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Programming fracture patterns of thin films
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Controlled fracture presents opportunities for the advanced fabrication of thin films. However, programma-
bility analogous to that of Chinese paper cutting is still challenging, where fracture patterns can be created as
required without preformed cracks for guidance. Here, we establish a design framework for tearing adhesive
thin films from foldable substrates with such programmability. Our analytical model captures the observed crack
behavior, demonstrating that the deflection of crack paths can exceed 90 ◦. Besides, for thick foldable substrates
with multiple ridges, we additionally propose a robust method of directional fracture where the cracks are forced
to extend along the ridges.
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I. INTRODUCTION

Thin films inserted into engineering systems have been key
to modern technologies, which are intended to accomplish a
wide range of practical service functions [1], such as thermal
[2], tribological [3], optical [4], electrical [5], magnetic [6],
and biological [7] functions. Material failure continues to be a
technology-limiting barrier, for which fracture is the primary
vehicle [1,8,9]. In some circumstances, however, the fracture
has desirable consequences, as in pattern formation in con-
trolled fabrication and fragmentation [10–12]. Although the
classical fracture theories, which were initially developed by
Griffith [13] and Irwin [14], can predict the onset of crack
motion well, it is still hard to reliably predict and control
the propagation of a crack in general. Recent efforts have
analyzed several specific cases where the crack motion was
limited in a two-dimensional manifold, presenting a few in-
trinsic fracture patterns, such as triangle [15], exponential
form [16], oscillating [17], spirals [18], and fractal geometries
[19]. These intrinsic patterns correspond to specific boundary
constraints and load forms with little ability to transform.
In contrast, guiding and terminating the paths of cracks can
be achieved with the help of preformed cracks [10] or fixed
curvature profiles [20]. However, it is challenging to realize
the programmability analogous to that of Chinese paper cut-
ting, in which the fracture pattern can be created as required
without preformed cracks for guidance.

Here, we overcome this challenge by proposing a method
with such programmability. To begin with, we observe the
manifold experimental results of tearing adhesive thin films
from foldable substrates. According to the observed geometry
of origami in the tearing process, we analytically unveil the
mechanism of the continuously adjustable tearing angle via
an energetic consideration. A design framework is further
established based on our analytical solution, quantitatively
relating the target patterns to specific substrate configurations
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and peeling behaviors. Finally, the framework is employed in
the case with multiple ridges, additionally showing a robust
method of directional fracture.

II. OBSERVATION OF TUNABLE FRACTURE PATTERNS

In common cases, the tearing can be either symmetric or
asymmetric. We focus on the cases of symmetric tearing.
Additionally, the peeling angle α can range from an acute
angle to 180 ◦. When α is too small, local delamination rather
than the tearing of thin films occurs (see Appendix B). As
a common example, we mainly consider the cases where α

is 90 ◦. In addition, the anisotropy has also been reported to
distinctly influence the crack motion in thin sheets [21]. Here,
however, we aim at the isotropic regime. We use the adhesive
biaxially oriented polyimide film whose isotropy is verified
in Appendix C. Figures 1(a) and 1(b) show the experimen-
tal realization of tearing adhesive thin films from foldable
substrates with different substrate configurations, which is de-
fined by the rotation angle β. When β equals 0 ◦, the substrate
is an unfolded flat plate. β can reach –90 ◦ when the substrate
is maximally contracted into a folded state away from the
peeling direction. However, because the folded substrate has
to provide enough space for the action of peeling thin films, β

