
locity field of a droplet initialized in various computational
configurations. Although the initial droplet size is the same
(D0 = 16), the behavior in each case is quite different. The
droplet in case (a) shows a sharp interface and remains stable,
i.e., D∗ < 16. When the interface thickness W is increased,
spontaneous “evaporation” occurs in the isothermal case, as
demonstrated by the radial velocity field in case (b), i.e.,
D∗ > 16. Fixing the thickness W while decreasing the system
size L, the droplet becomes stable again, therefore we have
D∗ < 16 in case (c). With the same interface thickness and
system size used in 3D, the droplet becomes unstable again,
i.e., D∗ > 16, as shown in (d). It may be noticed that the eight
symmetric vortices in cases (a) and (c) are due to the spurious
velocity, whose magnitude is on the order of O(10−3) and
O(10−4) for thinner and thicker interface cases, respectively.
The above results show that the critical diameter depends on
the interface thickness W , system size L and spatial dimension

d in the present numerical model. It is further demonstrated in
Fig. 2(e) that D∗ increases with L, and varies with W and d at
a given L. As analyzed in the literature, the critical diameter
scales as D∗ ∝ (VW )1/3 in 2D [59,60] and D∗ ∝ (VW )1/4 in
3D [59,61], with V being the system volume, which is also
confirmed by our results [seen in Fig. 2(f)].

Actually, the shrinkage effect can be regarded as an inher-
ent feature in the diffuse-interface numerical models due to
the nonzero interface thickness. To our knowledge, the effects
of interface thickness were not considered in the previous LB
simulations of droplet evaporation, which may have led to
less reliable results of the predicted droplet diameter in the
late stage (droplet smaller than D∗). To avoid this effect, the
evaporation simulations are stopped when the droplet size is
smaller than D∗, in the remaining simulations.

C. Boundary conditions

As sketched in Fig. 1(a), the evaporating droplet is sub-
jected to a Dirichlet boundary for the temperature field,
which is straightforward to implement by imposing a constant
boundary temperature T2 in the simulation. However, addi-
tional treatment (boundary scheme) is required to obtain the
unknown density distribution functions streaming from the
outside of the boundary. It is noted that different boundary
conditions have been used in evaporation simulations, such
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as the periodic boundary condition as in Ref [27,28,53], the
nonslip boundary condition in Ref. [25], and the (constant)
pressure boundary condition in Refs. [26,29]. Correspond-
ingly, different boundary schemes have been employed to
obtain the unknown density distribution functions, including
the heuristic periodic scheme and bounce-back scheme, the
nonequilibrium bounce-back (or Zou-He) scheme [62], and
the nonequilibrium extrapolation scheme [63].

However, there is still no analysis about whether these
boundary schemes are consistent with the “open system” con-
sidered in Fig. 1. In this subsection, the previously adopted
boundary schemes are summarized and an alternative bound-
ary scheme is proposed, which will be compared in the
following simulations.

Periodic scheme: The periodic scheme assumes the flow
is spatially periodic (with a spatial period L). Therefore, the
incoming (unknown) distribution functions on one boundary
are set to be the streaming out (known) distribution functions
on the opposite boundary.

Bounce-Back scheme: The bounce-back scheme assumes
the boundary is a solid wall, such that the postcollision den-
sity distribution function hits the boundary (i.e., streams in
a direction to leave system) and reverses its direction as
f	i(xb, t + �t ) = f ∗

i (xb, t ), where e	i = −ei is the discrete ve-
locity whose density distribution function is unknown at the
boundary node xb.

Zou-He scheme: Zou-He scheme is constructed based on
the definition of the macroscopic fluid variables [Eq. (14)] and
the supplementary condition, i.e., the bounce-back rule for the
nonequilibrium part of specific density distribution functions
(e.g., for the 2D case at the bottom boundary, f2 − f eq

2 =
f4 − f eq

4 ). For the evaporation simulation, if the pressure at
the boundary node is specified as the saturated vapor pressure
psat

v , the boundary density ρb can be calculated by the EOS
with the boundary temperature T2 [30], i.e., pEOS (ρb, T2) =
psat

v . In addition, it is implicitly assumed that the velocity
is normal to the boundary (zero tangential velocity
component) [62].

