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Jammed disks of two sizes and weights in a channel: Alternating sequences
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Disks of two sizes and weights in alternating sequence are confined to a long and narrow channel. The axis
of the channel is horizontal and its plane vertical. The channel is closed off by pistons that freeze jammed
microstates out of loose disk configurations subject to moderate pressure, gravity, and random agitations. Disk
sizes and channel width are such that under jamming no disk remains loose and all disks touch one wall. We
present exact results for the characterization of jammed macrostates including volume and entropy. The rigorous
analysis divides the disk sequences of jammed microstates into overlapping tiles from which we construct a
small number of species of statistically interacting particles. Jammed macrostates depend on dimensionless
control parameters inferred from ratios between measures of expansion work against the pistons, gravitational
potential energy, and intensity of random agitations. These control parameters enter the configurational statistics
via the activation energies prior to jamming of the particles. The range of disk weights naturally divides into
regimes where qualitatively different features come into play. We sketch a path toward generalizations that
include random sequences under a modified jamming protocol.
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I. INTRODUCTION

The physics of jammed granular matter is dominated by ex-
perimental studies [1–13] and computational studies [14–37]
more than is the case in many other areas of condensed matter
physics. The advanced computational power now available
for simulations of granular matter subject to diverse protocols
of athermal agitations and jamming has efficiently aided the
interpretation of existing measurements and has inspired al-
ternative experimental probes. The wealth of phenomena, too
rich in scope to be listed here, has been reviewed from a range
of perspectives [38–45].

Theoretical approaches operating under the umbrella of
configurational statistics [46–53] have carved out comparably
small corners in this wide field of research which permit an
exact analysis or systematic approximations of some scenarios
by specifically designed methodologies [54–62]. One such
corner involves jammed matter in narrow channels [63–71],
where the diversity of jammed configurations is limited by
caging effects [37]. Nevertheless, the constrained quarters of
granular matter in narrow channels leave ample room for
complex phenomena and promising routes for the further de-
velopment of methods of exact analysis.

The research reported in this work builds on two previous
studies [70,71], in which jammed granular matter in a narrow
channel is represented by configurations of statistically inter-
acting particles and amenable to exact analysis by methods of
statistical mechanics developed in different contexts [72–80]
and adapted to configurational statistics. Their focus was on
the ordering tendencies of jammed disks of one size and
weight, confined to a narrow channel and subject to combi-
nations of gravity, friction, and centrifugation.

Here we consider configurations of jammed disks with two
different sizes and two different weights, which adds diversity
to the observed phenomena. More importantly, this general-
ization is a way station toward the investigation of random
configurations of disks with different sizes and weights. Exact
results for a random sequence of jammed disks with two sizes
and weights thus move well within reach in the wake of this
study.

The key step that makes this progress possible is a twofold
shift in the entities subjected to configurational statistics (i)
from disks to tiles and (ii) from tiles to statistically interacting
particles. Step (i) was already taken in Refs. [65–67]. Step
(ii) was developed in Refs. [70,71] for disks of one size
and is here generalized to situations involving disks of two
sizes. The analysis is laid out in a way that facilitates further
generalizations to random sequences of such disks.

The methodology presented here for jammed granular mat-
ter is far from common and it is not yet clear where it will
reach its limitations. It will remain promising for as long as it
produces new exact results of interest. Interestingly, the same
methodology also yields new exact results in applications to
quantum gases [81], to quantum spin chains embedded in
solids [82], and to biological matter including polypeptides
[83] and DNA [84].

The configurational statistics of disks with two different
sizes and/or weights jammed in a channel includes ingre-
dients related to geometry (Sec. II), energetics (Sec. III),
combinatorics (Sec. IV), and statistical mechanics (Sec. V)
to be worked out up front and then assembled. We discuss
each ingredient in the context of the simplest application,
where the weights of small and large disks are in balance
(Sec. VI), and then use them again for applications, where
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TABLE I. Distinct tiles that constitute jammed microstates of
alternating disk sequences subject to the constraints (1). Mechanical
stability rule: v must be followed by w or 2, etc. Motifs pertain to
σL = 2, σS = 1.4, H = 2.5.

Motif ID Rule Vol. Motif ID Rule Vol.

v w, 2 Vc 3 v Vf

w v, 1 Vc 4 5, 6 Vc

1 3, 4 Vf 5 3, 4 Vc

2 5 Vf 6 w, 2 Vf

size and weight produce more complex patterns (Secs. VII
and VIII).

In the absence of gravitational effects, the statistical me-
chanics can be carried out with just two species of particles
instead of five (Sec. IX). We conclude by pointing the way
toward a generalization of this work which includes jammed
macrostates of random sequences of disks with two sizes
and weights. The modified jamming protocol permits disks
to move past each other in a widened channel during random
agitations (Sec. X).

