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Muscles and tendons, actuators in robotics, and various sports implements are examples that exploit elasticity
to accelerate objects. Tuning the mechanical properties of elastic elements connecting objects can greatly
enhance the transfer of mechanical energy between the objects. Here, we study experimentally the throw of
rigid projectiles by an actuator, which has a soft elastic element added to the distal end. We vary the thickness of
the elastic layer and suggest a simple mass-spring chain model to find the properties of the elastic layer, which
will maximize the energy transfer from the actuator to the projectile. The insertion of a soft layer, impedance
matched to the ejection frequency of the projectile mass, can increase the throwing efficiency by over 400%.
Finally, we identify that very thick and very soft compliant layers could potentially lead to high efficiency and
flexibility simultaneously.

DOI: 10.1103/PhysRevE.105.025001

I. INTRODUCTION

The elasticity of tendons can be exploited to increase
muscle-powered acceleration [1–5], for example, when jump-
ing [6–9], running [10,11], or throwing [12,13]. In order
to better understand the interaction between muscles and
tendons or to develop compliant actuators in robotics, models
of connected elastic elements have been suggested, e.g., in
Refs. [14–20]. In sports, the acceleration of balls is initiated
by a kick, hit, or a throw [21]. The hit of a ball usually relies
on sport implements (racket, club, bat, etc). Phomsoupha et al.
[22] have shown that the elasticity of the badminton racket can
increase the velocity of its head by a factor 1.8 as compared to
a rigid one. The same could hold for other slender implements
that can bend, for example a golf shaft, which undergoes
a significant deformation [23] that increases the club head
velocity [24,25].

The throw of a projectile can similarly benefit from intro-
ducing a compliant contact layer. For example, soft elastic
projectiles or rigid projectiles with soft elastic contact layers
[26,27] can improve the transfer of energy by a factor of
250–300%. In these studies, it is shown that a precise syn-
chronization is required to achieve an optimal energy transfer.
For example, the time scale of the actuator has to match the
time scale of the wave propagation in the projectile [26,27].

In this article, we investigate the role of adding a soft
elastic layer at the distal end of an actuator used to throw rigid
projectiles. Whereas our system might resemble the system
considered in Celestini et al. [27], it exhibits a difference in
boundary conditions that modifies the dynamics driven by the
propagation of elastic waves inside the soft layer. As we shall
see below, the fact that this layer is attached to the actuator
instead of to the projectile gives rise to a complex efficiency
landscape and ultimately permits an energy transfer factor
above 400%. Our study combines experiments, numerical
simulations, and theory.

We employ a compliant actuator composed of a plate on
which is glued an elastic soft layer of thickness Ls [Figs. 1(a)
and 1(b)]. The plate accelerates from rest at time t = 0 and
undergoes a harmonic variation given by

zp(t ) = A[1 − cos(2π f t )], (1)

with a frequency f and an amplitude A. The maximum veloc-
ity of the plate is V ∗

p = 2π f A. A rigid projectile, of mass m,
which is located at z = zm(t ), is accelerated by the actuator,
and is ejected at time te with a velocity Ve = żm(te). The
efficiency of the throw is quantified by the energy transfer
factor α = (Ve/V ∗

p )2. This coefficient characterizes the gain
or loss of kinetic energy as compared to the ejection of a
rigid projectile that is expected to take off from the substrate
with Ve = V ∗

p or α = 1 [26,27]. To provide some insights, we
can consider the elastic soft layer as an ideal massless linear

spring with a stiffness k. If we note f0 = 1
2π

√
k
m the eigenfre-

quency of the spring-mass system, α reaches a maximum 3.13
for f0/ f � 1.62, which emphasizes the role of synchroniza-
tion to enhance energy transfers (see Celestini et al. [27] or
Appendix A).

In what follows we consider the soft layer of section S as
a continuous medium with density ρs and elastic modulus Es.
Such material does not deform uniformly as an ideal spring
and elastic waves traveling in the soft layer need to be consid-
ered. As we will see, such systems permit an energy transfer
factor above 4.