Nonequilibrium extrapolation scheme: In this scheme, the
unknown distribution function is decomposed into its equi-
librium and nonequilibrium parts, where the equilibrium part

is constructed based on the macroscopic variables, while the
nonequilibrium part is approximated by extrapolation [63].
For the present case, we have f	i(xb, t + �t ) = f eq

	i (ρb, u f ) +
( f	i − f eq

	i )|(x f ,t+�t ), where u f is the updated velocity at the
neighboring node x f = xb + e	i�t and the boundary density
ρb is obtained in the same way as the Zou-He scheme.

Modified nonequilibrium extrapolation scheme: From the
definitions of the periodic scheme and bounce-back scheme,
it is noted that both schemes correspond to a closed system
because the system mass is conserved, and thus incompat-
ible with droplet evaporation in open systems. In contrast,
the Zou-He scheme and nonequilibrium extrapolation scheme
allow the outflow of the vapor from the system, which is
consistent with the configuration in Fig. 1(a) to some ex-
tent. However, they still suffer from the constant pressure
boundary hypothesis, which is contradictory to our considered
situation. As the droplet size decreases due to evaporation,
both the pressure inside and outside of the droplet will in-
crease according to Laplace’s equation [64], i.e., p j = psat

j +
[ρsat

j /(ρsat
l − ρsat

g )]κγ , where γ is the surface tension, κ is
the mean curvature (κ = 1/R in 2D or 2/R in 3D), and
j = l, v corresponds to liquid or vapor, respectively. For a
large droplet (R → ∞), the saturated pressure is recovered
in both the liquid and vapor phases. In the simulations, im-
posing the saturated pressure (density) for the droplet with
the initial size R0, it is observed that the normalized vapor
pressure increases during the evaporation process (decreas-
ing radius), especially for larger density ratio or spatial
dimension (2D vs 3D) [seen in Fig. 3(a)]. Therefore, such
adaptive vapor pressure depending on droplet radius should
be implemented in the boundary scheme. Compared with the
Zou-He scheme, the nonequilibrium extrapolation scheme is
more suitable for the present problem because the bound-
ary velocity is extrapolated from the inner nodes, free from
the zero tangential velocity assumption in Zou-He. To in-
corporate such an effect, the nonequilibrium extrapolation
scheme can be modified as f	i(xb, t + �t ) = f eq

	i (ρv, u f ) +
( f	i − f eq

	i )|(x f ,t+�t ), where the boundary vapor density ρv

is calculated according to pEOS (ρv, T2) = pv (R). For a
given temperature difference �T = T2 − Ts, ρv also changes

FIG. 3. (a) Change of normalized vapor pressure at the saturated temperature with droplet size. (b) Change of normalized vapor density,
obtained according to pEOS (ρv, T2) = pv (R), with droplet size. Three different cases are considered at the fixed normalized temperature
difference �T = T2 − Ts = 0.1Tc.
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TABLE I. Numerical setup. All the variables are given in lattice units (L.U).

Configurations Case number λ Cp �T/Tc B K

2D, ρr = 71, D0 = 60�x 1 40 800 0.25 30.58 0.1799
2 20 400 0.2 12.23 0.1345
3 10 200 0.2 6.12 0.1022
4 10 200 0.1 3.06 0.0730
5 4 100 0.1 1.53 0.0387

2D, ρr = 328, D0 = 60�x 6 2 200 0.1 2.72 0.0125
7 1.5 200 0.1 2.72 0.0094
8 1.0 200 0.1 2.72 0.0062
9 0.5 200 0.1 2.72 0.0031

3D, ρr = 328, D0 = 70�x 10 2 200 0.1 2.72 0.0125
11 1 100 0.1 1.36 0.0082
12 1 200 0.1 2.72 0.0062

linearly with 1/R, as shown in Fig. 3(b). In the following sim-
ulations, the original nonequilibrium extrapolation scheme,
where the boundary pressure is fixed at the saturated pressure
psat

v , is marked as Nonequilibrium1, and the modified version
with the adaptive boundary pressure pv (R) is denoted by
Nonequilibrium2.