II. GEOMETRY

Disks of two sizes with diameters σL � σS in alternating
sequence are being jammed in a channel of width H . Every
jammed disk has three points of contact, either with an adja-
cent disk or with a wall. The constraints

1

4
<

σS

σL
� 1, (1a)

1 <
H

σL
<

1

2

[
1 + σS

σL
+

√(
1 + σS

σL

)2
− 1

]
, (1b)

guarantee that the disk sequence remains invariant before jam-
ming at constant H , that all jammed disks have wall contact,
and that no loose disks exist under jamming. In the one-size
limit σS/σL → 1, condition (1b) reduces to the condition,
1 < H/σ < 1 + √

3/4, familiar from Ref. [70].
All jammed microstates can be assembled from eight tiles

composed of two adjacent disks similar to domino pieces
(Table I) with a one-disk overlap. Adding a tile to an already-
existing string must satisfy two successor rules: The tile added
must (i) match the pattern regarding size and position of the
overlapping disk and (ii) maintain mechanical stability under
jamming forces. Each tile has one of two distinct volumes
(Table II).

TABLE II. Volume of tiles (with unit cross section). The numer-
ical values are for σL = 2, σS = 1.4, H = 2.5.

Vol. Num.

Vc
1
2 (σL + σS ) + √

H (σL + σS − H ) 3.2

Vf
1
2 (σL + σS ) + √

σLσS 3.373

TABLE III. Five species of quasiparticles. The hosts m =
1, . . . , 4 modify the pseudovacuum (2) whereas the tag m = 5 modi-
fies any one of the hosts. The motifs shown are for σL = 2, σS = 1.4,
H = 2.5. The ID lists the sequence of tiles that make the particle.
The excess volume is �Vm and the activation energy εm.

Motif ID m Cat. �Vm εm

13 1 host 2Vt 2pVt − γS

146 2 host 2Vt 2pVt − γS + γL

253 3 host 2Vt 2pVt − γS + γL

2546 4 host 2Vt 2pVt − γS + 2γL

45 5 tag 0 γL − γS

Next we choose a convenient jammed reference state and
generate other jammed microstates via the activation of quasi-
particles which modify the reference state.

III. ENERGETICS

With no loss of generality regarding macrostates, we as-
sume to have N (large or small) pairs of disks in the channel
with the first (large) disk and the last (small) disk fixed in
the (vertical) positions of tile v. Under these assumptions the
microstate of minimum volume is unique. It is composed of
an alternating sequence of just two tiles:

pv = vwvw · · · v. (2)

We declare it to be the pseudovacuum for statistically in-
teracting particles in this application. All other (jammed)
microstates can be generated by the activation of quasipar-
ticles from this reference state. We have identified M = 5
species of particles that serve this purpose (Table III). Adopt-
ing the taxonomy of Ref. [78] we distinguish between the
categories of hosts and tags.

Each particle consists of overlapping tiles. Particles from
species m = 1, . . . , 4 can be placed directly into the pseu-
dovacuum, meaning that it is possible to add a tile v or w
to the left or to the right as follows:

w13v, w146w, v253v, v2546w. (3)

Particles from species m = 5 are parasitic in the sense that
they can only be placed inside a particle from species m =
1, . . . , 4, at exactly one position and with one disk overlap-
ping:

1|45|3, 1|45|46, 25|45|3, 25|45|46. (4)

The number of tag particles that can be added (at the same
position in the same host) is only limited by the size of
the system. For example, two tags inside the first host reads
1|4545|3. The minimum number of tiles v or w between two
hosts can be two as in 13vw146, one as in 13v13, or zero as
in 146253.

The activation of every host particle extends the volume
between the piston by the amount 2Vt , where

Vt
.= Vf − Vc = √

σLσS −
√

H (σL + σS − H ). (5)

Placing a tag, by contrast, does not change the volume.
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TABLE IV. Capacity constants Am (left) and statistical interac-
tion coefficients gmm′ (right) for the particles from Table III.

m Am m m′ 1 2 3 4 5

1 N − 2 1 2 2 1 2 1
2 N − 3 2 1 2 1 1 1
3 N − 2 3 2 2 2 2 1
4 N − 3 4 1 2 1 2 1
5 0 5 −1 −1 −1 −1 0

The activation energy εm assigned to a particle from species
m pertains to the state of random agitation before jamming.
It consists of work against the ambient pressure exerted by
the pistons and gravitational potential energy, all relative to
the pseudovacuum. We are free to choose the mass density
of small and large disks. Therefore, the gravitational poten-
tial energies γL and γS are independent parameters as is the
expansion work 2pVt .

A fourth parameter is the intensity of random agitations,
denoted Tk in analogy to the intensity kBT of thermal fluctua-
tions. All results coming out of configurational statistics will
only depend on the following three (dimensionless) ratios of
these four energetic parameters:

β
.= 2pVt

Tk
, �L

.= γL

2pVt
, �S

.= γS

2pVt
. (6)

The particle composition of a macrostate thus depends on the
energetics prior to jamming. The multiplicity of microstates
that characterize a macrostate of given particle composition is
the solution of a combinatorial problem.