II. MATERIAL AND METHODS

A. Experiments

The experiments are performed with an ejection engine,
whose uniaxial motion can be described by the dynamics
of a damped harmonic oscillator (Fig. 2). The frequency
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FIG. 1. (a),(b) Compliant actuator: a plate is accelerating from
rest at t = 0, on which is glued an elastic soft layer. A rigid projectile
is deposited on the top of this actuator (a) at time t = 0 and (b) just
after the ejection t > te. (c),(d) Ejection at f = 63.2 Hz of 16.3 mm
long rigid projectiles and different lengths of soft layer, from left to
right: 0, 2.0, 5.6, 9.5, 16.8, and 23.4 mm. Dark circular spots are
used to track the position of each component over time. The whole
image sequences are shifted vertically so that ejection occurs at the
same height in all cases. Images are taken at the time of ejection
te (a) and 56.8 ms after ejection (b). Movies are available in the
Supplemental Material [28].

f is measured by interpolating the time evolution of the
plate position with the equation of an underdamped oscillator
(Appendix D). In all experiments, the damping ratio is small,
around 6.4 × 10−2, so that the expression of zp(t ) given in
Eq. (1) remains a good approximation to describe the plate
motion from t = 0 to the ejection time te. The frequency f
of the engine can be varied in the interval 20–80 Hz (here
we use two values, 31.1 and 63.2 Hz) and the amplitude A is
approximately 2 mm. The maximum velocity of the engine,
V ∗

p � 2π f A, is around 0.8 m s−1 and the typical acceleration
is around 3–16g with g the standard gravity. Moreover, the
weights m of the projectiles are negligible relative to the
weight of the engine and therefore do not influence the engine
motion.

We use cylindrical projectiles with a diameter of 12 mm
and a length Lr of (8.2 ± 0.1) mm or (16.3 ± 0.1) mm. They
are made of a rigid material, polyether ether ketone, with
Young modulus Er = 3.6 GPa, density ρr = 1300 kg m−3,
and wave velocity cr = √

Er/ρr = 1700 m s−1. These pro-
jectiles are not directly in contact with the throwing engine
but a soft elastic layer (same diameter 12 mm) is introduced
between the engine and the projectile. This layer is composed
of a hydrogel made from powdered gelatin (Sigma-Aldrich,
gelatin from porcine skin, gel strength 300, type A) dissolved
in water for 30 min at 80 ◦C under gentle agitation with a pow-
der to water mass concentration around 15%. The aqueous
solution is then poured into cylindrical molds and kept at rest
for a few hours, until the layers are reticulated. The density of

FIG. 2. (a) Position of the projectile (thin blue line) and of the
engine plate (thick green line) as functions of time for the follow-
ing parameters: Lr = 8.2 mm, Ls = 16.8 mm, and f = 63.2 Hz.
(b) Velocities obtained by centered difference of the positions after
running averages.

the layer is ρs = 1000 kg m−3. Several lengths Ls were used
among 2.0, 5.6, 9.5, 16.8, 23.4, and 29.1 mm with a precision
of 0.1 mm. The wave velocity is inferred by characterizing the
deformation dynamics of the soft layer alone, see Appendix B,
and we measure cs = 7.8 ± 0.3 m s−1 (the Young modulus
is thus around Es = c2

s ρs � 61 kPa) after statistics over all
lengths. Characteristics of the hydrogels are measured before
and after experiments and we have checked that they do not
vary significantly: the lengths of the soft layers vary by less
than 5% in experiments and the same stands for the wave
velocity. Adhesion between the soft layer and the engine
plate is ensured with a thin film of vacuum grease. A thin
piece of blotting paper is introduced between the soft layer
and the rigid projectile: it adheres to the soft layer and
keeps the rigid projectile free to detach. As observed in the
movies (see the Supplemental Material [28]), the deformation
is smaller than 10% and the soft layer is mostly deformed in
the linear elastic regime [29].

We define x = Ls/L as the ratio between the length of
the soft layer and the total length L = Lr + Ls of the soft
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and rigid parts. Three sets of experiments were performed.
For each set, the frequency f and the length Lr of the rigid
projectile are fixed, and the length Ls of the soft layer is varied
systematically. One set of experiments is displayed in Fig. 1
with f = 63.2 Hz and Lr = 16.3 mm. Varying Ls tunes the
two dimensionless quantities cs/L f and x. The two other sets
of experiments were performed with [ f = 63.2 Hz and Lr =
8.2 mm] and [ f = 31.1 Hz and Lr = 8.2 mm], respectively.