IV. RESULTS AND DISCUSSION

In this section, droplet evaporation simulations are carried
out in different configurations, including 2D and 3D, at both
moderate (ρr = 71) and large (ρr = 328) density ratios. A
square and cubic computational domains are used to mimic
the 2D and 3D systems, respectively. Unless otherwise spec-
ified, the system size is set as L = 200�x (�x is the lattice
spacing). The initial droplet size is slightly larger in 3D be-
cause a 3D droplet suffers from a larger critical size than a 2D
droplet under the same condition, as shown in Fig. 2(f). By
changing the thermal conductivity λ, the specific heat capacity
cp, and the temperature difference �T , the Spalding number
B, and the evaporation constant K can span over a wide range.
The parameters used in lattice units are given in Table I.
The lattice units can be converted to physical units based on
the corresponding characteristic variables, as summarized in
Appendix C. The phase-change latent heat is obtained us-
ing the standard numerical integration method based on the
EOS [53,58]. Our parameter choice leads to h f g = 0.2597 and
h f g = 0.1049 for the two density ratios ρr = 71 and ρr = 328,
respectively.

A. Effects of boundary schemes

First, the effect of the different boundary schemes is
tested based on simulations of Case 1. The snapshots of
the droplet evaporation at t = 10000�t are shown in Fig. 4,
showing vector velocity and isoline temperature fields. For the
periodic scheme and bounce-back scheme, the velocity is con-
strained to the impermeable condition at the boundary, which
conserves the total mass in the system as shown in Figs. 4(a)
and 4(b), where the latter also suffers from the nonslip condi-
tion [Fig. 4(b)]. As a result, the vapor cannot escape from the
system, which in turn heats up the droplet more significantly
and breaks down the isothermal assumption inside the droplet,

as shown by temperature contours inside the droplet. For the
other three schemes, the vapor generated at the droplet surface
can flow out of the system and the temperature within the
droplet is kept almost uniform, as seen in Figs. 4(c)–4(e). In
comparison with the Zou-He boundary scheme [Fig. 4(c)], the
velocity field predicted by the nonequilibrium extrapolation
schemes [Figs. 4(d) and 4(e)] is more reasonable, because the
radial velocity vectors are consistent with the axisymmetric
evaporation condition.

The time evolution of D2 predicted by the present LB
model for different boundary schemes is shown in Fig. 5(a),
allowing comparison with the classical D2-Law and the re-
vised theoretical solution in Eq. (11). The D2 evolutions
predicted by the model with the periodic and bounce-back
schemes are quite similar to each other, despite the slight
difference in the velocity field mentioned above, and signif-
icantly underestimate the evaporation rate. Although the D2-t
profiles can be approximately linearly fitted, as done in previ-
ous work [24–29,53], it is clearly not a sufficient validation of
the classical D2-Law due to the significant difference between
model results and the classical D2-Law. As for the Zou-He
and two nonequilibrium extrapolation schemes, the predic-
tions are in close agreement with the theoretical solutions,
mainly due to the “open boundary” feature as discussed be-
fore. Among them, Nonequilibrium2 gives the most accurate
solution, especially for the end-stage due to the introduction
of an adaptive pressure boundary. We note that classical D2-
Law deviates strongly from the theoretical solution in these
2D cases. The reduced temperature profiles for the different
boundary schemes, when half of the droplet is evaporated
(V/V0 ≈ 0.5), are shown in Fig. 5(b). Consistent with the
temperature fields shown in Figs. 4(a) and 4(b), the periodic
and bounce-back schemes lead to much higher temperature
predictions than the theoretical solution [Eq. (12)] in the vapor
phase [x < (L−D)/2], and therefore the temperature in the
droplet is nonconstant. The other three schemes give better
predictions and almost keep a constant temperature within
the droplet, among which Nonequilibirum2 predicts the most
accurate results. For both the predicted droplet diameter and
temperature field, Nonequilibrium1 and Nonequilibirum2 out-
perform the other boundary schemes and will be used in the
remainder of the work.
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FIG. 4. Reduced temperature (Tr = T/Tc) distributions and velocity vectors of Case 1 for different boundary schemes: (a)–(e) correspond to
Periodic, Bounce-back, Zou-He, Nonequilibrium1, and Nonequilibrium2 schemes, respectively. The dashed-dotted circle indicates the location
of the liquid-vapor interface.