IV. COMBINATORICS

The quasiparticles identified in Table III are statistically
interacting in the sense that activating one particle affects the
number dm of remaining slots for the activation of further
particles from each species. This effect can be accounted for
by a generalized Pauli principle [72] in the form [70,78]

dm = Am −
M∑

m′=1

gmm′ (Nm′ − δmm′ ), (7)

with capacity constants Am and statistical interaction coeffi-
cients gmm′ as listed in Table IV and where Nm is the number
of activated particles from species m.

The initial capacity for hosts grows linearly with the num-
ber of disks in the channel. It is zero for tags, which can only
be activated inside hosts. Activating a host (m′ = 1, . . . , 4)
removes one or two slots for activating a further host (m =
1, . . . , 4) but adds one slot for activating a tag (m = 5). Ac-
tivating a tag (m′ = 5) removes one slot for activating hosts
(m = 1, . . . , 4) but leaves the number of slots for activating a
further tag (m = 5) invariant.

The multiplicity of jammed microstates with particle con-
tent {Nm} is a product of binomials:

W ({Nm}) =
M∏

m=1

(
dm + Nm − 1

Nm

)
. (8)

We now have all the ingredients for the statistical mechanical
analysis as was developed previously [70,73,74].

V. STATISTICAL MECHANICS

We can express both the excess volume and the entropy as
functions of the average particle content {〈Nm〉} of a jammed
macrostate as follows [74]:

V − Vpv =
M∑

m=1

〈Nm〉�Vm, (9)

S = kB

M∑
m=1

[(〈Nm〉 + Ym) ln(〈Nm〉 + Ym)

−〈Nm〉 ln〈Nm〉 − Ym ln Ym], (10a)

Ym
.= Am −

M∑
m′=1

gmm′ 〈Nm′ 〉. (10b)

The average particle numbers are the solutions of the linear
equations [73,74],

wm〈Nm〉 +
M∑

m′=1

gmm′ 〈Nm′ 〉 = Am. (11)

The auxiliary quantities wm are the non-negative set of solu-
tions of the algebraic equations [73,74],

eεm/Tk = (1 + wm)
M∏

m′=1

(
1 + w−1

m′
)−gm′m . (12)

The only parts that depend on the jamming protocol, i.e., on
the three dimensionless parameters (6) are the exponents on
the left. The analytic solution of Eq. (12) is, in general, too
unwieldy for display. Its availability gives us explicit expres-
sions for the scaled excess volume, the scaled entropy, and the
particle densities,

V̄
.= V − Vpv

2NVt
, S̄

.= S

NkB
, N̄m

.= 〈Nm〉
N

, (13)

as functions of β, �L, �S , representing, as noted in the context
of (6), the (inverse) intensity of random agitations and the
gravitational potential energies of large and small disks, all in
units of expansion work against the pistons before jamming.

VI. WEIGHTS IN BALANCE

We begin our presentation of results at the border between
the two regimes of heavy and light large disks. When we
declare

�L = �S
.= � (14)

to hold, it means that the gravitational potential energies of
large and small disks are equal when they touch the same
wall. This equality removes the effect of gravity from the ac-
tivation energies of the particles from species m = 2, 3, 5. On
either side of this border, gravity favors qualitatively different
jamming patterns as we shall see. Neither matches the pattern
right on the border.
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FIG. 1. Population densities (a) N̄1, (b) N̄5, (c) N̄2 = N̄3, and
(d) N̄4 versus parameter β for fixed parameter values � = 0, 0.5,
0.75, 0.9, 1.0, 1.1, 1.25, 1.5.

In Fig. 1 we show the population densities N̄m plotted
versus β for all five species of particles at different values of
�. Recall that increasing β means reducing the intensity of
random agitations before jamming and increasing � means
increasing the effects of gravity (by reducing the ambient
pressure before jamming) [85].

In the high-intensity limit, we have

N̄1 = · · · = N̄4 = 1
12 , N̄5 = 1

6 : β = 0. (15)

The contributions of species m = 2, 3, 4 quickly fade away
as β increases from zero. That trend is aided by gravity. The
two dominant species, m = 1, 5, are a host-tag pair with tags
5 existing inside hosts 1 in arbitrary numbers and with only
hosts contributing to excess volume.