is unable to reach 90 ◦ in the experiment. When β is negative,
part of the film adheres to the sides of the substrate for its
finite thickness, as shown in Fig. 1(a), but we focus on the
part except for the sides of the substrate first. The initially cut
rectangular flap is pulled at a constant speed (0.5 mm/s), and
then the fracture pattern appears. The setting of the specific
β is finished before the initially cut flap further extends. This
action ensures that when the cracks propagate, the possible
observable compression of the film is avoided. The profile
of the thin film torn away from the substrate is equal to the
pattern on the substrate due to the congruent mapping (almost
no residual in-plane deformation). Figure 1(c) shows four
representative results of fracture patterns [α is set to 90 ◦ (see
Appendices A and D) and β is set to –90 ◦, –45 ◦, 0 ◦, and 45 ◦,
respectively], which can be either convergent or divergent.
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FIG. 1. Experimental realization of tearing action with different
substrate configurations [β equals –45 ◦ in (a) and 45 ◦ in (b), respec-
tively]. (c) Four representative results of fracture patterns (from left
to right, β equals –90 ◦, –45 ◦, 0 ◦, and 45 ◦, respectively), where the
foldable substrate in the case of β = 0◦ is equivalently replaced by a
flat substrate. The peeling angle α is set to 90 ◦, and all initial flaps
are made 14 mm wide.

III. THEORY

During the tearing process, the total energy of the system
U is considered to be conserved. The work derived from the
external force F is translated into the elastic energy of the
film Ue for deformation, the fracture work of the film 2Gts (G
and t are the cleavage energy density and thickness of the film,
respectively, and s is the crack path length), and the debonding
energy �A (� is the interfacial energy density between the
film and the substrate, and A is the debonding area). When the
crack extends an infinitesimal motion,

F (1 − cos α)dl = dUe + 2Gtds + �dA, (1)

where l is the peeling distance along the ridge of the substrate,
and (1− cos α)dl is the distance that F works. Here, the film
is considered to be inextensible. The variation of the width
between two crack tips dw can be related to ds by the tearing
angle θ . However, the relation between dl and ds or dA
involves other geometric parameters originating from origami.

To elucidate such geometry, we perform a similar experi-
ment for simulation, folding a piece of paper on a thin dihedral
substrate, as shown in Fig. 2. Two geometric features appear
immediately: (i) The peeling front is no longer a line segment
normal to the ridge of the folded substrate, which is the case

FIG. 2. Illustration of deflection angle δ and local peeling angle
γ by folding a piece of paper on a thin dihedral substrate.

of β = 0◦, but a symmetrical polyline with a deflection angle
δ. (ii) The actual peeling angle perceived by thin films is a new
angle γ rather than α.

In Fig. 2, taking the intersection of the peeling front and the
ridge of the substrate (thickness is temporarily ignored here)
as origin, the ridge of the substrate as the y axis, and the unit
vector along the peeling direction as (0, cos α, sin α), we es-
tablish the Cartesian coordinates of three-dimensional space.
The creases of the folded thin films are at the intersection of
the dihedral angle (foldable substrate) and the symmetry plane
which can be composed of two noncollinear direction vectors:
(1, 0, 0) and [0, cos(α/2), sin(α/2)]. One vector along one
crease can be derived as

�ri =
(

cot β, cot
α

2
, 1

)
. (2)

One vector on one plane of the substrate normal to the ridge
of the substrate is

�rn = (cot β, 0, 1). (3)

Thus,

cos δ = �ri · �rn

|�ri||�rn| . (4)

Then, comprising the sign of δ, we obtain

δ = −sgn(β ) arccos

⎛
⎝ sin α

2√
1 − cos2 α

2 cos2β

⎞
⎠. (5)

To obtain the expression of γ , we analyze planes of thin
films divided by the creases. One vector in the plane attached
to the substrate is

�rb = (0, −1, 0), (6)

and the normal vector of such plane is

�nb = �ri × �rb. (7)

Similarly, a vector in one plane of the film separated from
the substrate is

�rp = (0, cos α, sin α), (8)

and the corresponding normal vector of such plane is

�np = �rp × �ri. (9)

Thus,

cos γ = �nb · �np

|�nb||�np| . (10)

Then, we obtain

γ = arccos

(
2cos2 α

2
cos2β − 1

)
. (11)

While δ is an odd function of β, γ is an even function of β.
As for the case that α is set to 90 ◦, when β increases from
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–90 ◦ to 0 ◦, δ and γ decrease monotonically from 45 ◦ to 0 ◦
and from 180 ◦ to 90 ◦, respectively.

