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Energetic rigidity. I. A unifying theory of mechanical stability
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Rigidity regulates the integrity and function of many physical and biological systems. This is the first of two
papers on the origin of rigidity, wherein we propose that “energetic rigidity,” in which all nontrivial deformations
raise the energy of a structure, is a more useful notion of rigidity in practice than two more commonly used
rigidity tests: Maxwell-Calladine constraint counting (first-order rigidity) and second-order rigidity. We find that
constraint counting robustly predicts energetic rigidity only when the system has no states of self-stress. When
the system has states of self-stress, we show that second-order rigidity can imply energetic rigidity in systems
that are not considered rigid based on constraint counting, and is even more reliable than shear modulus. We also
show that there may be systems for which neither first- nor second-order rigidity imply energetic rigidity. The
formalism of energetic rigidity unifies our understanding of mechanical stability and also suggests new avenues
for material design.
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I. INTRODUCTION

How do we know if a material or structure is rigid? If we
are holding it in our hands, we might choose to push on it to
determine whether an applied displacement generates a pro-
portional restoring force. If so, we say it is rigid. A structure
that does not push back, on the other hand, would be said to be
floppy. In this paper, we call this intuitive definition of rigidity
“energetic rigidity” by virtue of the fact that small deforma-
tions increase the elastic energy of the structure. In many
situations of interest, it is impossible or impractical to push
on a structure to measure the restoring force. In designing new
mechanical metamaterials, for example, we would like to sort
through possible designs quickly, without having to push on
every variation of a structure. In biological tissues such as the
cartilage of joints or the bodies of developing organisms, it is
often difficult to develop nondisruptive experimental rheolog-
ical tools at the required scale. Or we may wish to understand
how some tissues can tune their mechanical rigidity in order
to adapt such functionality into new bioinspired materials. To
that end, we would like a theory that can predict whether a
given structure is energetically rigid rapidly and without the
need for large-scale simulations or experiments.

This has inspired the search for proxies: simple tests that,
when satisfied, imply a structure is energetically rigid [1–5].
The standard (and first) proxy for rigidity in particulate sys-
tems comes from Maxwell [1]. When two particles interact,
for example through a contact, that interaction constrains
each particle’s motion. “Structural rigidity” refers to whether
those interaction constraints prevent motion in the system. If a
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system has fewer constraints than the particles have degrees of
freedom, it is said to be underconstrained and, therefore, one
expects it to be floppy. In contrast, overconstrained systems
are said to be “first-order rigid.” This thinking has been suc-
cessfully applied to many examples of athermal systems, such
as jammed granular packings, randomly diluted spring net-
works, and stress diluted networks [6–9]. A straightforward
extension of Maxwell’s argument, known as the Maxwell-
Calladine index theorem [2,10], shows that one should also
subtract the number of states of self-stress, configurations of
internal forces that are in equilibrium, because they arise from
redundant constraints. In hinge-bar networks, these ideas can
be exploited to design mechanical metamaterials with topo-
logically protected mechanisms [10–14].

Yet, this thinking is certainly wrong in general. It is well
known that underconstrained spring networks can be rigidified
if put under enough strain [15–25]. And there are special
configurations of even unstressed networks, e.g., collinear
springs pinned down at both ends or honeycomb lattice in
a periodic box [26], which are rigid despite being under-
coordinated. That this occurs because of nonlinear effects
has already been highlighted by mathematicians and engi-
neers in the context of the bar-joint frameworks, origami, and
tensegrities [3–5,27–29]. In particular, Connelly and Whitely
[4] demonstrate that there may exist states where a different
proxy, termed “second-order rigidity,” is sufficient to ensure
that the constraints are preserved. Because of these nonlinear
effects, determining whether even a planar network of springs
is rigid is NP hard [30] and, consequently, there is no simple
theory that can determine if a mechanical system is truly rigid.
Maxwell constraint counting works because these nongeneric
configurations are ostensibly rare.

In many physical systems of interest, however, the dynam-
ics or boundary conditions drive the system towards specific,
nongeneric states [31]. These nongeneric states can behave
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differently than we would expect from rigidity proxies. For
example, even in overconstrained elastic networks, prestresses
have been shown to affect the stability of the system [32].
As another example, deformable particles with bending con-
straints have been observed to jam at a hyperstatic point [33].
Therefore, instead of demonstrating the existence of states that
are first-order or second-order (and thus structurally) rigid, we
instead ask a different question: What can we say about ener-
getic rigidity for systems that are at an energy minimum and
correspond to highly nongeneric states selected by physical
dynamics? In particular, is it possible to find or design struc-
tures where motions preserve the energy but not the individual
constraints? In an important sense, such a structure would still
be floppy.

To answer this question, we develop a generalized for-
malism for understanding the rigidity of energetically stable
physical materials. Specifically, we demonstrate that the onset
of rigidity upon tuning a continuous parameter emerges from
the effects of geometric incompatibility arising from higher-
order corrections to Maxwell-Calladine constraint counting.
Depending on the prestresses in the system and features of
the eigenvalue spectrum, we identify different cases where
first-order or second-order rigidity imply energetic rigidity.
We also demonstrate cases where second-order rigidity is a
more reliable proxy for energetic rigidity than even the shear
modulus, the standard measure of rigidity used in physics.

II. FORMALISM

In this section, we will introduce notation and summarize
some of the standard proxies of rigidity and structural rigidity
that arise in physics and mathematics. We assume the state of
the system is described by Ndof generalized coordinates xn. For
example, the coordinates {xn} might represent the components
of the positions of all vertices in a spring network or the
vertices in a vertex model. We assume that the energy of the
physical system can be characterized using M strains of the
form fα ({xn}) satisfying a Hooke-type energy E of the form

E = 1

2

M∑
α=1

kα fα ({xn})2, (1)

where kα > 0 is the stiffness associated with each strain. Since
the strain functionals fα ({xn}) are in principle general, ener-
gies of the form of Eq. (1) encompass a broad array of physical
systems with Hookean elasticity.