For weak gravity, � < 1, the host population, N̄1, initially
increases and then approaches zero as β increases. For strong
gravity, � > 1, it increases monotonically toward the asymp-
totic value, N̄1 = 1

2 . The trends are roughly opposite for the
tag population density, N̄5. At the border between these two
regimes, � = 1, both population densities level off at N̄1 =
N̄5 = 1

4 in the low-intensity limit β → ∞.
The effects of particle population densities on the excess

volume and entropy of jammed macrostates are governed by
Eqs. (9) and (10), respectively, and shown in Fig. 2 (for fewer
values of �). In the high-intensity limit, we thus infer from

FIG. 2. (a) Excess volume V̄ and (b) entropy S̄ versus parameter
β for fixed values � = 0, 0.5, 0.75, 1.0, 1.25, 1.5.

FIG. 3. Population densities N̄m, m = 1, . . . , 5 versus excess vol-
ume V̄ for fixed values � = 0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5 from
bottom up in panel (a) and from left to right in panels (b) and (c).
The dotted line connects the points pertaining to β = 0 for hosts and
tags. The dashed diagonal represents the sum N̄1 + N̄2 + N̄3 + N̄4.

(15) the values,

V̄ = 2
3 , S̄ = ln 3 : β = 0, (16)

for excess volume and entropy of the most disordered
macrostate.

As β increases, the excess volume initially goes down
no matter whether gravity is weak or strong [Fig. 2(a)]. If
gravity is weak, then it continues to go down and vanishes
aymptotically for β → ∞. For strong gravity, on the other
hand, the downward trend is quickly reversed into an upward
trend toward the asymptotic value V̄ = 1.

Irrespective of whether the intensity reduction of random
agitations before jamming leads to larger or smaller volume,
it always leads to lower entropy [Fig. 2(b)]. The entropy
approaches zero at rates which vary a great deal with �. The
ordered state being approached for � < 1 is different from the
one approached for � > 1. The quickest approach by far to the
ordered jammed state pertains to the zero-gravity case.

The borderline case, � = 1, is exceptional. The intensity
reduction does not lead to an ordered jammed state. The
excess volume settles at an intermediate value and the entropy
at a nonzero value:

lim
β→∞

V̄ = 1
2 , lim

β→∞
S̄ = ln 2 : � = 1. (17)

In order to better understand the roles of the different parti-
cle species, we plot the population densities versus volume
(Fig. 3). In these parametric plots, the high-intensity limit
β = 0 is realized at point A for hosts and point B for tags.
Increasing β toward infinity means moving along any path to-
ward one or the other of two corners in each panel, depending
on whether � ≷ 1. In the exceptional case � = 1, all paths
stop at V̄ = 1

2 .
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FIG. 4. Entropy S̄ versus excess volume V̄ for fixed values � =
0, 0.5, 0.75, 0.9, 1.0, 1.1, 1.25, 1.5 (from left to right).

An important fact about the case (14) of balanced gravity is
that the overall population density of particles is an invariant:

N̄tot
.=

5∑
m=1

N̄m = 1

2
= const. (18)

This is illustrated by the two diagonal lines in Fig. 3(a), where
the dashed line represents the population density of all hosts
combined. Recall that the tags m = 5 do not contribute to
excess volume. Their numbers are determined, nevertheless,
by the excess volume via the conservation law. Any increase
in volume caused by the activation of one or the other host
necessarily crowds out one tag. The curves in Fig. 3 again
highlight the observation made earlier that hosts m = 2, 3, 4
only contribute significantly at high intensity.

It is instructive to take a closer look at the three distinct
macrostates associated with β = ∞. All have N̄2 = N̄3 =
N̄4 = 0.

(i) � < 1: The state with N̄1 = 0 and N̄5 = 1
2 is realized

and has V̄ = 0, S̄ = 0. It is a doublet consisting of the ref-
erence state (2) and the state 14545 · · · 4546. The former is
free of particles. The latter contains one host 2 with a saturated
number of tags 5 inside.

(ii) � > 1: The state with N̄1 = 1
2 and N̄5 = 0 is realized

and has V̄ = 1, S̄ = 0. It is a singlet packed with hosts 1:
13vw13vw · · · 13v. Hosts 1 proliferate because they have
negative activation energies.

(iii) � = 1: The state with N̄1 = N̄5 = 1
4 is realized and

has V̄ = 1
2 , S̄ = ln 2. It is highly degenerate. The hosts 1 are

randomly distributed between vacuum tiles with a random
number of tags inside. Hosts 1 and tags 5 have zero activation
energies, whereas the hosts, 2, 3, 4 have positive activation
energies.
With this information we are ready to interpret a graphical
representation of entropy versus excess energy (Fig. 4). The
parameter β runs from zero to infinity along each path from
the top down. All paths start at coordinates (16). Paths for
� < 1 end at V̄ = 0, S̄ = 0, and paths for � > 1 at V̄ = 1,
S̄ = 0. At critical gravity, � = 1, both volume, the path ends
at coordinates (17).

FIG. 5. Population densities (a) N̄1, (b) N̄5, (c) N̄2 = N̄3, and
(d) N̄4 versus parameter β for fixed values �L = 0, 1.0, 1.5, [1.9],
2.0, [2.1], 3.0. The inset shows N̄tot versus β.