Having obtained two geometric parameters originating
from origami, we move back to solve Eq. (1). dUe can be
expressed as [22,23]

dUe = dUe

dw
dw, (12)

and

dUe

d
(

w
cos δ

) = Ue
w

cos δ

= 2

√
(F cos δ)B

w
cos δ

(
1 − cos

γ

2

)
, (13)

where B is the bending stiffness of the film. Namely,

dUe

dw
= Ue

w
= 2

√
FB

w

(
1 − cos

γ

2

)
. (14)

Additionally,

dw = −2 sin θds, (15)

dA =
(

w

cos δ

)
(dl cos δ) = wdl, (16)

dl = cos (δ − θ )

cos δ
ds. (17)

Thus, Eq. (1) becomes

F (1 − cos α) = �w +
(

−2 sin θ
dUe

dw
+ 2Gt

)
cos δ

cos (δ − θ )
.

(18)
Then,

dF

dθ
= 0 (19)

leads to

dUe

dw
cos δ = Gt sin (θ − δ). (20)

Inserting Eq. (20) in Eq. (18) yields

F (1 − cos α) = �w + 2Gt
− sin θ sin (θ − δ) + cos δ

cos (δ − θ )
. (21)

Taking two approximations into consideration [(i)

�w � Gt in the initial tearing process, and (ii) ζ
	=

[− sin θ sin(θ−δ) + cos δ]/ cos(δ−θ ) � 1 (see Appendix
E)], we obtain

F = �w

1 − cos α
. (22)

The combination of Eqs. (14), (20), and (22) leads to

sin (θ − δ) =
√

2�B

Gt
tan

γ

4
. (23)

We introduce

θ0
	= θ |α=180◦,β=0◦ , (24)

FIG. 3. Tearing angle θ predicted by our analytical solution
(solid curve) and measured by our experiments (markers).

and can express Eq. (23) as

θ = arcsin

(
sin θ0 tan

γ

4

)
+ δ. (25)

θ0 satisfies

sin θ0 =
√

2�B

Gt
, (26)

which comprises all properties of material and interface that
can affect the tearing angle but excludes the effect from
the possible plastic deformation of the film [15,22]. In our
experiments shown in Fig. 1, θ0 is 22 ◦ (see Appendix C).
Figure 3 demonstrates that our analytical solution captures the
evolution of experimental tearing behavior almost perfectly.
The variation range of θ exceeds 90 ◦. When β is –90 ◦, θ

reaches its maximum 67 ◦. When β is between 45 ◦ and 90 ◦,
θ can reach its theoretical minimum, which is about –26 ◦.

Furthermore, according to our solution, when α equals
90 ◦, the cases of ∀θ0 ∈ (0◦, 90◦) share some features: (i)
The theoretical maximum of tearing angle always appears
at β = −90◦ [Fig. 4(a)]. (ii) The theoretical minimum of
tearing angle always appears at β ∈ (45◦, 90◦) [Fig. 4(a)].
(iii) The theoretical variation range of θ steadily exceeds 90 ◦
[Fig. 4(b)].

FIG. 4. (a) The theoretical solution of tearing angle θ for five
different representative θ0, where the maximum of tearing angle
always appears at β = −90◦ and the minimum of tearing angle
always appears at β ∈ (45◦, 90◦). In (a), the theoretical maximum
of tearing angle for θ0 ∈ (0◦, 90◦) is illustrated by the dashed line
and the theoretical minimum of tearing angle for θ0 ∈ (0◦, 90◦) is
illustrated by the dash-dot curve. (b) The theoretical variation range
of θ for θ0 ∈ (0◦, 90◦), which is steadily larger than 90 ◦. In [(a),(b)],
the peeling angle α is set to 90 ◦.
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FIG. 5. The process of programming a regular pentagonal target fracture pattern. (a) The geometric analysis of the target pattern with initial
width w0, which provides the selected dihedral angle β and corresponding deflection angle δ from our analytical solution. (b) The mapping
relation between the peeling distance lp and the length of the crack path s in two stages. (c) The experimental realization of the target fracture
pattern.