The dynamics of the experiments are recorded with a
high-speed camera (5000 frames per s) and each experiment
is repeated three times for statistics. The positions zm(t ) of
the rigid part and zp(t ) of the engine plate are tracked over
time from the recorded videos thanks to a Python tracking
script [Fig. 2(a)]. The respective velocities Vm(t ) and Vp(t ) are
obtained by differentiating the positions [Fig. 2(b)]. We note
Ve the ejection velocity of the rigid projectile at the ejection
time te. Both Ve and V ∗

p are inferred by measuring the maximal
velocities of Vm(t ) and Vp(t ), respectively.

B. Numerical simulations

In addition to the experiments, we have performed nu-
merical simulations of projectile ejection using a basic
linear-elastic model. Since cr � cs, we can consider the pro-
jectile as infinitely rigid and expect its mass m = ρrSLr to be
the only relevant feature of the projectile. In our numerical
approach described in Celestini et al. [27], we consider the
projectile as a one-dimensional (1D) material with waves
traveling inside both the rigid projectile and the soft layer, and
vary Lr instead of m without loss of generality.

The deformation dynamics is described by the one-
dimensional momentum balance or wave equation for the
displacement field u(y, t ) [27],

ρ(y)∂2
tt u(y, t ) − ∂y[E (y)∂yu(y, t )] = 0. (2)

Here y ∈ [0, L] is the distance in the undeformed frame to
the ejection engine bottom plate, E (y) is the local Young
modulus, and ρ(y) is the mass density.

The deformation in both the soft layer and in the rigid
projectile is described by the same equation and we note us

(y ∈ [0, yc]) and ur (y ∈ [yc, L]) the displacement in the soft
and rigid parts, respectively, with yc = Ls the contact point
between the projectile and soft layer [Fig. 1(a)]. The material
parameters are assumed to be constant throughout the soft
contact layer and in the projectile. In both the soft layer and
the projectile, the deformation is described by the wave equa-
tion with two longitudinal wave velocities, cs = √

Es/ρs and
cr = √

Er/ρr . For the numerical simulations we used a basic
semi-implicit (symplectic) Euler finite difference scheme. The
bottom end of the contact layer follows the speed of the actu-
ator plate. The dynamics is therefore subject to the following
boundary conditions assuming a harmonic motion of the plate
(up to the point when the projectile is ejected):

BCs

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

us(0, t ) = A[1 − cos(2π f t )],
Es∂yus(yc, t ) = Er∂yur (yc, t ), for t < te,

∂t us(y, 0) = 0, for y < yc,

∂t ur (y, 0) = 0, for y > yc,

∂yur (y, t )
y→L→ 0.

(3)

FIG. 3. Comparison between experiments and simulations: te f
(a) and α (b) as functions of x and cs/L f . The three sets of exper-
iments correspond to cs/Lr f = 7.57 (diamonds), 15.1 (disks), and
34.5 (squares).

In our simulations, the projectile is released from the throwing
engine as soon as the strain crosses from positive to neg-
ative value at y = yc. At this point, the displacement loses
continuity and the projectile is released. This means that
the condition Es∂yus(y, t ) = Er∂yur (y, t ) is replaced by 0 =
∂yus(y, t ) = ∂yur (y, t ). Note that it is possible for a projectile
to reconnect to the engine after a first takeoff. Consequently,
we might observe in simulations successive stages of ejec-
tion and reconnection. Simulations have been performed for
the case of an underdamped harmonic oscillator as well
(Appendix D) with the damping factor found experimentally.
Since the two approaches showed little differences, we present
the harmonic case only in what follows.

III. RESULTS

In Fig. 3, both the dimensionless ejection time te f and the
energy transfer factor α are represented with a 2D color plot
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as functions of x and cs/L f on the axes. Both numerical and
experimental data are represented. From the simulations, we
find that the dimensionless ejection time te f ranges between
0.25 (the value expected without soft layer) on the cs/L f axis
to ∞ on the x axis [Fig. 3(a)]. The region with te f > 1 is
restricted to a narrow band close to the x axis. This region is
characterized by several cycles of the throwing engine and by
an inefficient transfer of energy as attested by the α plot in
Fig. 3(b).