B. 2D droplet evaporation

Figure 6 shows, for Cases 2–9, the time evolution of D2 for
2D droplet evaporation as predicted by the classical D2-Law,
the theoretical solution [Eq. (11)], and the numerical results
with the Nonequilibrium1 and Nonequilibrium2 boundary
schemes. At moderate density ratio (ρr = 71), Nonequilib-
rium1 agrees with the theoretical solution in the beginning,
and deviates gradually with time, as seen in the first row
(Cases 2–5). At a larger density ratio (ρr = 328, the second
row), the results by Nonequilibrium1 depart even more from
the theoretical solutions. Such a trend is attributed to the

fact that the larger the density ratio, the more remarkable
the change in vapor pressure (density) with droplet radius
(as seen in Fig. 3), and therefore the more significant the
deviations predicted by a constant pressure boundary condi-
tion (Nonequilibrium1). For both density ratios, the simulation
results using the Nonequilibrium2 scheme are in very good
agreement with the theoretical solution, which further con-
firms the necessity to introduce an adaptive vapor pressure
boundary. With decreasing evaporation constant K (from
Cases 2 to 9), the total evaporation time (or droplet lifetime)
increases successively. Moreover, it is observed that the D2-t

FIG. 5. Comparison between different boundary schemes for Case 1. (a) Change of D2 with t ; (b) reduced temperature profile along the
horizontal central line (y = L/2) at V/V0 ≈ 0.5.
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FIG. 6. Comparison of the time evolution of D2 for 2D droplet evaporation between classical D2-Law, theoretical solution [Eq. (11)], and
numerical results with Nonequilibrium1 and Nonequilibrium2 boundary schemes.

profiles are not necessarily linear, and the comparisons indi-
cate an overestimation of the evaporation rate by the classical
D2-Law in all considered cases.

At a given evaporated volume (V/V0 is fixed), the temper-
ature profile depends only on B and L, parameters that enter
in index ξ2D described in Eq. (12), therefore Cases 6–9 (with
the same B) are identical and only Case 6 is presented. In
Fig. 7, the temperature profiles at V/V0 ≈ 0.5 for Cases 2–6
are presented in graphs (a)–(e) respectively, with an addi-
tional graph (f) showing Case 6 at V/V0 ≈ 0.3. The theoretical
temperature profiles, according to Eq. (12), are concave for

cases (a) and (b), approximately linear for cases (c) and (e),
and convex for cases (d) and (f), when ξ2D > 1, ξ2D ≈ 1
and ξ2D < 1, respectively. Consistent with Fig. 6, for all the
cases, Nonequilibrium2 produces more accurate temperature
solutions than Nonequilibrium1, and the deviations resulting
from Nonequilibrium1 are more significant at a larger den-
sity ratio. The temperature solved using Nonequilibrium2 is
always slightly lower than the one given by theory, which can
be explained as a geometric effect: we use a square compu-
tational domain to mimic an axisymmetric system, with fixed
boundary temperature, thus it is expected that the temperature

FIG. 7. Comparison between numerical results and theoretical solution [Eq. (12)] of temperature profiles for a 2D droplet evaporation.
(a)–(e) are Cases 2–6 at V/V0 ≈ 0.5, respectively; (f) is Case 6 at V/V0 ≈ 0.3. The indexes in the theoretical solutions are ξ2D = 1.67, 1.28,
0.92, 0.60, 0.87, and 0.74 for (a)–(f), respectively.
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FIG. 8. Comparison of the time evolution of D2 for a 3D droplet evaporation between classical D2-Law, theoretical solution [Eq. (8)], and
numerical results with Nonequilibrium1 and Nonequilibrium2 boundary schemes.

decreases the fastest (and faster than the theory) along the
horizontal/vertical center lines.

