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Sink versus tilt penetration into shaken dry granular matter: The role of the foundation
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We study the behavior of cylindrical objects as they sink into a dry granular bed fluidized due to lateral
oscillations. Somewhat unexpectedly, we have found that, within a large range of lateral shaking powers,
cylinders with flat bottoms sink vertically, while those with a “foundation” consisting of a shallow ring attached
to their bottom, tilt besides sinking. The latter scenario seems to dominate independently from the nature of the
foundation when strong enough lateral vibrations are applied. We are able to explain the observed behavior by
quasi-2D numerical simulations, which also demonstrate the influence of the intruder’s aspect ratio. The vertical
sink dynamics is explained with the help of a Newtonian equation of motion for the intruder. Our findings may
shed light on the behavior of buildings and other manmade structures during earthquakes.
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I. INTRODUCTION

The Kocaeli earthquake that occurred on August 17, 1999,
affected in various ways many structures in the city of Ada-
pazarı, Turkey. Following the accounts of observers, some
buildings sank vertically into the soil, others tilted, and some
even suffered lateral translation over the ground [1–3]. This
case illustrates well the diversity of damage that earthquake
fluidization of soils can cause to manmade structures [4].

Liquefaction in the ground may be triggered dynamically
by waves emitted during earthquakes, generating cyclic shear
stresses that lead to the gradual build-up of pore water pres-
sure [5,6]. The shaking produced by seismic events is a trigger
for extensive liquefaction, as was observed recently in Bel-
gium [7]. Ground fluidization [8,9] has been investigated in
different kinds of media like sand [9], dry granular soils [10],
and sediments [11]. Of immediate interest for engineering and
for the geosciences is to understand how manmade structures
such as buildings, and massive rocks laying on granular soils
respond to fluidization associated to seismic waves.

Granular matter itself displays a variety of puzzling phe-
nomena [12–25], but during the last decade or so, our
understanding of the dynamics of objects penetrating into
granular media has advanced quickly [26–43]. While laterally
shaken granular beds have received a certain degree of atten-
tion [44,45], the performance of objects initially laying on the
surface of a granular bed submitted to lateral shaking rarely
has been studied [46–50].

In this paper we perform systematic experiments associ-
ated to the latter scenario, which may help understanding
the performance of human constructions and rocks laying
on granular beds during earthquakes. In particular, using a
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cylinder as a simplified model, we study its settling dynamics
on a granular bed submitted to lateral vibrations. Somewhat
unexpectedly, we have found that, within a large range of
lateral shaking powers, cylinders with flat bottoms sink verti-
cally, while those with a “foundation” consisting of a shallow
ring attached to their bottom, tilt besides sinking. The latter
scenario seems to dominate independently from the nature
of the foundation when strong enough lateral vibrations are
applied. Quasi-2D simulations mimicking the experiments
were also performed. The settling dynamics of the simulated
intruders, with or without foundation, reproduces the corre-
sponding experimental results. Our simulations also reveal
how the difference in force-chain distributions between flat
and nonflat bottom cylinders produces different torques jus-
tifying the two types of penetration. In addition, we present
a simple phenomenological model that reproduces well the
sinking dynamics and helps understanding how the tilting
process influences the sinking one.

II. EXPERIMENTAL

The penetration experiments were performed on a gran-
ular bed contained in a test cell of approximately 25 ×
25 × 25 cm3 filled with Ugelstad spheres of nonexpanded
polystyrene with a bulk density 1050 kg/m3, diameter
140 μm, and monodisperse within 1% (Dynoseeds, Mi-
crobeads, Norway). The box was horizontally shaken at
different amplitudes of motion (A), and a frequency ( f ) of
5.0 Hz (a value commonly found in seismic waves), using
a TIRA TV51120-M shaker; see Fig. 1. By controlling the
voltage of the shaker input signal we varied the amplitude of
the oscillations up to a maximum value corresponding to a
peak ground acceleration of A(2π f )2 ≈ 12.2 m/s2 [51]. This
acceleration range covers most potentially damaging earth-
quakes, from weak to strong [52], though there have been
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FIG. 1. Experimental setup. At the upper right, we have illus-
trated the intruder consisting of a cylinder with a ring.

reports of larger peak ground accelerations [53]. The time the
shaker needs to reach the steady state depends on the dimen-
sionless acceleration, being longer for larger accelerations.
The time intervals can range from one (0.2 s) to three periods.

Two types of intruders were used in the experiments: (a) a
hollow 3D printed cylinder of 44 mm diameter, 44 mm height
hc (external dimensions), and 5 mm thick walls, and (b) the
same cylinder with a ring of 5 mm height and 3 mm thickness
glued to its bottom (illustrated in the upper right corner of
Fig. 1). Intruders (a) and (b) will be called “No-ring” and
“Ring,” respectively, hereafter. Their masses were adjusted
with ballast in such a way that their densities matched the
average effective density of the granular medium, which was
measured as 430 kg/m3. As far as the ballast used has a
density near the effective density of the granular material, it
was almost evenly distributed inside the cylinder. Note that,
using a flat bottom cylinder and a ringlike bottom cylinder,
we are modifying the “foundation” of our intruder.