The experimental data are superimposed in Fig. 3 as sym-
bols with colors from the same color scale used for the
simulations in the background. Three sets of experiments have
been performed and each of them corresponds to a given
rigid length Lr and a given plate frequency f , while the
length of the soft layer is varied. As a consequence, one set
of experiments is aligned in the 2D space along the linear
functions of equation cs/L f = (1 − x)cs/Lr f , with cs/Lr f
constant for a given set of experiments. In Fig. 3, three sets
of experiments are displayed with cs/Lr f = 7.57 (diamonds),
15.1 (disks), and 34.5 (squares). The results seem in good
agreement with the values obtained in the simulation, both
for te f and α. In general, the energy transfer factor exhibits
a complex behavior in our 2D parameter space. α equals 0 on
both axes and has two regions with large values. One of them
is centered around x = 0.8 and cs/L f = 6.7 with a maximum
value α = 4.12. The second is a line segment where α = 4
for x = 1 and cs/L f between 0 and 7.9. In Fig. 4 we represent
the coordinates and values of the maximal α value found in
simulation along a vertical line in the α diagram as functions
of x. The limit x → 0 is very similar to a previously studied
case where the soft layer is attached to the projectile instead of
to the actuator [27]: the optimal values are found along a curve
described by the expression cs/L f = 10.2

√
x and achieves

a maximum α = 3.13. The nature of the contact does not
seem to play a role for small values of x around this curve.
It corresponds to a quasistatic limit where the deformation
of the soft layer is homogeneous and the time ts = Ls/cs for
the wave to travel inside the soft layer is much shorter than
the ejection time te � ts. Our system where the soft layer is
attached to the actuator exhibits maximal α values that are
significantly larger than 3.13. We will see in Sec. IV that this
corresponds to a dynamical regime where te � ts. It explains
the discontinuities and changes of trend observed in Fig. 4
as well.

In Fig. 5, we compare directly experiments and simulations
along the lines passing through the experimental data. We
observe that experiments and simulations follow the same
trends for the three sets of data and the energy transfer factor
can be as high as 4 in both cases if parameters are well chosen.
Deviations are observed between the two approaches in some
cases, which is not surprising given that the experimental
system is not perfect nor 1D, as biological systems are [20].
Apart from the geometry, several other effects omitted in the
model could play a role in this system. This includes the exact
kinematics of the plate motion, a more advanced description
of the contacts between the plate and the soft layer and be-
tween the soft layer and the rigid projectile, respectively, or
the need to account for the precise rheological properties of
the gelatin layer for instance. We have kept the model as
simple as possible and without free parameters to catch the

FIG. 4. (a) cs/L f as a function of x for the maximal α value
found in simulation along a vertical line in Fig. 3(b). The blue solid
curve corresponds to the model cs/L f = 10.2

√
x. (b) Maximal α

value as a function of x. The horizontal dotted line emphasizes the
value 3.13 obtained with a simple spring-mass model (Appendix A).

main trend and avoid any additional complexity associated to
our specific system.

Our study shows that the energy transfer factor can be up to
four times larger in comparison to an actuator without a soft
layer, if the parameters are well tuned. This factor is notably
higher than the 3.1 factor obtained with bilayered projectiles
[27]. For applications, it is relevant to express the values using
the mass of the projectile m = ρrSLr . This gives cs/Ls f = 8.4
and m/ρsSLs = 0.32 for the optimal case.

IV. ANALYTICAL APPROACH

In this section, we show analytically that the complex
landscape of the transfer energy factor is directly associated
to the propagation properties inside the soft elastic layer. The
projectile is considered fully rigid and is modeled by a point
mass located in y = Ls.

From t = 0, the actuator initiates its motion with the ve-
locity Vp(t ) = Aω sin(ωt ) with ω = 2π f . This triggers the
propagation of waves inside the soft layer. In fact, the local
velocity v(y, t ) and deformation ε(y, t ) inside the elastic layer
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FIG. 5. Comparison between experiments and simulations along
the three lines displayed in Fig. 3 (same symbols). te f (a) and α

(b) are represented as functions of x. Horizontal dashed lines indicate
the predictions of an actuator without a soft layer. The thickness of
the lines obtained in simulation represents the experimental uncer-
tainty of the quantity cs/Lr f .

are coupled through the equations

∂ε

∂t
= ∂v

∂y
,

(4)
∂v

∂t
= cs

2 ∂ε

∂y
.