Compact analytic expressions for the curves in Figs. 3 and
4 are available for the cases of zero and critical gravity. In the
case � = 0 we have

N̄1 = · · · = N̄4 = 1

8
V̄ , N̄5 = 1

2
(1 − V̄ ), (19a)

S̄ = (V̄ − 1) ln

(
2

V̄
− 2

)
+ ln

(
2

V̄

)
, (19b)

where the range of volume is 0 � V̄ � 2
3 . In the case � = 1

we have

N̄1 = (V̄ − 1)2

2V̄
, N̄2 = N̄3 = 3

2
− V̄ − 1

2V̄
, (20a)

N̄4 = 2V̄ + 1

2V̄
− 2, N̄5 = 1

2
(1 − V̄ ), (20b)

S̄ = 2(V̄ − 1) ln

(
1 − V̄

2V̄ − 1

)
− ln(2V̄ − 1), (20c)

across the more restricted range 1
2 � V̄ � 2

3 of volume. A
brief account of the weights-in-balance case �L = �S includ-
ing versions of Figs. 3 and 4 was reported in Ref. [86].

VII. HEAVY LARGE DISKS

Next we discuss the case where the large disks are heavier
than the small disks in the sense that

�L > �S. (21)

All graphs for this case use �L = 2�S . In the following, we
merely point out the main differences from the weights-in-
balance case.

The particle population densities N̄m plotted versus β

(Fig. 5) look similar with one notable exception. The role
of tags is greatly diminished for any �L > 0. This has the
consequence that jamming with reduced intensity of random
agitations produces macrostates dominated by hosts 1 alone.
There are again regimes of strong and weak gravity with
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FIG. 6. (a) Excess volume V̄ and (b) entropy S̄ versus parameter
β for fixed values �L as indicated.

criticality now at �L = 2. We find

lim
β→∞

N̄1 =
⎧⎨
⎩

0 : �L < 2
1

10 (5 − √
5) : �L = 2

1
2 : �L > 2

. (22)

The overall particle content was the invariant (18) for weights
in balance. This quantity now varies with β as shown in the
inset to Fig. 5(b). Only for �L = 0 is it still an invariant.
Turning on gravity precipitates significant changes.

For weak gravity, 0 < �L < 2, reducing the intensity of
random agitations has the consequence of depleting the sys-
tem of particles gradually and completely. Asymptotically for
β → ∞, the jammed macrostate becomes the pseudovacuum.
At strong gravity, �L > 2, the particle content also begins to
go down but then turns around and returns to the initial value
asymptotically for β → ∞. Initially, all particles are present
in the proportions (15), finally it’s all hosts 1. For the case
�L = 2, the particle content goes down as well, but levels off
as stated in (22), again representing hosts 1 alone.

The dependence on β of volume and entropy remain
qualitatively the same (Fig. 6) as before, but with different
asymptotics at the border �L = 2 between the two regimes:

lim
β→∞

V̄ = 1 − 1√
5

� 0.553 : �L = 2, (23a)

lim
β→∞

S̄ = 1

2
ln

[
1

2
(3 +

√
5)

]
� 0.481. (23b)

The diminished role of tags 5 is again highlighted in Fig. 7,
where the population densities are plotted versus excess vol-
ume V̄ . Figure 7(a) also shows the overall particle content.
Along two of the curves there are short segments along which
the system loses particles while the volume of the jammed
state increases. Changes occur also in two of the macrostates
associated with β = ∞ (all with N̄2 = N̄3 = N̄4 = N̄5 = 0):

(i) 0 < �L < 2: The state realized is the reference state,
which (by construction) contains no particles and has V̄ = 0
and S̄ = 0.

(ii) �L > 2: The state realized is a close-packed array of
hosts, implying N̄1 = 1

2 , V̄ = 1, and S̄ = 0 as we have encoun-
tered in the strong-gravity regime (Sec. VI).

(iii) �L = 2: The state realized is again highly degenerate
and thus carries entropy but unlike in Sec. VI it contains only
hosts. Their average density is higher, N̄1 � 0.276, but they
are shorter for lack of tags.

It is perhaps surprising that all the changes we have noted
between this case of heavy large disks and the previous case
of weights in balance produce a mere distortion when we plot

FIG. 7. Population densities N̄m, m = 1, . . . , 5 and N̄tot versus
excess volume V̄ for fixed values �L = 0, 0.5 1.0, 1.5, 2.0, 2.5, 3.0
(N̄1 from bottom up, N̄tot, N̄5 from top down, N̄2, N̄3, N̄4 from left to
right). The dashed diagonal represents the sum N̄1 + N̄2 + N̄3 + N̄4.

entropy versus volume (Fig. 8). One of the landmarks in the
plot has the same coordinates (16), the other is somewhat
shifted from (17) to (23).