As a concrete example, for a d-dimensional spring network
of N vertices connected via M springs with rest length L0 in a
fixed periodic box, Ndof = dN and the strain associated with
spring α connecting vertices i and j at positions Xi and X j

is simply the strain of the spring, fα = Lα − L0, where Lα =
|Xi − X j | is the actual length of the spring. Without loss of
generality, we absorb kα into fα by rescaling it by

√
kα and

writing E = ∑M
α=1 f 2

α /2.
We can capture the intuitive notion of rigidity or floppiness

by considering the behavior of Eq. (1) under deformations. A
system is energetically rigid if any global motion that is not a
trivial translation or rotation increases the energy. We define
a global motion as one that excludes rattlers and danglers;
while this restriction is not strictly required in our analysis,

it conforms to standard practice. If there exists a nontrivial,
global motion that preserves the energy, we call the system
floppy. If, for a given system at an energy minimum, all the
strains vanish, fα = 0 for all α, and the system is unstressed.
Otherwise, we say the system is prestressed.

The relationship between structural and energetic rigid-
ity arises when we treat the generalized strains fα as the
constraints in Maxwell-Calladine counting arguments. How-
ever, while structural rigidity depends on geometry only, we
will see that energetic rigidity must depend on the particular
energy functional. Nevertheless, it is natural that a useful def-
inition of floppiness would depend on the energy functional
itself.

A. Standard proxies of energetic rigidity

Experimentally, the standard proxy used to determine
whether the system is energetically rigid is the shear modulus
G, defined as the second derivative of energy with respect to a
shear variable γ in the limit of zero shear [34,35]:

G = 1

V

d2E

dγ 2

= 1

V

(
∂2E

∂γ 2
−

∑
l

1

λl

[∑
n

∂2E

∂γ ∂xn
u(l )

n

])
, (2)

where V is the volume of the system while λl and u(l )
n

are, respectively, the eigenvalues and eigenvectors of the
Hessian matrix Hnm = ∂2E/∂xn∂xm, and the sum excludes
eigenmodes with λl = 0. When G �= 0, the system is cer-
tainly energetically rigid. Note that this is closely allied
with the mathematical notion of prestress stability [4] (see
Appendix). On the other hand, if Hnm has global, nontrivial
zero eigenmodes (or more precisely, zero eigenmodes that
overlap with the shear degree of freedom), G = 0 [34].

Importantly, defining rigidity based on G is not equivalent
to energetic rigidity. Specifically, G �= 0 implies the system is
energetically rigid, but G = 0 does not imply floppiness. As
highlighted in the Appendix there may be quartic corrections
in δxn that increase the energy even with vanishing shear
modulus. Moreover, in many cases of interest these quartic
corrections are expected to dominate precisely at the onset of
rigidity.

A definition of rigidity based on G is equivalent to exam-
ining the Hessian matrix H directly: if H is positive definite
on the global, nontrivial deformations, then the system is also
energetically rigid. Writing out the Hessian matrix in terms of
the constraints, we find

Hnm = ∂2E

∂xn∂xm
=

∑
α

[
∂ fα
∂xn

∂ fα
∂xm

+ fα
∂2 fα

∂xn∂xm

]
= (RT R)nm + Pnm, (3)

where

Rαn = ∂ fα
∂xn

(4)

is known as the rigidity matrix. We call (RT R)nm the Gram
term (as it is the Gramian of rigidity matrix), and Pnm the
prestress matrix because it is only nonzero if fα �= 0 (Gram
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TABLE I. Different definitions of rigidity.

A system is ... When ...

Energetically rigid Any nontrivial global motion increases the energy
Structurally rigid No nontrivial global motion preserves the constraints fα
First-order rigid No nontrivial global motion preserves the constraints fα to first order
Second-order rigid No nontrivial global motion preserves the constraints fα to second order

term and prestress matrix are sometimes called stiffness ma-
trix and geometric stiffness matrix, respectively, in structural
engineering [4,27]). If the Hessian has at least one global
nontrivial zero direction, we obtain the necessary (but not
sufficient) condition for floppiness∑

nm

Pnmδxnδxm = −
∑
nm

(RT R)nmδxnδxm

= −
∑

α

(∑
n

∂ fα
∂xn

δxn

)2

, (5)

where the sum over α is over all constraints and, again, trivial
Euclidean modes have been excluded. Analogous to our dis-
cussion of G above, a definition of rigidity based on H is also
not equivalent to energetic rigidity, due to the importance of
quartic terms in cases of interest (including at the transition
point).

B. Proxies of structural rigidity: The first- and
second-order rigidity tests

The existence of any global, nontrivial, and continuous
motion of the system xn(t ) that preserves the constraints
fα ({xn(t )}) implies the system is floppy. A system is struc-
turally rigid when no such motions exist, a definition
highlighted in Table I. Energetic rigidity is not necessarily
equivalent to structural rigidity when the system is prestressed
(E > 0), though the two are the same when E = 0, as dis-
cussed in more detail later.

Although, determining whether a system is structurally
rigid is NP hard [30], there are several simpler conditions
that, if they hold true, imply that a system is structurally rigid
[2–5]. These tests, and in particular the first- and second-order
rigidity tests, are reviewed in more detail in the Appendix and
briefly summarized in Table I.

Here, we assume that strains in the system are small and
that fα is smooth near fα = 0. This allows us to expand fα
for small perturbations. The first-order rigidity test arises by
considering first-order perturbations to the constraints δ fα =∑

n ∂ fα/∂xnδxn. We define a linear (first-order) zero mode
(LZM) δx(0)

n as one that preserves fα to linear order,∑
n

∂ fα
∂xn

δx(0)
n =

∑
n

Rαnδx(0)
n = 0, ∀ α. (6)

We can see that LZMs are in the right null space of the rigidity
matrix. Excluding Euclidean motions, a nontrivial LZM is
often called floppy mode (FM) in physics [10]. A system
with no nontrivial LZM is first-order rigid and, indeed, in
such systems first-order rigidity implies structural rigidity as
defined in Table I [3,4].

Naive constraint counting suggests that an overconstrained
system (Ndof < M) is rigid while an underconstrained system
(Ndof > M) must be floppy. If Rαn is full rank for a domain
of configurations, this intuition is assuredly true. Yet, there
are examples of contrivances that appear overconstrained yet
move [36], as well as underconstrained systems that are rigid.