The wave is composed of two components, one propagating in
the direction of increasing y and one propagating in the direc-
tion of decreasing y. We note v+(y, t ) = v+(ξ = t − y/c) and
v−(y, t ) = v−(ζ = t + y/c) respectively as the components of
the velocity v = v+ + v−, while ε+(y, t ) = ε+(ξ = t − y/c)
and ε−(y, t ) = ε−(ζ = t + y/c) stand for the deformation ε =
ε+ + ε−. From Eqs. (4), we have dv+

dξ
= −cs

dε+
dξ

and dv−
dζ

=
cs

dε−
dζ

. This simplifies to v+ = −csε+ and v− = csε− since all
these functions are null initially. By continuity in y = 0 and
y = Ls, we have the two boundary conditions:

Vp(t ) = v+(0, t ) + v−(0, t ), (5)

Vm(t ) = v+(Ls, t ) + v−(Ls, t ), (6)

where Vm(t ) is the velocity of the projectile. First, following
these boundary conditions and the propagation properties, we
can write

v+(Ls, t ) = Vp(t − ts) − Vm(t − 2ts) + v+(Ls, t − 2ts), (7)

with ts = Ls/cs being the time to propagate through the soft
layer. The expression emphasizes that the state of v+(Ls, t ) at
time t depends on the dynamics of the actuator and of the rigid
part at earlier instants (t − ts and t − 2ts, respectively) as well
as on v+(Ls, t − 2ts). Following this recursive process we can
express v+(Ls, t ) as a function of Vp and Vm only:

v+(Ls, t ) = Vp(t − ts)−Vm(t − 2ts)+Vp(t − 3ts)−Vm(t − 4ts)

+ Vp(t − 5ts) − Vm(t − 6ts) + · · · . (8)

Second, the dynamics of the rigid layer is obtained with a
simple momentum balance:

m
dVm

dt
(t ) = −EsSε(Ls, t ) = EsS

cs
[v+(Ls, t ) − v−(Ls, t )]

or

τ
dVm

dt
(t ) + Vm(t ) = 2v+(Ls, t ), (9)

with τ = mcs
EsS

= (1 − x) ρr

ρs

L
cs

[note that f τ = (1 − x) ρr

ρs

L f
cs

].
v+(Ls, t ) is thus the relevant term that sets the dynamics of
the rigid layer. This term is itself coupled to the past history
of the catapult and rigid layer motions through Eq. (8). In what
follows, we distinguish several time intervals.

Note that, in the first time interval, from t = 0 to ts,
v+(Ls, t ) = 0, since the wave does not have time to travel from
z = 0 to Ls. As a consequence there is no force applied on
the rigid layer, Vm(t ) = 0, and the projectile does not take off
whatever the parameters.

A. Second time interval, from t = ts to 3ts

Only the first term is non-null on the right-hand side of
Eq. (8) and v+(Ls, t ) = Vp(t − ts). As a consequence, the dy-
namics of the rigid layer is given by

τ
dVm

dt
+ Vm = 2Aω sin[ω(t − ts)]. (10)

With the condition Vm(t = ts) = 0, it leads to

Vm(t ) = 2Aω

1 + (ωτ )2
[(ωτ ){e−(t−ts )/τ − cos[ω(t − ts)]}

+ sin[ω(t − ts)]]. (11)

The ejection condition is written dVm/dt (te) = 0, which leads
to an implicit equation for te

e−(te−ts )/τ = (ωτ ) sin[ω(te − ts)] + cos[ω(te − ts)], (12)

or we can write a relation between α = (Ve/Aω)2, with Ve =
Vm(te), and ω(te − ts) from Eq. (10):

α = 4 sin [ω(te − ts)]2. (13)

In Fig. 6, we plot te f and α as functions of x and cs/L f as
we did in Fig. 3 for the numerical approach. Both approaches
match very well for te in the range ts–3ts and we can now

025001-5



GUILLAUME GIOMBINI et al. PHYSICAL REVIEW E 105, 025001 (2022)

FIG. 6. te f (a) and α (b) as functions of cs/L f and x calculated
by the analytical approach in the time intervals ts � te � 3ts and
3ts � te � 5ts. Black solid lines highlight the values of te/ts that are
positive integers and te/ts = 1 corresponds to the x axis.

understand some features. From Eq. (13), it is obvious that
the maximum α value is 4 and is obtained for ω(te − ts) =
π/2 [2π ]. In Eq. (12), this imposes τ = 0 or x = 1 and
ω(te − ts) = π/2. Since ts � te � 3ts, a solution α = 4 exists
in this time interval for 0 � cs/L f � 8 in good agreement
with the numerical simulation. Asymptotics are calculated in
Appendix C for the two limits x = 1 and cs/L f = 0.