VIII. LIGHT LARGE DISKS

If the weights of large and small disks are oppositely un-
balanced, in the sense that

�L < �S, (24)

then jamming produces yet different results. There are two
regimes with different ordering patterns. We first discuss the
borderline case, which involves subtle limits, and then one
case on either side of the border.

A. �L = 1
2 �S

The hallmark of this case is the presence of distinct weak-
gravity and strong-gravity jamming patterns with a crossover
between them on variation of the intensity of random agita-
tions before jamming. The clearest evidence is seen in plots
of V̄ and S̄ versus β (Fig. 9).

In both panels the top curve represents zero gravity and the
bottom curve very strong gravity. For intermediate strengths
of gravity, the curves initially follow the zero-gravity behavior
and then, with increasing β, cross over to the strong gravity
behavior. For large values of �L, the crossover turns into a
transition that destabilizes the zero-gravity behavior for all
β > 0. A discontinuity emerges in the combined but non-
interchangeable limits �L → ∞, β → 0 between the most
disordered macrostate with values (16),

lim
�L→∞

lim
β→0

V̄ = 2
3 � 0.667, (25a)

lim
�L→∞

lim
β→0

S̄ = ln 3 � 1.099, (25b)

and the partially ordered macrostate with values,

lim
β→0

lim
�L→∞

V̄ = 1 − 1√
5

� 0.553, (26a)
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FIG. 8. Entropy S̄ versus excess volume V̄ for fixed values �L =
0, 1.0, 1.5, 1.8, 2.0, 2.2, 2.5, 3.0 (from left to right).

lim
β→0

lim
�L→∞

S̄ = 1

2
ln

[
1

2
(3 +

√
5)

]
� 0.481. (26b)

This two-stage process of ordering in the jammed macrostate
produced by random agitations of diminishing intensity has
its characteristic signatures in the particle population densities
(Fig. 10). During the first stage, the populations of hosts 1
and tags 5 are enhanced, whereas hosts 2, 3, and 4 become
extinct. During the second stage, hosts 1 disappear gradually
whereas the population of tags 5 gradually increases toward
its maximum value. The particle population overall, N̄tot, in-
creases monotonically with increasing β [Fig. 10 (inset)].
With increasing �L, the first stage becomes more and more
abrupt, whereas the second stage remains gradual.

The signature plot, S̄ versus V̄ , for this case is shown
in Fig. 11. The dashed lines from Fig. 8, remain relevant.
Weak gravity initially has roughly the same effect in the two
cases represented by Figs. 8 and 11. For light large disks and
infinitely strong gravity, �L → ∞, the path of macrostates
during the first stage quickly transitions from coordinates (25)
to (26). The latter are identical to coordinates (23) in Fig. 8,
where they specify a macrostate in the limit β → ∞.

The macrostate with V̄ = 0 and S̄ = 0 arrived at in the limit
β → ∞ is a singlet made of one host 2 packed with tags 5:
14545 · · · 4546. The macrostate (26) contains hosts 1 with
N̄1 � 0.276 randomly distributed between vacuum tiles, and
tags 5 with N̄5 � 0.447 randomly distributed among the hosts.

FIG. 9. (a) Excess volume V̄ and (b) entropy S̄ versus β for fixed
values �L = 0, 0.1, 0.5, 1, 5, 10, 50.

FIG. 10. Population densities (a) N̄1, (b) N̄5, (c) N̄2 = N̄3, and
(d) N̄4 versus β for fixed values �L = 0, 0.1, 0.5, 1, 5, 10, 50.

The two macrostates with the same coordinates, (23) in
Fig. 8 and (26) in Fig. 11, are very different in particle com-
position. The former only contains hosts 1, whereas the latter
contains hosts 1 and tags 5. The former (latter) is realized for
very weak (strong) random agitations before jamming.

How do we explain that these two macrostates with dif-
ferent particle composition have the same excess volume and
the same entropy? Only hosts carry excess volume. Both
macrostates contain the same number of hosts, hence produce
the same V̄ . Hosts alone are smaller in size and the size
is unique. Hosts with tags are larger in size but the sizes
are many. Hosts with tags have fewer options for placement
between them, which subtracts entropy, but they produce
distinguishable permutations, which adds entropy. This is no
explanation, but an argument in support of plausibility.

B. �L = 1
3 �S

This case of very light large disks exhibits the least com-
plex behavior. It resembles the borderline case in some aspects
and differs in others. For �L > 0, all host populations are sup-
pressed eventually as β → ∞ and the tag population grows

FIG. 11. Entropy S̄ versus excess volume V̄ for fixed values
�L = 0, 0.5, 1, 2, 5, 10, 20, 50 (from left to right).
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FIG. 12. Population densities versus β (a) N̄1 for �S = 0, 1, 5,
20, (b) N̄5 for �S = 0, 0.2, 1, 5, 10, 100. The inset shows N̄tot for
�S = 0, 0.2, 1, 5, 10, 100.

to its maximum value (Fig. 12). Only hosts 1 show hints of
a two-stage process emerging as �L becomes large: a quick
initial rise followed by an equally fast drop. Compared to the
case of Sec. VIII A, the second stage is now much faster in the
event of strong gravity. The variation of excess volume and
entropy with β (not shown) is equally fast and all downward.