C. 3D droplet evaporation

We now address the 3D cases, and compare the D2 evo-
lution by D2-Law, our proposed theoretical equation, and
simulations in Fig. 8. Different from the 2D cases, here we
notice that simulations and theory predict faster evaporation
rates than the classical D2-Law, which is intuitively explained
by the more efficient heat transfer in 3D finite size systems.
The evaporation simulated with Nonequilibrium1 is too fast
and departs from the theoretical solution after the initial state,
e.g., t > 50000�t for Case 10, seen in Fig. 8(a). This obser-
vation is in line with those in Fig. 3 indicating a deficiency
of using a constant pressure condition (Nonequilibrium1) for
finite-size droplet evaporations, especially in 3D. In contrast,
the prediction with an adaptive pressure condition (Nonequi-
librium2) agrees well with theory on the whole, despite the
slight differences at the late stage. The temperature profiles,
as reported in Fig. 9 (Case 12 has the same ξ3D as Case 10 and
is not shown), show that the Nonequilibrium2 results agree
better with the theoretical solutions than Nonequilibrium1,
consistent with the observation for D2 in Fig. 8. In contrast
with the 2D configuration, the temperature curve is always
convex for different values of the index ξ3D, because of the
exponential distribution in Eq. (10). The deviations between

Nonequilibrium2 and the theory can also be explained with
the geometric effects discussed above.

D. Error analysis

To analyze the errors between theory and numerical simu-
lations, we calculate the relative errors in the droplet diameter
ED and temperature field Eθ as follows:

ED = 1

tend

∫ tend

0

(D − Dtheory)

Dtheory
dt,

Eθ = 1

L

∫ L

0

(θ − θtheory)

θtheory
dx, (20)

where θ = [(T − Ts)/�T ]|V/V0=0.5 is the normalized temper-
ature difference along the horizontal central line when the
droplet is half evaporated. The average relative errors with
standard deviations for simulations using Nonequilibrium 1
and 2 are plotted in Fig. 10 for all the cases of Table I. Relative
errors for temperature prediction are larger (in magnitude) and
always negative as shown seen in Fig 10(b) compared to the
diameter prediction in Fig. 10(a), mainly because the tem-
perature decreases faster (from boundary to droplet surface)
along the centerline direction than along diagonal direction
for a square/cubic system. As also verifiable in Fig. 4, the
temperature contours are slightly distorted outside the droplet,
once more due to the geometric effect, and do not show
an ideal axisymmetric (circular) shape. It should be noted

FIG. 9. Comparison between numerical results and theoretical solution [Eq. (10)] of temperature profiles for a 3D droplet evaporation at
V/V0 ≈ 0.5. (a) Case 10; (b) Case 11.
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FIG. 10. Relative errors of the predicted droplet diameter (a) and temperature profile (b).

that using a square/cubic computational domain to model
the cylinder/sphere system always introduces such small but
inherent errors. For the constant pressure boundary condition
(Nonequilibrium1), the average relative errors can be as large
as 10% in droplet diameter and 15% in temperature. By using
an adaptive pressure boundary condition (Nonequilibrium2),
the relative errors are significantly reduced, by around five
times and three times, for droplet diameter and temperature,
respectively. The above results certainly confirm that an adap-
tive vapor pressure boundary should be adopted for droplet
evaporation simulations in finite-size systems.