When an underconstrained system is rigid, it must be in
configurations for which Rαn fails to be full rank. Thus, the
system must exhibit a state of self-stress, defined as a vector
σα in the left null space of the rigidity matrix:∑

α

σαRαn = 0, ∀ n. (7)

The Maxwell-Calladine index theorem (also known as the
rigidity rank-nullity theorem) states that Ndof − M = N0 − Ns,
where N0 is the number of LZMs and Ns is the number of
states of self-stress [2].

To understand this case, we study motions that preserve fα
to second order in δxn. Taylor expansion of fα results in

δ fα ≈
∑

n

Rαnδxn + 1

2

∑
nm

∂2 fα
∂xn∂xm

δxnδxm = 0, (8)

where we used Eq. (4) for the linear term in the expansion. If
the only LZMs that satisfy Eq. (8) are trivial ones, the system
is called second-order rigid and, consequently, is structurally
rigid [3,4]. It can be shown that a LZM, δx(0)

n , must satisfy

∑
α

∑
nm

σα,I
∂2 fα

∂xn∂xm
δx(0)

n δx(0)
m = 0, ∀ I (9)

for all states of self-stress σα,I and solutions to Eq. (7) to be a
second-order zero mode ([4,5]; see Appendix).

Testing for second-order rigidity is not always easy, par-
ticularly when there is more than one state of self-stress [29].
Thus, it is useful to define a stronger rigidity condition called
prestress stability which looks for a single self-stress σα,I

for which Eq. (9) has no solution [4]. If such a self-stress
exists, the system is said to be prestress stable, and in the
case of underconstrained systems it is second-order rigid as
well. Note that the inverse is not always true, i.e., second-order
rigidity does not imply prestress stability: for a second-order
rigid system with more than one self-stress, individual FMs
could still satisfy Eq. (9) for some self-stresses, but there is not
a self-stress for which all FMs satisfy Eq. (9). Connelly and
Whitely have shown, however, that a system that is first-order
rigid is also prestress stable [4].

Finally, we note that going beyond second order is less
helpful than one might suppose. There are examples of
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systems that are rigid only at third order or beyond yet remain
floppy [37].

C. How common are nongeneric states?

As we have seen, being able to use Maxwell constraint
counting as a proxy for rigidity relies on being in a generic
configuration. One might suppose that such cases must be rare
but, in fact, nongeneric configurations seem to arise physically
quite often. Consider the Euler-Lagrange equations for a sys-
tem with the energy of Eq. (1) at an extremum:∑

α

fα
∂ fα
∂xn

=
∑

α

fαRαn = 0, ∀ n. (10)

For a system that is not prestressed, fα = 0 and the above
equation is satisfied trivially. For a system that is prestressed,
fα �= 0, fα must be a state of self-stress. Note, however, the
converse is not true. The existence of states of self-stress
only depends on the geometry of the system and does not
imply that the system has to be prestressed. For example,
take a system with constraints fα ({xn}) = Fα ({xn}) − Fα at
a particular mechanically stable configuration {x̄n} that has
a state of self-stress and choose Fα = Fα ({x̄n}). The system
will be unstressed at {x̄n} but still has a state of self-stress.
An example is the honeycomb lattice in a periodic boundary
condition where all edge rest lengths are set to be equal to the
actual edge lengths.

Thus, if we put a system under an external tension so that it
is unable to find a stress-free configuration under energy mini-
mization, it will naturally evolve to a nongeneric configuration
having at least one self-stress. In these cases, it would be
surprising for Maxwell constraint counting to work; then, the
relationship between energetic and structural rigidity becomes
more complex.

III. RELATING STRUCTURAL RIGIDITY TO
ENERGETIC RIGIDITY

If a system is structurally rigid, can we also say it is
energetically rigid? More specifically, when do the proxies
of structural rigidity actually imply energetic rigidity? The
number of self-stresses, it turns out, can be used to classify
the relationship between structural and energetic rigidity.

A. Case 1: The system has no self-stresses (Ns = 0)

When a system has no self stresses, first-order rigidity, i.e.,
constraint counting, is a good proxy for energetic rigidity.
Since there are no self-stresses, Eq. (10) implies that the
system is also unstressed, and Eq. (5) reduces to

∑
α

(∑
n

∂n fαδxn

)2

= 0. (11)

The solutions are LZMs δx(0)
n [Eq. (6)]. If a system does not

have any FMs, it is energetically rigid. An energetically rigid
system with no states of self-stress is also called isostatic. This
also means that there are no motions that preserve fα even
to first order, thus, the system is first-order rigid. Examples
of systems belonging to case 1 include underconstrained and
unstressed spring networks, unstressed vertex models with no

FIG. 1. Flowchart of cases summarizing the classification of sys-
tems based on the findings of second-order rigidity formalism. N (g,nt )

0

refers to the number of global nontrivial LZMs (i.e., global FMs).

area terms, and the special, nongeneric frames described in
Figs. 4(a)– 4(c) of [10].

B. Case 2: The system has at least one self-stress (Ns � 1)

Once a system has a self-stress, the relationship between
energetic rigidity and structural rigidity becomes more subtle.
Even a system that is first-order rigid may not be energetically
rigid under some conditions. For instance, jammed packings
of soft particles are first-order rigid. However, in these pack-
ings, one can increase the prestress forces (for example, by
multiplying all the contact forces by a constant value as is
shown in [38]) and push the lowest nontrivial eigenvalue of
the Hessian to zero without leading to any particle rearrange-
ments. In this case, the system is first-order rigid but not
necessarily energetically rigid, and thus first-order rigidity
does not always imply energetic rigidity (Fig. 1).

An underconstrained system may also be structurally rigid
but not necessarily energetically rigid. For example, consider
an underconstrained system that is prestress stable for self-
stress σα,1. Choose a prestress along this self-stress f̃α =
cσα,1 for some c > 0 which defines an energy functional
Ẽ = ∑

α f̃ 2
α /2. It follows from the assumption of prestress

stability that the prestress matrix P̃nm defined for Ẽ is positive
definite on the space of FMs. Therefore, if the actual energy
of the system E = Ẽ , Hnm would be positive definite and the
system energetically rigid at quadratic order.