The plot of S̄ versus V̄ (Fig. 13) shows no complexity
but is informative nevertheless. We observe that the relation
between excess volume and entropy becomes increasingly
linear as gravity becomes stronger. The only way to interpret
this is that in the limit �L → ∞ both quantities collapse
discontinuously to zero as β becomes nonzero. The initial
macrostate has maximum disorder. The final state is the same
singlet as identified in Sec. VIII A.

C. �L = 2
3 �S

On the other side of the borderline case, where the large
disks are not much lighter than the small disks, the jam-
ming patterns are more varied. We can state (without showing
evidence) that all particle population densities vary less pre-
cipitously with β than in the preceding two cases. However,
turning on gravity produces an abrupt change in the (aver-
age) particle composition of the jammed macrostate. Further
abrupt changes occur when gravity crosses criticality at �L =
2.

These changes are best illustrated in plots of particle popu-
lation densities versus excess volume (Fig. 14) We have noted
before (Sec. VI) that the jammed macrostate at zero gravity

FIG. 13. Entropy S̄ versus excess volume V̄ for �S = 0, 1, 5, 100
(from left to right).

FIG. 14. Population densities N̄m, m = 1, . . . , 5 and N̄tot versus
excess volume V̄ for fixed values �S = 0, 2, 3, 4, 5, 10 (from left to
right).

is a doublet in the limit β → ∞. Increasing �L from zero
removes that degeneracy, which has the effect that the (av-
erage) tag population density doubles. For �L < 2 the effect
of increasing β is that the population of hosts 1 first increases
and then decreases toward zero [Fig. 14(a)]. The populations
of the other three hosts decrease from the start at β = 0
[Figs. 14(c) and 14(d)] such that the excess volume is a mono-
tonically decreasing function. The overall population density
of particles, on the other hand, is monotonically increasing
[Fig. 14(e)] on account of the population increase of tags 5
[Fig. 14(b)].

For critical gravity, �L = 2, the effect of increasing β is
that the population densities of hosts 1 and tags 5 both increase
whereas those of the remaining hosts vanish gradually as in all
cases. The macrostate in the limit β → ∞ is a familiar one,
encountered before in the case of heavy large disks, namely
the disordered state with the values (23) for excess volume
and entropy.

For stronger gravity, �L > 2, the particle composition of
the jammed macrostate approaches an ordered state again
in the limit β → ∞. This state is packed with hosts 1 and
has the maximum excess volume as also seen in the case of
heavy large disks. Note that as β increases, the population
of hosts 2, 3, and 4 initially depletes more rapidly than the
population of hosts 1 increases, which has the effect that the
excess volume initially increases from the value produced by
the most disordered macrostate, but then turns around and
increases. This effect is clearly observable in Fig. 15, which
shows entropy versus excess volume. It is remarkably similar
to Fig. 8 even though the large and small disks act quite
differently.
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FIG. 15. Entropy S̄ versus excess volume V̄ for fixed values �S =
0, 1, 2, 2.8, 3, 3.2, 4, 5 (from left to right).

IX. ALTERNATIVE PARTICLES

If gravity can be neglected, as is the case when the plane
of the channel is oriented horizontally, then the analysis re-
quires no more than two species of particles, constructed
from the tiles listed in Table I. The geometric and energetic
specifications of the two compacts are shown in Table V.
These compacts are activated from the twofold degenerate
pseudovacuum,

pv = {vwvw · · · v, 4545 . . . 4}. (27)

Each compact particle has two distinct motifs. However, only
one or the other motif will fit into a given slot. Each compact
can be directly followed by a compact of the same species or
the other species with exactly one motif fitting.

All microstates which can be constructed under these rules
have no more than three successive disks touching the same
wall and then always with the small disk in the middle, which
ensures mechanical stability. The combinatorial specifications
of the alternative particles are compiled in Table VI.

Solving Eqs. (11) and (12) with β from (6) and substituting
the results into (9) and (10) reproduces the population densi-
ties,

N̄1 = N̄2 = 1
2V̄ , (28)

for the two species of compacts and the identical relation
(19b) between entropy and excess volume as previously ob-
tained from four hosts and one tag.

TABLE V. Two species of compact quasiparticles. The motifs
are for σL = 2, σS = 1.4, H = 2.5. The ID lists the overlapping tiles
involved. The excess volume is �Vm and the activation energy εm.