A digital camera (Hero 2, GoPro) was fixed to the elec-
tromagnetic shaker, in such a way that it could take a video of
the sinking process from an oscillating reference frame locked
to the test cell, as proposed in [48]. This method allowed a
much better quality of the cylinder’s images, and made easier
their digital processing. Videos were taken at a maximum rate
of 120 frames per second, with a resolution of 1920 × 1080
pixels.

The images were processed as follows. We first converted
the videos to image sequences in *.jpg format and cropped
each picture, excluding irrelevant space. Then, the images
were binarized through an appropriate threshold. Using the
tool regionprops from MATLABR2014A, we identified and as-
signed coordinates to several bright marks we had glued to
certain points of the cylindrical intruder. The coordinates of
the marks were used to calculate the position of the intruder’s
geometrical center and inclination relative to the vertical in
each picture. In some experiments where the sinking was
particularly big, it was difficult to obtain the tilt angle, since
part of the marks sank below the level of the sand surface, and
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FIG. 2. Sketch of sinking and tilting processes. The top row
illustrates the sinking process of a No-ring cylinder in three moments
during the experimental interval from t = 0 to a final time t = �t .
The bottom row shows the same temporal sequence for a Ring
cylinder, which tilts in addition to sinking.

they were impossible to follow. In such cases the upper border
of the cylinder was identified using the MATLAB’s tools find
and bwtraceboundary, and then fitted to a polynomial using
the function polyfit. The fit was used to find the inclination. In
the case of experiments ending in a very inclined position, the
reference to calculate the inclination was the cylinder’s corner
above the sand surface, that was identified as the intersection
of the two polynomial fits of the upper and one lateral borders
of the cylinder.

As the cylinder oscillates due to the vibration of the box,
it is difficult to determine the final position, particularly when
there is a big tilting. Then, in order to determine the sinking
depth and tilting, we observe in the videos the onset of a
cyclic movement of a reference point in the cylinder. Then
the final position could be measured in the frames filmed after
the shaker was stopped.

The experimental protocol can be described as follows:
(I) preparing the granular medium by stirring it evenly with
a long rod, (II) gently depositing the cylinder in the upright
position on the free surface of the granular bed, (III) turning
ON the camera, (IV) switching ON the shaker after setting
the desired frequency and amplitude, and (V) turning OFF the
shaker and the camera after the penetration process had visibly
finished.

In Fig. 2 we define the main parameters describing the
sinking process of a No-ring cylinder (upper row), and the tilt-
ing and sinking of a Ring cylinder (bottom row), during the
experimental lapse, defined as �t . As the figure indicates, in
the following we will call h the penetration of the geometrical
center at a time t and �h the final penetration at time t = �t .
Note that both magnitudes are defined as the vertical displace-
ment of the geometrical center of the cylinder (without taking
the ring into account). In the same way we will call θ the
inclination of the intruder at time t and �θ the final inclination
at t = �t .

We also explored the phenomenology through numer-
ical simulations. They were based on a discrete element
method code (DEM) for the computation of granular systems
[20,22,24,49,50,54,55]. We modeled a quasi-2D granular
medium, made of finite-sized hard spheres with radii be-

024903-2



SINK VERSUS TILT PENETRATION INTO SHAKEN DRY … PHYSICAL REVIEW E 105, 024903 (2022)

(a)

(b)

0 0.05        0.10        0.15        0.20 0.25        0.30        0.35        0.40

0 0.05        0.10        0.15        0.20 0.25        0.30        0.35        0.40

0.150

0.100

0.050

0

0.150

0.100

0.050

0

FIG. 3. Snapshots of the initial (a) and final (b) positions of a
No-ring intruder in a typical quasi-2D simulation using a shaking
frequency of 5 Hz.

tween 1.0 and 1.5 mm, to avoid the crystallization effect. The
medium contains 4000 particles and is prepared by placing
the latter randomly in a space 30 cm wide and 25 cm high
and then allowing them to settle under the action of grav-
ity g = 9.81 m/s2. Once the medium reaches equilibrium, it
occupies a virtual space 30 cm wide and about 8 cm high,
laterally delimited by flat walls that define the Hele-Shaw cell.
The simulation box used was created narrow in order to have
a single plane of particles in the direction perpendicular to
the images shown in Figs. 3 and 4. The components of the
velocities and forces along this direction are set to zero at each
time step. To mimic the experimental conditions, we simulate
particles of density 1050 kg/m3.