E. Effect of system size

We now discuss the effect of system size. To this aim,
we perform a series of evaporation simulations in both 2D
and 3D systems of different system sizes. Here, we only use
the adaptive pressure boundary condition. The evaporation
constant is fixed at K = 0.0125, corresponding to Case 6 and
Case 10 in Table I. For both configurations, it is seen that the
evaporation rate becomes slower with increasing system size
L, and the simulation results agree well with the theoretical
solutions, as shown in Fig. 11. For 2D configurations, most
of the D2-t profiles are located above the D2-Law, except for
the smallest system (L = 120). In contrast, the D2-t profiles
always lie below the D2-Law for 3D configurations and tend
to converge to the D2-Law for a very large system.

To interpret the mechanisms behind such observation, we
determine the difference between the theoretical values for D2

and those predicted by the classical D2-Law:

�2D = (ε2D − 1)D2
0 + (1 − δ2D)Kt,

�3D = (ε3D − 1)D2
0 + (1 − δ3D)Kt, (21)

where ε2D = [ln(L/D0) + 0.5]/[ln(L/D) + 0.5], δ2D =
1/[ln(L/D) + 0.5], ε3D = (1−2D0/3L)/(1−2D/3L) and
δ3D = 1/(1−2D/3L). The first term of �2D is negative
because ε2D < 1. If L/D > 1.65, which is easily satisfied
during most of the evaporation processes, we also have
δ2D < 1. In such a case, the second positive term could cancel
the first negative term, resulting in a positive �2D. Therefore,
the D2 in most 2D cases is larger than that predicted by the
D2–Law. An exception is for the initial evaporation stage in
very small systems, where the second term can be negative
(δ2D > 1) or positive but not large enough, so that �2D < 0
holds for a short time. Nevertheless, with evolving time, the
second term increases and becomes sufficiently large enough
to outperform the first term, explaining why the curve for
the case L = 120 crosses the D2–Law profile in a later stage,
shown in Fig. 11(a). For the 3D configuration, we always
have ε3D < 1 and δ3D > 1, giving �3D < 0. For large size
limit (L → ∞), we can obtain ε3D → 1 and δ3D → 1, and
therefore the result converges to the classical D2-Law with
increasing L, as displayed in Fig. 11(b).

FIG. 11. Effect of the system size for single droplet evaporation with the evaporation constant K = 0.0125. (a) 2D configurations; (b) 3D
configurations.
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V. CONCLUDING REMARKS

In this work, single droplet evaporation in finite-size
systems is investigated based on theoretical analysis and
numerical simulations. The theoretical analysis starts from
the governing equations of the energy transport in spherical
(3D) and cylindrical coordinates (2D), under the assump-
tions of quasisteady evaporation with constant thermophysical
properties and negligible viscous heat dissipation as well as
buoyancy. The time evolution of the droplet diameter and
the temperature distribution are obtained by integrating the
simplified governing equations. The numerical simulations
are conducted using a hybrid thermal multiphase cascaded
lattice Boltzmann model, where the flow field and temperature
field are solved by an improved cascaded lattice Boltzmann
model and a finite difference solver, respectively. The two
fields are naturally coupled via the Peng-Robinson equation
of state. The following conclusions can be obtained from the
study:

(1) Generally, the time evolution of D2 for single droplet
evaporation in finite size systems does not follow the classical
D2-Law. For a 2D configuration, the D2-t relation is divergent
when increasing the system size, while for a 3D configuration
it is convergent to the D2-Law in the large system limit. The
temperature profile outside the 2D evaporating droplet obeys
a power-law distribution, whose concavity/convexity depends
on the value of an index. In contrast, the temperature field in
the 3D evaporation process follows an exponential distribu-
tion and is always convex.

(2) To correctly simulate droplet evaporation by a diffuse-
interface model such as LBM, the shrinkage effect, i.e., the
numerical loss of droplet mass, should be carefully consid-
ered. To avoid such a defect, a simple strategy is to stop the
simulations when the droplet size reaches a critical size. It is
further strongly suggested not to use the widely used periodic
scheme and bounce back scheme in the boundary treatment.
To reduce the errors introduced by using a constant vapor
pressure boundary, an adaptive vapor pressure needs to be
adopted, especially for large density ratio and/or 3D cases.