However, E = Ẽ is only guaranteed if the system is pre-
stressed along a unique state of self-stress. For example, one
can imagine a prestress stable system with more than one self-
stress that is driven to fα = ∑

I cIσα,I by the dynamics such
that Hnm is not positive definite. Conversely, only if the system
is energetically rigid at quadratic order, it is guaranteed to be
prestress stable. For instance, a system may be energetically
rigid at quartic order, which is the case for underconstrained
systems at the critical point of rigidity transition as we will
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see later; such a system is second-order rigid (see Appendix)
but not necessarily prestress stable.

We now ask the following question: When does first-
or second-order rigidity imply energetic rigidity? We iden-
tify two cases (cases 2A and 2B), which encompass several
examples of physical interest, where both first-order and
second-order rigidity imply energetic rigidity, and demon-
strate that second-order rigidity is a better proxy for energetic
rigidity than the shear modulus. We identify a third case
(case 2C) where neither first- or second-order rigidity imply
energetic rigidity, for example, there may be systems with
large prestresses that do not preserve fα to second order but
preserve energy. We classify these distinct cases using the
eigenspectrum of Pnm and the states of self-stress. In all the
cases, we will assume that if the system has FMs, at least one
is global.

1. Case 2A: The system is unstressed (Pnm = 0)

This case includes systems with either no prestress, fα = 0,
or systems for which the prestress is perpendicular to its
second-order expansion such that Pnm = ∑

α fα∂n∂m fα = 0.
If the system is first-order rigid, it is again energetically rigid.
If there are global FMs, G = 0; however, it can be shown
(Appendix) that the fourth-order expansion of energy for these
modes will be

δE ≈ 1

8

Ns∑
I=1

[∑
α,nm

σα,I ∂n∂m fα δx(0)
n δx(0)

m

]2

. (12)

Therefore, if the system is second-order rigid in the space of
its global FMs, it is energetically rigid even though G = 0.
Examples include random regular spring networks with co-
ordination number z = 3 and vertex models exactly at the
rigidity transition.

2. Case 2B: Pnm is positive semidefinite

For a system with a positive semidefinite Pnm, the Hessian
has a zero eigenmode if and only if both the left- and right-
hand sides of Eq. (5) are zero for δxn. The right-hand side is
zero only for LZMs. Then if the system is first-order rigid, it
is again energetically rigid. For a system with global FMs, we
reduce Eq. (5) to∑

nm

Pnmδx(0)
n δx(0)

m =
∑
nm

∑
α

fα∂n∂m fαδx(0)
n δx(0)

m = 0, (13)

where x(0)
n is now a global FM. We show below that second-

order rigidity implies energetic rigidity, but depending on Ns,
G may be zero.

If the system has a single self-stress. Calling this state of
self-stress σα , we conclude from Eq. (10) that fα ∝ σα , mean-
ing Eq. (13) is identical to Eq. (9) in this case. This means that
if this system is second-order rigid, it is energetically rigid and
G > 0. We demonstrate in a companion paper [39] that both
spring networks under tension and vertex models with only
the perimeter term fall into this category.

If the system has multiple self-stresses. In the Appendix we
show that if the system is second-order rigid in the space of
global FMs, it is energetically rigid [Eq. (12)]. However, the
Hessian may still have zero eigenmodes if in the minimized

state fα is a linear combination of self-stresses that satisfies
Eq. (13). This suggests that the system may be energetically
rigid but with G = 0. We have not been able to identify an
example of a second-order rigid system with multiple self-
stresses and G = 0, but if one exists, it may lead to interesting
ideas for material design.

3. Case 2C: Pnm has negative eigenvalues

In this case, we have been unable to derive analytic results
for whether first- or second-order rigidity implies energetic
rigidity. As the models that fall into this class are quite diverse,
it is likely that more restrictive conditions are necessary in
specific cases to develop analytic results.

One example in this category is vertex models with an area
term in addition to a perimeter term when prestressed. In the
companion paper [39], we demonstrate numerically that in
such models there is always only one state of self-stress that
is nontrivial, and that Pnm has negative eigenvalues. However,
the Hessian itself is still positive definite (excluding trivial
LZMs) and therefore the system is energetically rigid. An-
other example is a rigid jammed packing, which exhibits quite
different behavior for the eigenspectra of Pnm.

More generally, we cannot rule out the possibility that
there may be examples where the Hessian of a first-order or
second-order rigid system could have global zero directions
for nonzero modes. Such a system would be marginally sta-
ble because if any negative eigenmode of Pnm becomes too
negative, the Hessian would have a negative direction and
the system would not be at an energy minimum anymore.
Furthermore, states of self-stress place the same constraints
as in Eq. (9) on these nonzero modes. If those constraints are
not satisfied, the energy would increase at fourth order (see
Appendix), suggesting that again the shear modulus could
be zero while the energy is not preserved. Even though it
is highly nongeneric, this case could aid in the design of
structures that become unstable by varying the prestress [32]
or new materials that are flexible even though individual con-
straints are not preserved.

Figure 1 summarizes the cases describing when either
first- or second-order rigidity imply energetic rigidity. In the
Appendix, we provide another flowchart (Fig. 2) to clearly
establish the connection between energetic rigidity and struc-
tural rigidity as understood by mathematicians. We also
provide several propositions to show that energetic rigidity
and structural rigidity are interchangeable when E = 0 but not
necessarily otherwise. For instance, it can be shown that first-
and second-order rigidity both imply structural rigidity [5],
but we saw that they do not always imply energetic rigidity.
This is because for a system which possesses self-stress at
an energy minimum, mathematicians only require the exis-
tence of a linear combination of self-stresses that would make
the system rigid [4]; however, that particular self-stress may
not be the linear combination of self-stresses that the system
chooses as its prestress based on external forces [31].