B. Third time interval, from t = 3ts to 5ts

If the projectile does not take off in the second inter-
val, we need to consider the next time interval. For t =
3ts to 5ts, v+(Ls, t ) = Vp(t − ts) − Vm(t − 2ts) + Vp(t − 3ts)
in Eq. (8). At the onset of this time interval, we have the ini-
tial condition Vm(t = 3ts) = 2Aω (ωτ )e−2tsτ −(ωτ ) cos(2ωts )+sin(2ωts )

1+(ωτ )2 .

The evolution of the projectile is given by

τ
dVm

dt
+ Vm = 2Aω[ sin[ω(t − ts)] + sin[ω(t − 3ts)]

− 2

1 + (ωτ )2
((ωτ )e−(t−3ts )/τ

− (ωτ ) cos[ω(t − 3ts)]

+ sin[ω(t − 3ts)])]. (14)

Again te f and α are obtained in this time interval with the
condition dVm/dt (te) = 0, which can be solved either nu-
merically or semianalytically. As observed in Figs. 3 and 6,
there is a very good agreement and the maximum α = 4.12
for x = 0.8 and cs/L f = 6.7 is recovered in this interval. A
small difference can however be observed in the region where
cs/L f < 2.0 and α < 1.0. This is where successive stages of
ejection and reconnection occur in simulation. This behavior
is not taken into account in the analytical model.

C. Successive time intervals

The process described above is recursive. We could also
obtain results for higher time intervals (t > 5ts) but the analyt-
ical expressions become very long. Nevertheless, we observe
in Fig. 6 that the odd values of te/ts separate domains that
seemed discontinuous (or at least the partial derivatives seem
discontinuous) in Fig. 3. This is particularly striking in the
α diagram and for te/ts = 3. In light of our calculations, this
corresponds to a change in the expressions of the takeoff time
and velocity and is directly linked to the number of travels
of the wave propagating back and forth inside the soft elastic
layer. It shows that the maximum of efficiency, α = 4.12, is
found as the rigid layer takes off between 3ts and 5ts. For
ts < te < 3ts a local maximum of α = 4 is found as x = 1. For
te > 5ts the efficiency decreases and we rely on the numerical
simulations to obtain the values.

V. CONCLUSION

In this study we have shown that adding a soft layer at the
distal end of an actuator can increase the ejection efficiency
by more than a factor 4. This result is supported by experi-
mental, numerical, and analytical approaches. High efficiency
requires the compliant layer to have a thickness and a rigidity
that match both the mass of the projectile and the frequency
of the actuator. More precisely, the efficiency is maximal,
with a value around 4.12, for x = 0.8 and cs/L f = 6.7, or
cs/Ls f = 8.4 and m/ρsSLs = 0.32, if expressed with the mass
of the projectile.

Importantly we emphasize that a thick soft layer, x � 1,
gives an efficiency equal to 4 for a large range of rigidity since
in that case cs/L f � 8 only is required. This case is almost
as good as the optimal case but has the advantage of being
more adaptable. A very thick and soft layer could potentially
be used with numerous projectiles and actuators. This study
shows that both efficiency and flexibility could be obtained
simultaneously with a smart choice of the compliant layer for
applications requiring actuation of an object.
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FIG. 7. (a),(b) Description of the spring-mass system. (c) Energy
transfer factor α as a function of the frequency ratio f0/ f .

APPENDIX A: SPRING-MASS SYSTEM

The spring-mass system is described in Celestini et al. [27]:
the projectile of mass m is rigid and the soft layer consists
in a massless linear spring with a stiffness k as sketched in
Fig. 7(a). The initial distance between the center of mass of
the projectile and the plate of the actuator is still Ls + Lr/2
and the position of the plate undergoes a harmonic varia-
tion given by zp(t ) = A[1 − cos(2π f t )], with a frequency f
and an amplitude A. The maximum velocity of the plate is
V ∗

p = 2π f A.
Between 0 and te, respectively the initial and ejection times,

the position zm(t ) of the projectile is given by the equation

z̈m(t ) = −(2π f0)2[zm(t ) − zp(t ) − (Ls + Lr/2)], (A1)

where the acceleration of the projectile z̈m is balanced by the
spring force, which is proportional to the elongation zm − zp −
(Ls + Lr/2). We denote by f0 = 1

2π

√
k
m the eigenfrequency of

the spring-mass system. The solution of this forced harmonic
oscillator equation, with zm(0) = Ls + Lr/2 and żm(0) = 0, is
written

zm(t ) = Ls + Lr/2 + A + A

f 2 − f 2
0

× [
f 2
0 cos(2π f t ) − f 2 cos(2π f0t )

]
. (A2)

FIG. 8. (Top) Typical image sequence of a soft layer ejection.
(Bottom) Space-time diagram built along the vertical line passing
through the center of the soft layer.