(3) By carefully designing the implementation of bound-
ary conditions, single droplet evaporation in both 2D and 3D
systems with density ratio up to 328 within a wide range of
the evaporation constant (K = [0.003, 0.18]) is numerically
reproduced. The simulation results agree well with the theo-
retical solutions for both the droplet diameter evolutions and
the temperature distributions with the proposed adaptive vapor
pressure boundary condition.

Although the present simulations are based on the lat-
tice Boltzmann method, the proposed numerical treatments
would provide general guidelines for evaporation model-
ing by other diffuse-interface models. Our work shows that
deviations from the classical D2-Law are considerable for sin-
gle droplet evaporation in finite-size systems (L/D0 <= 5).
Such a criterion would also be informative for experimental
work considering whether the setup is actually under condi-
tions closer to an infinite or finite-size system. Further work
will be focused on theoretical analysis for thermal multi-
component droplet evaporation in finite-size systems and its
modeling by appropriately extending the present numerical
method.
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APPENDIX A: 2D SINGLE-COMPONENT DROPLET
EVAPORATION

With assumptions (i) and (ii) in Sec. II, the governing
equation of the heat transport in cylindrical coordinates can
be simplified as

ρcpvr
∂T

∂r
= 1

r

∂

∂r

(
rλ

∂T

∂r

)
, r � rs, (A1)

where vr is the velocity component in the radial direction.
According to assumptions (iii) and (iv), the energy balance
at the droplet surface is

λ
∂T

∂r

∣∣∣∣
r=rs

= ρsvr,sh f g. (A2)

Similarly, using the continuity equation (rρvr = rsρsvr,s) and
Eq. (A2), by integrating Eq. (A1) from rs to r, we can obtain

rsρsvr,s[cp(T − Ts) + h f g] = rλ
∂T

∂r
. (A3)

By separating the variables and integrating Eq. (A3) from the
droplet surface to the boundary, we obtained

rsρsvr,scp ln
( r2

rs

)
= λ ln(1 + B), (A4)

with B = cp(T2 − Ts)/h f g. Substituting the continuity condi-
tion within the droplet (ρsvr,s = −ρl∂rs/∂t) and separating
the variables, Eq. (A4) could be rewritten as

d

[
r2

s

2
ln

( r2

rs

)
+ r2

s

4

]
= − λ

ρl cp
ln(1 + B)dt . (A5)

Integrating the above equation, the time evolution of D is
described as

[ln(L/D) + 1/2]D2 = [ln(L/D0) + 1/2]D2
0 − Kt, (A6)

where K = λ/(ρl cp) ln(1 + B).
The temperature field could also be solved at a given

time (D = 2rs is fixed), by defining the index ξ2D = ln(1 +
B)/ ln(L/D) and substituting it into Eq. (A3), which gives

ξ2D
1

r
dr = dT

(T − Ts + h f g/cp)
. (A7)

Integrating Eq. (A7) and after some standard derivations, we
could finally obtain

T = h f g

cp

[( r

rs

)ξ2D − 1
]

+ Ts, r � rs. (A8)
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TABLE II. An example (based on Case 10) of the unit conversion.

Variables Lm Tm K tm �x �T �t

Lattice units 70 0.0143 0.0125 3.92 × 105 1 1.43 × 10−3 1
Physical units 10−3 m 647 K 1.702 × 10−7 m2/s 5.8 s 1.43 × 10−5 m 64.7 K 1.48 × 10−5 s

APPENDIX B: TWO-COMPONENT ISOTHERMAL
EVAPORATION

For two-component isothermal evaporation [sketched in
Fig. 1(b)], the theoretical solution could be derived based
on similar assumptions: (i) the evaporation process is quasis-
teady, (ii) ρD is constant, and (iii) the gas component β is
insoluble in the droplet. The governing equation of component
transport in spherical coordinates (3D) can be simplified as