IV. DISCUSSION AND CONCLUSIONS

We term an “energetically rigid” structure as one where
any sufficiently small applied displacement increases the
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FIG. 2. Relations between various definitions for a given con-
figuration x̄. The numbers on arrows refer to propositions with the
same numbers. We can see that only when the system is unstressed
[E (x̄) = 0], energetic rigidity and structural rigidity are equivalent
(one is always guaranteed to imply the other). Dotted arrows la-
beled with ∃Fα mean that the implication is only valid for specific
choices of Fα and thus prestress. E ′′(x̄) > 0 denotes energetic rigidity
at quadratic order (positive-definite Hessian). Dashed arrow with
Ns = 1 means that the implication is guaranteed when there is only
one state of self-stress.

structure’s energy. Our focus on motions that preserve en-
ergy contrasts with previous work on structural rigidity that
has focused on motions that preserve constraints. There are
interesting differences between the two approaches. Unlike
structural rigidity, energetic rigidity is not defined solely by
the geometry: predictions also depend on the energy func-
tional. Here we studied a Hooke-type energy that is quadratic
in the constraints, which is the simplest nontrivial energy
functional that encompasses a large number of physical sys-
tems, but other choices are possible. On the other hand, this
choice opens the possibility that in some structures there may
exist motions that preserve the energy without preserving
individual constraints. Importantly, the framework developed
here would allow us to identify such systems as floppy.

Specifically, we want to understand under which precise
circumstances structural rigidity implies energetic rigidity,
and in the process identify underlying geometric mechanisms
that are responsible for rigidity in specific materials. It is un-
derstood that predicting whether a planar graph is structurally
rigid is already an NP-hard problem, and so previous work has
proposed several “quick” tests for rigidity, which work in lim-
ited circumstances. One test is the Maxwell-Calladine index
theorem, also called first-order rigidity, which tests whether
the constraints fα that define the energy functional can be
satisfied to first order. Another test is second-order rigidity,
which checks whether constraints can be satisfied to second
order.

In this work we have developed a systematic framework
that clarifies the relationship between energetic rigidity and
these other previously proposed rigidity tests. We demon-
strate that first-order rigidity always implies energetic rigidity
when there are no states of self-stress. However, when the
system does possess states of self-stress, the eigenvalue spec-
trum of the prestress matrix Pnm controls whether first- or
second-order rigidity (or neither) implies energetic rigidity. In
a companion paper [39], we study several physical systems of
interest, and demonstrate that for some second-order rigidity
is sufficient to guarantee energetic rigidity, while for others
it is not. In particular, we use the formalism developed here
to demonstrate that several important biological materials are
second-order rigid and identify specific features of the eigen-
value spectrum and states of self-stress, which drive biological
processes, that arise due to second-order rigidity.

When the prestress matrix is indefinite or negative semidef-
inite, we can still show analytically that at the rigidity
transition, second-order rigidity implies energetic rigidity.
But, away from the transition point neither first-order nor
second-order rigidity guarantee energetic rigidity.

Moving forward, it would be useful to identify features that
distinguish examples in this category, dividing it into subcases
that are at least partially analytically tractable. One intriguing
possibility is to classify a structure’s response to applied loads.
For example, one could artificially increase the prestresses in
a structure, multiplying Pnm by a coefficient ε > 1, which will
only increase the overall magnitude of the state of self-stress
but not change the geometry of the network or the Gram term
in the Hessian.

This also suggests that it may be possible to program
transitions between minima in the potential energy landscape
via careful design of applied load. For example, while the
type of spring network we study in our companion paper is
completely tensile for L0 < L∗

0 [39], one could create spring
networks with both tensile and compressed edges [32] or a
tensegrity with tensile cables and compressed rods. It will
be interesting to see if we can design such systems to have
a negative-definite prestress matrix. If so, applied loads may
destabilize the structure along a specified mode towards a new
stable configuration. These instabilities can also lead to more
complex behaviors like dynamic snap throughs, which can be
identified using dynamic stability analyses [40].

A related question is whether we can move such a system
from one energy minimum to another in a more efficient
manner. Traditionally, to push a system out of its local min-
imum into a nearby minimum, one rearranges the internal
components of the system locally or globally, while it is
rigid, by finding a saddle point on the energy landscape. An
alternate design could be to (1) apply a global perturbation
that makes the system floppy, (2) rearrange its components
at no energy cost, and (3) apply a reverse global perturba-
tion to make it rigid again. In other words, the fact that
the system can transition from rigid to floppy using very
small external forces without adding or removing constraints
could help us generate reconfigurable materials with very
low energy cost. In spring network systems, we have already
been able to identify specific examples with this property,
and future work will focus on quantifying the number of
such configurations and developing optimization algorithms

025003-6



ENERGETIC RIGIDITY. I. A UNIFYING THEORY OF … PHYSICAL REVIEW E 105, 025003 (2022)

to find ones with specific functionality, driving metamaterial
design.

Another interesting avenue for design is to perturb the
energy functional itself. In this work we focused on an energy
that is Hookean in the constraints, but it would be interesting
to explore whether different choices of energy functional still
generate the same relationships between energetic rigidity
and first- or second-order rigidity identified in Fig 1. If not,
such functionals may enable structures with interesting floppy
modes.

Taken together, this highlights that the subtleties involved
in determining energetic rigidity could be exploited to drive
new ideas in material design. With the framework described
here, we now fully understand when we can use princi-
ples based on first-order constraint counting or second-order
rigidity to ensure energetic rigidity in designed materials.
Moreover, there may be some new design principles available,
especially for dynamic and activated structures, if we focus on
cases where these standard proxies fail.
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APPENDIX: DERIVATION OF SECOND-ORDER RIGIDITY
CONDITION AND IMPLICATIONS FOR

ENERGETIC RIGIDITY

In Appendix 1 of this Appendix, we summarize the basic
definitions and important theorems on structural rigidity in
bar-joint frameworks. Several of these theorems are adapted
from [4]. In Appendix 1 a, we relate structural rigidity to
energetic rigidity. These results are summarized in Fig. 2. We
also provide derivations of second-order rigidity and energetic
rigidity that we have omitted from the main text.

1. Basic results on structural rigidity

Let xn be a point in a space of configurations and let
Fα ({xn}) be a set of measures [for example, in a fiber network
Fα ({xn}) might give the length of the fibers]. From now on we
denote the configuration {xn} as x for simplicity. We start with
some basic definitions:

Definition. A nontrivial isometry (or, sometimes, flex)
is a one-parameter family of deformations x(t ), such that
Fα (x(t )) = Fα (for some Fα) and x(t ) is not a translation or
rotation. We similarly refer to a nontrivial deformation as any
deformation δx(t ) that is not a translation or rotation.