The projectile takes off when the elastic response of the spring
equals zero, because the projectile is not attached to the soft
layer. Hence the condition zm − zp = Ls + Lr/2 in Eq. (A2)
gives the ejection time te:

te = 1

f + f0
. (A3)

We note the velocity of the projectile at ejection Ve = żm(te).
The velocity ratio at takeoff, Ve/V ∗

p , is found to be

Ve/V ∗
p = żm(te)

2π f A
= f0/ f

f0/ f − 1
sin

(
2π

f0/ f + 1

)
. (A4)

We define the energy transfer factor as α = (Ve/V ∗
p )2: it mea-

sures the ratio of the kinetic energy of the projectile ejected
to those of the kinetic energy of the projectile moving at the
maximum velocity of the plate. For f0/ f � 1.62, the energy
transfer factor α = (Ve/V ∗

p )2 is maximal and equals 3.13.

APPENDIX B: MEASUREMENT OF THE WAVE
VELOCITY IN THE SOFT LAYER

The wave velocity inside the soft layer is obtained by
measuring the eigenperiod T0 of the free oscillations of soft
layers of several lengths Ls. Free soft layers were ejected
alone with the throwing engine. A typical image sequence is
displayed in Fig. 8 together with a space-time diagram built
along the vertical line passing through the center of the soft
layer. Once ejected, the first eigenmode is clearly observed
and the period is measured for each layer. T0 is plotted as a
function of Ls in Fig. 9. We observe that both quantities are
proportional with a constant a = (0.256 ± 0.008) s m−1. We
deduce cs = 2Ls/T0 = 2/a = (7.8 ± 0.3) m s−1.
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FIG. 9. Measurements of the eigenperiod T0 of the soft layer as
a function of its length Ls. The solid line is the best proportional
relation with a constant equal to 0.256 s m−1.

APPENDIX C: SOME COMPUTATIONS IN THE INTERVAL
ts � t � 3ts

Here, we would like to get some asymptotic of Eq. (12):

e−(te−ts )/τ = (ωτ ) sin[ω(te − ts)] + cos[ω(te − ts)]. (C1)

By introducing the new variable t̃ , with te = ts + t̃/ω, we
obtain the implicit equation

e− t̃
ωτ = ωτ sin t̃ + cos t̃ . (C2)

(i) As ωτ tends to zero, the exponential tends to zero and
the implicit equation is solved as the cosine tends also to zero;
this yields

t̃ → π

2
+ ωτ + e− π

2ωτ ,

which remains valid until ωτ ∼ 1. It predicts

α ∼ 4 − 2(ωτ + e− π
2ωτ )2,

as x → 1.
(ii) In the opposite limit, i.e., ωτ → ∞,

t̃ → π − 2

ωτ
+ π

(ωτ )2
,

such that

α ∼ 16

(ωτ )2
,

as ωτ → ∞, i.e., cs/L f → 0.

APPENDIX D: DESCRIPTION OF THE PLATE MOTION
BY THE EQUATION OF THE DAMPED HARMONIC

OSCILLATOR

1. Equations

We consider here that the engine plate follows the motion
of a damped harmonic oscillator given by

z̈p(t ) + 2ζωżp(t ) + ω2zp(t ) = ω2A, (D1)

FIG. 10. Typical interpolation of the plate motion. The param-
eters of the interpolation are t0 = 0.0204 s, f = 63.2 Hz, and ζ =
6.4 × 10−2.

with ζ the damping ratio and ω = 2π f the angular frequency.
After integration with the two initial conditions zp(0) = 0 and
żp(0) = 0, the plate motion is written

zp(t ) = A

[
1 − e−ζωt

(
cos (ωdt ) + ζω

ωd
sin (ωdt )

)]
, (D2)

with ωd = ω
√

1 − ζ 2 the pseudofrequency of the engine
plate. The time evolution of the plate velocity and acceleration
are given by

żp(t ) = A e−ζωt

(
ωd + ζ 2ω2

ωd

)
sin (ωdt ),

z̈p(t ) = A e−ζωt

(
ωd + ζ 2ω2

ωd

)
[ωd cos(ωdt ) − ζω sin(ωdt )].