Motif ID m Category �Vm εm

3v, w1 1 compact Vt pVt

25, 46 2 compact Vt pVt

TABLE VI. Capacity constants Am (left) and statistical interac-
tion coefficients gmm′ (right) for the particles from Table V.

m Am m m′ 1 2

1 N − 1 1 1 0
2 N − 1 2 1 1

X. CONCLUSION AND OUTLOOK

The work reported in this paper employs a methodology
not commonly in use for jammed granular matter—a method-
ology shown here and earlier [70,71] to deliver exact results
for nontrivial scenarios. It promises to do the same for more
complex scenarios. The focus here on disks of two sizes and
weights has illuminated the workings of the exact analysis for
specific situations.

The interplay between geometry, energetics, and combi-
natorics is encoded in a set of nonlinear equations for the
jammed macrostates. Of the four types of relevant forces in
the system under scrutiny here, the steric forces govern the
mechanically stable configurations after jamming, whereas
the pressure against mobile pistons, the gravitational force,
and imposed random agitations govern the spatial configu-
rations prior to jamming. The latter three are encoded in
dimensionless parameters, by which all jammed macrostates
are characterized.

The volume and entropy of macrostates, determined by
their average particle content, become functions of the dimen-
sionless parameters. The gradual variation of these parameters
is akin to a quasistatic process described by variables analo-
gous to thermodynamic functions. Some of these processes
are found to encounter singularities reminiscent of phase tran-
sitions. A distinctive feature of jammed macrostates is that the
same volume and entropy can be produced with very different
contents of statistically interacting particles.

Admittedly, these exact results are highly nongeneric in a
broader context. Jamming conditions in general are known to
be nonlocal, which puts them out of reach of our methodology
as developed thus far. However, there are clear paths for the
further developement of this approach. One extension of the
work reported here, which we intend to tackle next, promises
to cover much new ground. It permits random sequences of
large and small disks of different weights. This scenario re-
quires a different jamming protocol, where random agitations
take place in a wider channel that allows disks to move past
each other.

If we allow, in the jammed state, multiple small disks to be
placed in sequence, the more stringent geometric constraints,

1

1 + √
3/4

<
σS

σL
� 1, (29a)

σL

σS
<

H

σS
< 1 +

√
3/4, (29b)

must be satisfied, replacing the condition (1). The number of
distinct tiles that are realized is doubled from 8 in Table I to
16 in Table VII. The six distinct volumes of the 16 tiles are
compiled in Table VIII.
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TABLE VII. Distinct tiles that constitute jammed microstates of
arbitrary disk sequences subject to the constraints (2). Rule: v must
be followed by w or 2, etc. Icons: σL = 2, σS = 1.4, H = 2.5. Rule
amendments in square-brackets apply in the presence of centrifugal
forces.

Motif ID Rule Vol. Motif ID Rule Vol.

1 2,6,10,14 Va 9 1,5,[9] Vd

2 1,5,9,13 Va 10 2,6,[10] Vd

3 4,8,12,16 Vb 11 3,7,15,[11] Ve

4 3,7,11,15 Vb 12 4,8,16,[12] Ve

5 4,8,12,16 Vc 13 3,7,15,[11] Vf

6 3,7,11,15 Vc 14 4,8,16,[12] Vf

7 2,6,10,14 Vc 15 1,5 Vf

8 1,5,9,13 Vc 16 2,6 Vf

Constructing a set of statistically interacting particles from
this set of 16 tiles with the given successor rules that ensure
mechanical stability under jamming is challenging task with
no guarantee of success, in general. However, in this instance
we can take advantage of a mapping between this system of
jammed disk and a spin- 3

2 Ising chain, which was previously
investigated by the same method [80] and shown to represent

TABLE VIII. Volume of tiles assuming that the channel has unit
cross sections. The numerical values pertain to the icons: σL = 2,
σS = 1.4, H = 2.5.

Vol. Num.

Va σL + √
H (2σL − H ) 3.963

Vb σS + √
H (2σS − H ) 2.266

Vc
1
2 (σL + σS ) + √

H (σL + σS − H ) 3.2
Vd 2σL 4.0
Ve 2σS 2.8
Vf

1
2 (σL + σS ) + √

σLσS 3.373

a system of statistically interacting particles from a set of 17
species.

The mapping is exact if we relax the successor rules in
Table VII to include the entries in square brackets. This is
justified if we consider channels that rotate about their axis
and thus produce centrifugal forces on the disks [87]. The
mapping also requires a switch from an open system (grand-
canonical ensemble) realized in the Ising context to a closed
system (canonical ensemble) in the jammed-disk context,
which requires the introduction of what in a thermodynamic
system are chemical potentials. The ground is thus cleared for
the exact analysis of a system of jammed granular matter with
a random mix of grains of two different sizes. At the same
time, a new path opens up for the study of particle segregation
[88–90] with this methodology.
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