Definition. A linear zero mode, also known as a first-order
isometry or a first-order flex, at a configuration x̄, ẋ, is a
nonzero solution to the equation

∑
n ∂nFα (x̄)ẋn = 0 for all α.

A system is first-order rigid if there are no solutions to this
equation other than Euclidean motions.

Definition. A self-stress σα at x̄ is a nonzero solution to∑
α σα∂nFα (x̄) = 0 for all n.
Definition. A second-order isometry (or a second-order

flex) at x̄ is a first-order isometry that also satisfies the
system of equations

∑
α

∑
nm σα,I∂n∂mFα (x̄)ẋnẋm = 0, where

{σα,1, σα,2, . . . , σα,Ns} is a basis of self-stresses at x̄. A system
is second-order rigid if it has nontrivial zero modes but no
nontrivial second-order isometries.

We finally have a main result of rigidity theory: a system
that is either first-order or second-order rigid is structurally
rigid [4]. It can be hard, still, to test for structural rigidity at
second order because it involves solving a system of quadratic
equations. It is, therefore, convenient to introduce a stronger
condition:

Definition. A system is prestress stable at x̄ if there is a self-
stress at x̄, σα , such that

∑
α σα∂n∂mFα (x̄) is positive definite

on every nontrivial zero mode.
With this definition, we prove that a system that is pre-

stress stable at x̄ is also second-order rigid at x̄ (and, hence,
structurally rigid). This follows because there is a self-stress
σα such that

∑
α σα∂i∂ jFα (x̄) is positive definite on nontrivial

first-order flexes. We can construct a basis for the self-stresses
with σα as one of its elements. Therefore, it is second-order
rigid as well.

According to Connelly and Whitely [4], there are examples
of second-order rigid structures that are not prestress stable in
two dimensions (2D) and, especially, three dimensions (3D).
The notion of prestress stability is related to notions of an
energy.

Note also that a system that is second-order rigid is not
necessarily prestress stable. Examples appear in Connelly and
Whitely. However, note the following proposition.

Proposition. A system that is second-order rigid but has
one self-stress is prestress stable. This is also in [4].

Since the system is second-order rigid but has one
self-stress

∑
nm σα∂n∂m f (x̄)ẋnẋm �= 0, it must be true that

cσα∂n∂m f (x̄) is positive definite for some, potentially nega-
tive, c. Then, choosing Fα = Fα (x̄) − cσα makes the system
energetically rigid to quadratic order and, hence, prestress
stable. The complete proof can be found in [4].

a. Energetic rigidity

A proper understanding of the rigidity of a mechanical
system requires an energy functional. To formulate this, we
assume we have a system of measures Fα ({x}). From this
we define generalized strains fα (x) = √

kα[Fα (x) − Fα] that
measure the deformation of our system from the local equilib-
rium Fα and kα > 0 is an elastic modulus. We then assume a
neo-Hookean energy functional of the form

E (x) = 1

2

∑
α

f 2
α (x). (A1)

As an example, for a fiber network, Fα (x) measures the dis-
tance between two vertices and Fα is the equilibrium distance
between vertices. For a vertex model, on the other hand, the fα
might measure the deviation of the cell perimeters and areas
from their equilibrium values.

We say that a system is energetically rigid at x̄ if there
exists a c such that E (x̄ + εδx) > E (x̄) for any nontrivial
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deformation δx and any 0 < ε < c. In other words, it is en-
ergetically rigid if all sufficiently small, finite deformations
increase the energy. This conforms to the intuitive notion
that a system is rigid if deforming it increases the energy.
Similarly, a system is energetically rigid at nth order at the
configuration x̄ if δEn = ∑

i1···in ∂i1 . . . ∂in E (x̄)δxi1 . . . δxin > 0
for any nontrivial deformation δx but δEm = 0 for all defor-
mations for m < n.

Unsurprisingly, the notion of energetic rigidity is closely
allied with structural rigidity and its various proxies. These
notions are, however, not identical, and here we discuss the
many interconnections between structural and energetic rigid-
ity. These relationships are summarized in Fig. 2. Important
to note is that the dashed arrows signify that while the im-
plication can be proved for some choice of self-stress, it is
not guaranteed that a given system has picked that particular
self-stress at the energy minimum (i.e., the actual prestress
may be a different linear combination of self-stresses). The
numbers labeling the propositions below refer to the arrows
in Fig. 2 labeled with the same number. Before finally pro-
ceeding, we finally note that we are assuming that the space
of configurations has no boundary; any restrictions on what x
can be must be carried by the energy functional.

Proposition 1. Energetic rigidity at x̄ with E (x̄) > 0 im-
plies x̄ is a critical point of the energy. Let x̄ be a point that
is energetically rigid. This means that E (x̄ + εδx) > E (x̄) for
all nontrivial δx and for all 0 < ε < c. Taking the derivative
with respect to ε gives

lim
ε→0+

∂εE (x̄ + εδx) =
∑

n

∂nE (x̄)δxn. (A2)

If this were not a critical point, then taking δx → −δx would
give us a nontrivial deformation that decreases the energy for
some ε that was small enough. Therefore, it must be a critical
point.

Proposition 2. If the point x̄ is a critical point of E (x̄) > 0,
there is a self-stress at x̄. If there is a self-stress at x̄, there is a
specific choice of Fα such that x̄ is a critical point of E (x). We
first assume x̄ is a critical point with E (x̄) > 0. Then ∂nE (x̄) =
0, which requires

0 =
∑

α

[Fα (x̄) − Fα]∂nFα (x̄). (A3)

Since E (x̄) �= 0, Fα (x̄) �= Fα . Therefore, Fα (x̄) − Fα is a self-
stress.

Now assume that we have a point x̄ where σα is a self-
stress. Then, choose Fα = Fα (x̄) − cσα . We can now verify
that x̄ is a critical point of E (x) = ∑

α[Fα (x) − Fα (x̄) +
cσα]2 for any c.