Finally, we discuss the case of β < 0, in which part of the
film adheres to the sides (groove) of the foldable substrate for
its finite thickness [Fig. 1(a)]. We can divide the total external
force F into two parts, Fout and Fin. Fin is applied to peel
the film from the groove, while Fout is used to tear the film
outside the groove. Therefore, in previous equations where
the thickness of the substrate is ignored, F is equivalent to
Fout here for negative β, which does not change our analytical
solution Eq. (25), emphasizing the local character of tearing
behavior.

IV. PROGRAMMING FRACTURE PATTERNS
OF THIN FILMS

In experiments described before, β is fixed, and two sym-
metric boundaries of fracture pattern are straight. Actually,
β can be freely adjusted in the tearing process. Adjusting
β when the tearing is stopped, we can not only realize the
slightly kinked cracks [24], but also produce the cracks with
large kink angles. On the other hand, the crack paths become
curves when β is adjusted continuously during the process
(see Appendix F and the movie in the Supplemental Material
[25]). These tunable crack paths make programming fracture
patterns of thin films feasible.

To illustrate the basic steps of such programming, we take
the target pattern as a regular pentagon as an example. As
shown in Fig. 5(a), two stages connected by a kink are needed

to complete the target pattern. We first select the correspond-
ing β and δ from our analytical solution, which are denoted by
(β1, δ1) and (β2, δ2), respectively. Then, we precisely calcu-
late different peeling distances for two stages to ensure equal
crack length at each stage. In such calculations, the deflection
angle δ plays an important role. Along the direction defined by
δ, the length of the crack path can be mapped to the path along
the ridge of the substrate, as shown by two shadows (red and
blue) in Fig. 5(a). For the cases we focus on (α is set to 90 ◦),
at each stage the increase of the peeling distance lp equals the
change of l . According to Eq. (17), the relation between lp and
s in two stages can be calculated and is illustrated in Fig. 5(b).
Finally, under the calculated guidance, we successfully realize
the target fracture pattern [Fig. 5(c)]. Following these basic
steps, one can readily program other fracture patterns accord-
ing to our analytical solution, including the curving patterns,
by continuously altering β during the tearing process.

Because of the inevitable experimental error, it is still chal-
lenging to precisely realize the directional fracture such as the
parallel crack paths (θ equals 0 ◦). In contrast, the divergence
of the fracture pattern for β = 45◦ and the convergence of
the fracture pattern for β � 0◦ are robust. These two robust
regimes imply another method of directional fracture. As for
cases with two ridges, the geometric parameter β thereupon
changes when the cracks extend across the ridges. A specific
example is that when cracks extend near the ridge of the thick

FIG. 6. (a) Mapping of η for α ranging from 60 ◦ to 180 ◦ and β ranging from –90 ◦ to 90 ◦, on which the curve of η = 1 (dotted curve) is
also plotted. Experimental realization of directional fracture along the ridges (b) and kinking crack paths across ridges (c) for thick foldable
substrates. (βout, βin ) equals (–45 ◦, 45 ◦) in (b) and (–90 ◦, 0 ◦) in (c). The thickness of the substrate is 3 mm.
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foldable substrate, a groove bordered by two actual ridges
appears [Fig. 1(a)], which is secondary in the above analyses
where we mainly focus on the fracture outside such groove. If
β outside (βout) and inside (βin) the groove correspond to the
convergent and divergent fracture patterns, respectively, the
cracks will be forced to extend along the ridges. To quantify
the condition of such a phenomenon, we introduce a geomet-
ric parameter:

η
	= − sin δ

tan γ

4

. (27)

Thus, the divergent phenomenon of fracture pattern is
equivalent to η > sin θ0. The mapping of η for α ranging from
60 ◦ to 180 ◦ and β ranging from –90 ◦ to 90 ◦ is presented
in Fig. 6(a). When α is less than 90 ◦, η can be larger than
1 [the left side of the dotted curve in Fig. 6(a)], definitely
resulting in a divergent fracture pattern. In particular, when α

equals 90 ◦ and β equals 45 ◦, η equals 1. Across the ridges of
thick foldable substrates, the jump value of β is 90 ◦. We thus
propose a method of directional fracture: setting β outside
the groove to –45 ◦. As a result, we obtain a robust parallel
fracture pattern along the ridges, as shown in Fig. 6(b). In ad-
dition, a common phenomenon of kinking crack paths across
the ridges is illustrated in Fig. 6(c).