ρvr
∂Y

∂r
= 1

r2

∂

∂r

(
r2ρD ∂Y

∂r

)
, r � rs, (B1)

where Y is the mass concentration for the droplet component,
i.e., Y = ρα/ρ, and ρ = ρα + ρβ is the density of the mixture.
According to Fick’s law, the concentration balance at the
droplet surface can be described as follows:

ρD ∂Y

∂r

∣∣∣∣
r=rs

= −(1 − Ys)ρα,svr,s. (B2)

Using the continuity equation (r2ρvr = r2
s ρα,svr,s) and

Eq. (B2), by integrating Eq. (B1) from rs to r, we can obtain

r2
s ρα,svr,s(Y − 1) = r2ρD ∂Y

∂r
. (B3)

By separating the variables and integrating Eq. (B2) from the
droplet surface to the boundary, it is obtained as

r2
s ρα,svr,s

(
1

rs
− 1

r2

)
= ρD ln (1 + B) (B4)

with B = (Ys − Y2)/(1 − Ys). According to assumption (iii),
substituting the continuity condition within the droplet
(ρα,svr,s = −ρl∂rs/∂t) and separating the variables, Eq. (B4)
could be rewritten as

d

[
r2

s

(
1

2
− rs

3r2

)]
= −ρD

ρl
ln(1 + B)dt . (B5)

Integrating the above equation, the time evolution of D is
obtained: (

1 − 2D

3L

)
D2 =

(
1 − 2D0

3L

)
D2

0 − Kt, (B6)

where K = (8ρD/ρl ) ln(1 + B). It is seen from Eq. (B6) that
for finite system sizes, the decrease of D2 with t does not fol-
low classical D2 Law for two-component isothermal droplet
evaporation expressed in Eq. (2).

The concentration field could also be solved at a given
time (D = 2rs is known), by defining the index ξ3D =

ln(1 + B)/(1−D/L) and substituting it into Eq. (B3), we have

ξ3D
rs

r2
dr = dY

(Y − 1)
. (B7)

Integrating Eq. (B7) and after some standard derivations, we
could finally get

Y = YA,s − �Y

B

{
exp

[
ξ3D

(
1 − rs

r

)]
− 1

}
, r � rs (B8)

with �Y = Ys − Y2, which shows an exponential concentra-
tion profile outside the droplet.

Analogously, the time evolution of D for 2D two-
component isothermal evaporation can be obtained:

[ln(L/D) + 1/2]D2 = [ln(L/D0) + 1/2]D2
0 − Kt . (B9)

Correspondingly, the concentration profile at a given time
(D = 2rs is known) is

Y = YA,s − �Y

B

[( rs

r

)ξ2D − 1
]
, r � rs, (B10)

where the index is defined as ξ2D = ln(1 + B)/ ln(L/D).

APPENDIX C: CONVERSION FROM LATTICE
TO PHYSICAL UNITS

A variable χ in lattice units (with subscript l) can be
converted to the physical units (with subscript p) based on
the correspondingly characteristic variable χm, i.e., χp =
(χm,p/χm,l )χl . For the present study, we consider three pri-
mary characteristic variables, i.e., characteristic length (Lm),
characteristic time (tm), and characteristic temperature (Tm).
Other characteristic variables can be defined accordingly,
e.g., the characteristic velocity um = Lm/tm. The charac-
teristic length and temperature are chosen as the droplet
initial diameter (Lm = D0) and the critical temperature (Tm =
Tc), respectively. The evaporation is driven by the tem-
perature gradient (thermal diffusion), thus the characteristic
time is defined as the diffusion time scale (droplet life-
time), tm = D2

0/K . Taking the evaporation of a 1-mm water
droplet as an example, the conversion from lattice to phys-
ical units for the first 3D case (Case 10 in Table I)
is given in Table II. The evaporation constant K in the
physical units is calculated based on thermophysical prop-
erties at 421 K: λ = 0.6824 W/(mK), cp = 4.304 kJ/(kg K),
ρl = 919.2 kg/m3, and h f g = 2121.1 kJ/kg.
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