Proposition 3. If the configuration x̄ is energetically rigid at
E (x) with E (x̄) = 0, then x̄ is structurally rigid. On the other
hand, if x̄ is structurally rigid, then there exists a choice of
equilibrium measures Fα such that x̄ is energetically rigid with
E (x̄) = 0. We first assume that x̄ is structurally rigid. Then
let Fα = Fα (x̄). We get E (x̄) = 0. Let δx be any nontrivial
deformation. Since Fα (x̄ + cδx) �= Fα for sufficiently small c
we must have E (x̄ + cδx) > 0, implying the system is ener-
getically rigid.

Now assume we have an energy such that x̄ is energetically
rigid with E (x̄) = 0. Then, Fα (x̄) = Fα . Since E (x̄ + cδx) >

0 for appropriately chosen c, we must have Fα (x̄ + cδu) �=
Fα .

Proposition 4. Let x̄ be a local minimum of E (x) such that
E (x̄) �= 0 and suppose that x̄ is energetically rigid. Then the
system is structurally rigid at x̄ as well. Suppose that x̄ is
an extremum of E (x) such that E (x̄) �= 0 but such that x̄ is
energetically rigid. That is, all nontrivial directions raise the
energy further. Then there cannot be any nontrivial isometries
x(t ) passing through x̄ since if there were, E would have to be
constant along them and this contradicts the assumption.

Note that this can be extended to energy maxima as well.
The converse need not be true though. If a system is rigid at
x̄, choosing Fα so that x̄ is an extremum does not mean that it
will be energetically rigid. Let us suppose that x(t ) is a one-
parameter family of constant energy trajectories. Then

∂t E [x(t )] = 0 =
∑

α

∑
n

[Fα (x(t )) − Fα]∂nF (x(t ))ẋn. (A4)

This can only be true if x(t ) are all extrema of E with
E (x(t )) �= 0. In addition, there must be at least one self-stress
along the entire trajectory x(t ).

The notion of prestress stability is intimately related to
energetic rigidity at quadratic order. The next proposition
establishes the equivalence of prestress stability (as defined
above) and energetic rigidity to quadratic order:

Proposition 5. A system is prestress stable at x̄ if and only
if there is a choice Fα such that it is an extremum of the energy
with E (x̄) �= 0 and is energetically rigid at quadratic order.

To prove this, we first assume that the system is prestress
stable and let σα be the self-stress such that

∑
α σα∂n∂mFα (x̄)

is positive definite on nontrivial first-order flexes. Then, define
an energy functional

E (x) =
∑

α

[Fα (x) − Fα (x̄) + cσα]2, (A5)

where c > 0 is some arbitrary number. We can now check that
x̄ is an extremum, ∂nE (x̄) = c

∑
α σα∂nFα (x̄) = 0. Comput-

ing the Hessian, we find

Hnm =
∑

α

∂nFα (x̄)∂mFα (x̄) + c
∑

α

σα∂n∂mFα (x̄). (A6)

This is positive definite on nontrivial first-order flexes by the
assumption of prestress stability, for any c. On modes that are
not nontrivial first-order flexes, we can always choose c > 0
sufficiently small that the first term dominates (choose c to
be smaller than the smallest eigenvalue of the Gram term).
Therefore, x̄ is an energetically stable extremum of E (x) when
Fα = fα (x̄) − cσα .

Going the other way, let us assume that our system is
energetically rigid at quadratic order at an extremum x̄. Then,
let ẋn be any nontrivial, first-order flex. We have∑

nm

Hnmẋnẋm =
∑
nm

∑
α

[Fα (x̄) − Fα]∂nF (x̄)ẋnẋm > 0. (A7)

That implies that Fα (x̄) − Fα is a self-stress and that it is
prestress stable.

It is worth noting that prestress stability at x̄ does not imply
that a system is energetically rigid at x̄ for a particular choice
of Fα , only for some choice.
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We have already seen that second-order rigidity does not
imply prestress stability in the last section. Here we note that
prestress stability and energetic rigidity are not identical ei-
ther. In particular, a system that is prestress stable may not be
energetically rigid for a particular choice of Fα . Suppose that a
system is prestress stable but has a self-stress σα for which the
prestress matrix is not positive definite on the nontrivial first-
order flexes. Choose Fα = Fα (x̄) − cσα . This shows that the
system with this choice is not energetically rigid at quadratic
order. In other words, the prestress that the system picks at x̄
may not be one that makes the system prestress stable. If there
is only one self-stress and the system is prestress stable, then
energetic rigidity and prestress stability trivially imply each
other.

Finally, the following proposition deals with the nonlinear
nature of rigidity:

Proposition. A system is energetically rigid at x̄ with
E (x̄) = 0 to fourth order if it is second-order rigid.

This proposition shows that even if the standard checks of
energetic rigidity (e.g., shear modulus) suggest floppiness, the
system may still be energetically rigid to finite deformations.
We will prove this proposition in the following section, where
we also show a more detailed derivation of the equations in
Sec. II. All of these results demonstrate that the relationships
between all of these notions of rigidity are, in fact, quite
subtle.

2. Second-order rigidity and energetic rigidity

Our goal here is to derive conditions for second-order zero
modes and study the energy of systems that are second-order
rigid. We will show that a system that has no prestress (case
2A) but is second-order rigid is energetically rigid as well
at fourth order in deformations. For prestressed systems, we
show derivations of our claims for cases 2B and 2C.

Take constraints fα on a given system, e.g., fα ({xn}) may be
the displacements of edges of a graph from their equilibrium
lengths. The energy functional is E = k

∑M
α=1 f 2

α /2 where M
is the number of constraints. We set k = 1 without loss of
generality. For a more general case with constraint depen-
dent stiffnesses kα , we can simply rescale the constraints to
f ′
α = √

kα fα . Imagine that x̄n is at a critical point of E .
At a critical point,

∑
α fα ({x̄n})∂m fα ({x̄n}) = 0. Let

{σα,1, . . . , σα,Ns , eα,1, . . . , eα,M−Ns} be an orthonormal basis in
RM where

∑
α σα,I∂n fα ({x̄n}) = 0 (so σα,I are self-stresses).

Let us further assume fα ({x̄n}) = Cσα,1 with C > 0, which we
can do without loss of any generality.