(D3)

The plate maximal velocity is reached at time tv that verifies

z̈(tv ) = 0; hence tv = 1

ω
√

1−ζ 2
arctan(

√
1−ζ 2

ζ
). The maximum

velocity of the engine plate, V �
p , is slightly lower than Aω,
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FIG. 11. Comparison between experiments and simulations in
the case of an underdamped oscillator: te f (a) and α (b) as func-
tions of x and cs/L f . The three sets of experiments correspond to
cs/Lr f = 7.57 (diamonds), 15.1 (disks), and 34.5 (squares).

the expression obtained with a harmonic plate motion, and
written

V �
p = ż(t = tv ) = Aω e

− ζ√
1−ζ2

arctan
( √

1−ζ2

ζ

)
. (D4)

2. Experimental measurements

The parameters f (or ω = 2π f ) and ζ are directly obtained
by interpolating the position of the engine plate as a function
of time (Fig. 10). It is found experimentally that ζ is constant
whatever the experiment and equals (6.4 ± 0.3) × 10−2. The
ejection engine was tuned with two configurations, one with
f = 31.2 ± 0.1 Hz and the other one with 63.2 ± 0.1 Hz.
Note that the interpolation is also used to define precisely the
initiation time of the plate motion, noted t0. In the main text
and in Fig. 2, we have defined the time axis with respect to t0

FIG. 12. Comparison between experiments and simulations
(underdamped case) along the three lines displayed in Fig. 11
(same symbols). te f (a) and α (b) are represented as functions of x.
Horizontal dashed lines indicate the predictions of an actuator with-
out the soft layer.

so that t = 0 corresponds to the initiation of the plate motion
as expected from the interpolation.

3. Underdamped harmonic motion in simulation

Simulations have been performed assuming that the en-
gine plate performs the motion of an underdamped harmonic
oscillator. Like in experiments, the energy transfer factor is
defined with both the ejection velocity and the maximal ve-
locity of the plate, but the latter is now given by Eq. (D4).
Results are displayed in Figs. 11 and 12 and can be compared
to the case of the ideal harmonic oscillator (Figs. 3 and 5).
The two cases give similar results. The differences around the
experimental data points Figs. 12(a) and 12(b) do not exceed
a few percent and are not significant enough to claim that the
damping plays a major role in the dynamics of the system.

APPENDIX E: PHYSICAL QUANTITIES AND VALUES

For more clarity, symbols used in the text are referenced in
Table I.
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TABLE I. Summary of the symbols used in the text, associated with the physical quantities they represent and their typical values if existing.

Symbol Quantity Value

α Energy transfer factor
ε Local deformation in the soft layer
ε+ Deformation towards the increasing z
ε− Deformation towards the decreasing z
ζ Damping ratio 0.064
ρr Density of the projectile 1300 kg m−3

ρs Density of the soft layer 1000 kg m−3

ω Angular frequency of the plate
ωd Pseudofrequency of the plate
A Plate loading amplitude ∼2 mm
Er Young’s modulus of the projectile 3.6 GPa
Es Young’s modulus of the soft layer �61 kPa
L Total length of the soft layer-projectile system 10.2–45.4 mm
Lr Projectile length 8.2–16.3 mm
Ls Soft layer length 2.0–29.1 mm
S Cross section of the projectile-soft layer
T0 Eigenperiod of the soft layer in free flight ∼10 ms
Ve Ejection velocity of the projectile ∼1 m s−1

Vp Plate velocity
V �

p Maximal velocity of the plate ∼1 m s−1

Vm Projectile velocity
cr Wave velocity in the projectile 1700 m s−1

cs Wave velocity in the soft layer 7.8 m s−1

f0 Eigenfrequency of the spring-mass system
f Plate frequency 31.1–63.2 Hz
k Spring stiffness
m Mass of the projectile
t0 Initiation time of the plate motion
te Ejection time
ts Travel time of the wave through the soft layer 0.26–3.73 ms
tv Time of maximal velocity of the damped oscillator
u Displacement field
ur Displacement in the projectile
us Displacement in the soft layer
v Local velocity in the soft layer
v+ Component of v propagating towards increasing z
v− Component of v propagating towards decreasing z
x Ratio between the length of the soft layer and the total length 0–1
y Longitudinal coordinate within the projectile-soft layer frame
yc Contact point between the projectile and the soft layer
z Longitudinal coordinate in the laboratory frame
zm Projectile position
zp Plate position
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