V. CONCLUSION

In conclusion, we have demonstrated a strategy of pro-
gramming fracture patterns of thin films on demand without
preformed cracks for guidance. We anticipate that our de-
sign framework can be extended in various directions. First,
asymmetric tearing would lead to a universal design regime,
sharing the same geometric mechanism with the symmetric
tearing we have discussed. Second, various origami structures
[26,27], whose building block is just the simple dihedral angle
that we have taken as the configuration of the foldable sub-
strate, could undoubtedly enrich the possible target patterns.
Third, our design framework might provide an alternative
perspective to understand the fracture pattern on curved sur-
faces [16,28] by taking the resulting fracture patterns as the
target patterns to consider the instantaneous tearing mech-
anism inversely. Finally, except for one angle parameter θ0

comprising all properties of material and interface that can
affect the tearing angle, all parameters in our analytical solu-
tion, Eq. (25), are purely geometric. Therefore, our results can
readily be generalized to other similar film-substrate systems
across materials and scales, leading to potential applications
such as facilitating the development of artificial nanostruc-
tures [29,30]. However, when the torn thin film is multilayer
[29], the geometry-dependent bending stiffness may require
additional consideration [31–33].
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APPENDIX A: MATERIAL PREPARATION AND
EXPERIMENTAL MEASUREMENT

We used a strip of wide transparent tape to connect two
plates, obtaining the foldable substrate. These plates could be
thick (thickness: 3 mm) or thin (thickness: 0.65 mm). Except
for the simulation experiment of origami (Fig. 2) and the
tearing experiment with curved crack paths (see Appendix F
and the movie in the Supplemental Material [25]), where the
thin plates were used as the substrates, the substrates used in
all tearing experiments were made by thick plates. The thick
plates we used were 3 mm thick frosted glass plates, while the
thin plates were plastic with 0.65 mm thickness. Additionally,
except for the tearing experiment shown in Appendix C where
a piece of adhesive monoaxially oriented polyimide film (pur-
chased from Runsea company) was used, the torn films used
in all experiments were adhesive biaxially oriented polyimide
films (purchased from Runsea company). The paper used in
Fig. 2 was a piece of A4 paper. The initial flaps, which were

FIG. 8. (a) Significantly different tearing angles for two initially
cut flaps with different orientations in a piece of adhesive monoax-
ially oriented polyimide film, which implies the evident anisotropy
of the film. (b) The same tearing angle for four initially cut flaps
with different orientations in a piece of adhesive biaxially oriented
polyimide film that we mention in the main text, which demonstrates
the isotropy of the film. The used substrates are flat (β = 0◦). The
peeling angle α is set to 180 ◦, and all initial flaps are made 14 mm
wide. In (b), θ0 is measured to be 22 ◦.
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FIG. 9. Theoretical estimation of the effect of the slight change
of peeling angle α on the tearing angle θ , where two boundary values
of α are illustrated in Eq. (D2), and θ0 is taken as 22 ◦.

peeled from the substrates before the tearing action, were cut
by a knife. We additionally used a transparent tape (3M-600)
to connect the initial flap and the clamp of the testing machine
(Instron 5942). The length of this transparent tape was ensured
more than 300 mm, which was much larger than the typical
scale of flap torn from the substrate, ensuring the almost
fixed peeling angle during the tearing process, whose detailed
analysis is shown in Appendix D. All photos and a movie
in the Supplemental Material [25] were shown in black-and-
white mode, whose gray-scale values were set to the blue
values (in RGB color mode) of the original corresponding
photos and movie except for Fig. 2 where the red values were
used.