To find zero modes, we Taylor expand fα for small per-
turbations around x̄n. To easily keep track of the order of
expansion, we parametrize deformations in time so that at an
infinitesimal time δt we have a deformation xn(δt ) such that

xn(0) = x̄n. We then have

fα ({xn(δt )}) ≈ Cσα,1 +
∑

n

∂n fα ẋnδt

+ 1

2

[∑
n

∂n fα ẍn +
∑
nm

∂n∂m fα ẋnẋm

]
δt2

+ O(δt3), (A8)

where partial derivatives are evaluated at x̄n. Also, ẋn is short-
hand for ẋn(0) and ẍn is shorthand for ẍn(0). That is, these
are explicitly independent vectors that determine the first two
terms in a Taylor expansion of xn(t ) around t = 0.

It is useful to project fα ({xn(δt )}) along the orthonormal
basis vectors∑

α

σα,I fα ({xn(δt )}) ≈ CδI1 +
∑

α

∑
nm

σα,I∂n∂m fα ẋnẋmδt2,

(A9)∑
α

eα,I fα ({xn(δt )}) ≈
∑

α

eα,I

∑
n

∂n fα ẋnδt + 1

2

∑
α

eα,I

×
[∑

n

∂n fα ẍn +
∑
nm

∂n∂m fα ẋnẋm

]
δt2.

(A10)

To find second-order zero modes, modes that preserve fα
to second order, Eqs. (A9) and (A10) imply the system∑

α

eα,I

∑
n

∂n fα ẋn = 0,

∑
α

eα,I

[∑
n

∂n fα ẍn +
∑
nm

∂n∂m fα ẋnẋm

]
= 0,

∑
α

∑
nm

σα,I∂n∂m fα ẋnẋm = 0,

where the first equation implies ẋn is along a linear zero
mode (note that

∑
n ∂n fα ẋn must have a nonzero projection

on at least one eα,I since it is perpendicular to all self-stresses
σα,I by definition), the middle equation is associated to the
curvature of the linear zero mode as we proceed along t , and
the last equation gives an additional quadratic constraint that
these tangents must satisfy to be second-order zero modes.
Multiplying the last equation by δt2, we recover Eq. (9).

Notice that the middle equation always has a solution. To
see this, we note that it is a linear equation of the form Aẍ −
b = 0. Since b is explicitly in the image of A, ẍ has a solution
that is unique up to zero modes. Since the linear zero modes
are already included in ẋn, we can choose ẍn to be orthogonal
to them without loss of generality. With that choice, the matrix∑

α eα,I∂n fα is invertible.
Putting all of this into the energy, we find that

E ≈ 1

2

M−Ns∑
I=1

{∑
α

eα,I

∑
n

∂n fα ẋn + 1

2

∑
α

eα,I

[∑
n

∂n fα ẍn +
∑
nm

∂n∂m fα ẋnẋm

]
δt

}2

δt2

+ 1

2

[
C + 1

2

∑
α

∑
nm

σα,1∂n∂m fα ẋnẋmδt2

]2

+ 1

8

Ns∑
I=2

[∑
α

∑
nm

σα,I∂n∂m fα ẋnẋm

]2

δt4. (A11)
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What we are interested in is whether we can find a solution xn(t ) such that E (t ) increases, decreases, or stays constant to a
particular order in δt .

Let us consider what happens when C → 0 first. Note that some systems may not be able to achieve a state with C = 0
because of the way they are prepared. Here, we assume that the energy can be continuously modulated to zero. Such a system is
not prestressed, but can still possess self-stresses (e.g., the onset of geometric incompatibility [24]). In that case,

E ≈ 1

2

M−Ns∑
I=1

{∑
α

eα,I

∑
n

∂n fα ẋn + 1

2

∑
α

eα,I

[∑
n

∂n fα ẍn +
∑
nm

∂n∂m fα ẋnẋm

]
δt

}2

δt2 (A12)

+ 1

8

Ns∑
I=1

[∑
α

∑
nm

σα,I∂n∂m fα ẋnẋm

]2

δt4.

The energy is constant as long as the coefficients of δt2, δt3, and so on vanish. These lead to∑
α

eα,I

∑
n

∂n fα ẋn = 0 (A13)

to second order, and we have the two equations∑
α

eα,I

[∑
n

∂n fα ẍn +
∑
nm

∂n∂m fα ẋnẋm

]
= 0 (A14)

and ∑
α

∑
nm

σα,I∂n∂m fα ẋnẋm = 0 (A15)

to fourth order. The third-order term already vanishes if the quadratic term vanishes. These are the three equations that defined
a quadratic isometry previously. Hence, E is constant along any quadratic isometry. Similarly, if E is constant along a direction,
the trajectory must be along a quadratic isometry. So at the critical point, second-order rigidity implies energetic rigidity to this
order in δt . This also proves the last proposition in the previous section.

Now, one might wonder what happens as C increases. We then have

E = C2

2
+ 1

2
δt2

[
M−Ns∑
I=1

(∑
α

eα,I

∑
n

∂n fα ẋn

)2

+
∑

α

∑
nm

Cσα,1∂n∂m fα ẋnẋm

]

+ 1

2
δt3

M−Ns∑
I=1

(∑
α

eα,I

∑
n

∂n fα ẋn

)(∑
α′

eα′,I

[∑
n

∂n fα′ ẍn +
∑
nm

∂n∂m fα′ ẋnẋm

])
(A16)

+ 1

8
δt4

M−Ns∑
I=1

(∑
α

eα,I

[∑
n

∂n fα ẍn +
∑
nm

∂n∂m fα ẋnẋm

])2

+ 1

8
δt4

Ns∑
I=1

[∑
α

∑
nm

σα,I∂n∂m fα ẋnẋm

]2

.

The second-order term is the Hessian. If that has a direc-
tion that is negative, then we have not expanded around a
local minimum. However, one can ask whether or not zero
directions might arise even if the system is second-order rigid.
For that to happen, however, ẋn cannot be along a zero mode.
If it was along a zero mode and the Hessian was zero, the

fact that the system is second-order rigid would imply that
the energy increases to fourth order. If ẋn was not along a
zero mode and the Hessian was zero, for it to not increase the
energy to the fourth order, it has to satisfy Eq. (A15), similar
to second-order zero modes (this system would belong to case
2C).
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