APPENDIX B: OCCURRENCE OF LOCAL
DELAMINATION FOR SMALL PEELING ANGLE

When the initial flap was peeled with a small acute peeling
angle, local delamination rather than tearing happened, as
shown in Fig. 7.

FIG. 11. The mapping of ζ for α ranging from 60 ◦ to 180 ◦ and
β ranging from –90 ◦ to 90 ◦, where θ0 is taken as 22 ◦, and we
use our analytical solution [Eqs. (5), (11), and (25)]. This mapping
shows that ζ < 1. Given the slight difference between the theoretical
prediction and experimental results, as shown in Fig. 3, we choose
ζ � 1 as the second approximation.

APPENDIX C: EVIDENCE OF ISOTROPY

The isotropy of the adhesive biaxially oriented polyimide
film we used was verified in Fig. 8. Meanwhile, θ0 could be
measured to be 22 ◦.

APPENDIX D: ANALYSIS OF THE SLIGHTLY DEVIATED
PEELING ANGLE

In our tearing experiments, the length of the connection
tape between the initial flap and the clamp of the testing
machine was finite but was ensured to be more than 300 mm,
which was expected to ensure the change of the peeling angle
α during the tearing process was tiny.

From the experimental point of view, the fact that the
boundary of the fracture pattern for specific β is straight rather
than evidently curved [Fig. 1(c)] implies that the effect of
the slightly deviated peeling angle on the tearing angle is
marginal.

FIG. 10. (a) The peeling force in the peeling test [22] (the peeling angle is 90 ◦ and the width of the adhesive flap w0 was 14 mm), which
shows that �w0 is about 0.7 N (six repeated experiments). (b) The tearing force in the trouser test [22], which shows that Gt/2 is about 0.03
N (six repeated experiments). Thus, (Gt )/(�w0) ≈ 9%. The used films in [(a),(b)] are the adhesive biaxially oriented polyimide films, and the
used substrates in (a) are the thick substrate, same as the tearing experiments.
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FIG. 12. [(a)–(d)] The process of tearing adhesive thin film by continuously adjusting β from a positive value to a negative value, which is
shown by the snapshots of the movie in the Supplemental Material [25]. (e) The resulting fracture pattern with curved crack paths. The initial
flap is made 14 mm wide, and is pulled at a constant speed (2 mm/s). We note that β is simply adjusted by hand in this case, which leads to
the slight asymmetry of the resulting fracture pattern.

In addition, we can also theoretically estimate the effect
of the variation of peeling angle α on the tearing angle θ . As
for the convergent fracture pattern, when α and β are both
fixed and the width of the initial flap is 14 mm, the total lp is
expected to be 7 cot θ mm. However, when the cracks extend
parallel or divergent, the total lp does not exist. In Figs. 1
and 3, except for the case that α = 90◦ and β = 0◦ shown
in Fig. 1(c), the maximum peeling distance of the testing
machine could be set to 20 mm, and the theoretical lp becomes

lp =
{

min {7 cot θ mm, 20 mm}, β < 0◦
20 mm, β > 0◦ . (D1)

Thus, when the initial peeling angle is set as 90 ◦,

90◦ − tan

(
lp

300 mm

)
< α � 90◦. (D2)

We simply use these two boundary values of α to estimate
the effect of the slight change of peeling angle α on the tearing

angle θ in Fig. 9, demonstrating that such effect is expected to
be marginal.

APPENDIX E: TWO APPROXIMATIONS

In Sec. III, we used two approximations to obtain Eq. (22):
(i) �w � Gt in the initial tearing process, and (ii) ζ � 1;
these are illustrated in Figs. 10 and 11, respectively.

APPENDIX F: A CASE OF CURVED CRACK PATHS

One can readily produce a pair of curved crack paths by
tearing with continuously adjusted β. Here, Fig. 12 presents
a simple case. We note that when β increases continuously, β

should be adjusted relatively slowly (compared to the pulling
speed) to avoid the film near the substrate under observable
compression, which may affect the precision of the obtained
fracture pattern.
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