The two intruders are made of cohesive particles. One is
a square of 40 mm side, made of N = 1681 particles with
diameter 1 mm, placed in a quasi-2D square arrangement,
which simulates the No-ring intruder of the experiments. The
second one is also a square of 40 mm side to which two “small
feet” are attached. Each foot has a size of 4.5 × 2.7 mm2, so
the simulated Ring intruder contains a total of N = 1705 par-
ticles. The density of the spheres ρp which form the intruders
is adjusted so that the bulk density of the rigid body matches
the effective density of the granular medium. The latter is
calculated once the medium has settled down and is stable,
and was always found to be around ρm = 566 kg/m3. Then
the density of the particles forming the intruder is obtained as
ρp = ρmVi/NVp, where Vi is the volume of the intruder and Vp

the volume of a sphere.
Once our granular medium is created, we place the intruder

1 mm above the medium, with its bottom parallel to the hori-
zontal direction. We release it, under the action of the force of
gravity, and wait until the whole system becomes motionless
(i.e. its total kinetic energy reaches a value under 10−7 J).
Then we apply horizontal oscillations of different amplitudes
and a frequency of 5 Hz (�t ≈ 8 s) to the walls of the cell and
compute the time evolution of the position and tilting angle of
the intruder. The amplitudes were chosen in such a way that
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FIG. 4. Snapshots of the initial (a) and final (b) positions of
a Ring intruder in a typical quasi-2D simulation using a shaking
frequency of 5 Hz.

the dimensionless acceleration � = A(2π f )2/g had the values
of 0.16, 0.25, 0.5, 1.0, 1.25, and 1.5.

The contact between spheres was modeled as a linear
spring-dashpot Fi j = (knδni j − meffγnvn) − (kt�St +
meffγt vt ) [54,56], where k and γ are the elastic and
viscoelastic damping constants, δni j is the overlap distance
along the line connecting the centers of the two spheres, and
v their relative velocity. �St is the tangential displacement
vector between two spheres, which is truncated to satisfy
a frictional yield criterion, and meff = mimj/(mi + mj ) is
the effective mass of two spheres of mass mi and mj . We
considered normal (n) and tangential (t) forces components
between the particles and, in order to model hard spheres that
interact on contact (i.e., spheres whose deformation during
collisions is less than a small fraction of their radii), we
used the following parameter values: kn = 1.2 × 107 N/m,
kt = 2/7kn, γn = 12 s−1, and γt = 0.1γn. The interaction
force between the walls and the particles touching them
is the same as the corresponding for two particles but
considering the wall of infinite radius and mass (flat wall).
The microscopic friction coefficient between spheres, and
between spheres and boundaries, was taken as μ = 0.3. The
time step dt was chosen to guarantee that there are at least 50
steps during one characteristic time of a collision dt = tc/50,
where tc = π/

√
(kn/me f f ) − γ 2

n .
Figures 3 and 4 show the initial and final positions of both

types of intruders in two typical runs. Figure 3 indicates that
the No-ring cylinders are slightly inclined, while in Fig. 4 the
large inclination of the Ring one becomes obvious.

We also performed an additional set of simulations aimed
at elucidating the influence of the intruder’s aspect ratio in
the sink-tilt behavior. Two intruders, one No-ring with aspect
ratio 1.125, and a Ring with aspect ratio 1 (see Fig. 5), were
submitted to the same range of dimensionless accelerations.
Note that the new intruders (in dark gray in Fig. 5) have the
same dimensions of the former ones (in light gray) but the
geometry of the bottom is interchanged.
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FIG. 5. Comparison of the geometry of the intruders used to test
the influence of the aspect ratio. In light gray the intruders previously
described and in dark gray the new ones.

The new intruders are also rigid bodies made of 1 mm
diameter cohesive particles and their bulk densities also corre-
spond to that of the granular medium. The new Ring intruder
is composed of N = 1498 particles forming a 40 mm wide
and 35.5 mm high rectangle to which two 4.5 × 2.7 mm2 feet
were added. Note that the size of these feet and those of the
Ring intruder are the same. The new No-ring is a rectangle
of 40 mm wide and 44.5 mm high composed of N = 1845
particles.

III. RESULTS AND DISCUSSION

A. Sink vs tilt penetration in experiments

Figure 6(a) shows the time variation of the sinking depth
for selected values of the dimensionless acceleration � =
A(2π f )2/g (where g = 9.81 m/s2 is the gravitational accel-
eration and A(2π f )2 is the horizontal peak acceleration of the
sand box) for No-ring cylinders. It is easy to see that the pene-
tration of the No-ring cylinders follows a common pattern for
all the accelerations. A first process of fast sinking is followed
by a slow creep. Only the penetration depth increases with �.
In this figure we do not show the total creep process, due to
its long duration. As the height of the cylinder is hc = 44 mm,
it is possible to check from Fig. 6(a) that, for a dimension-
less accelerations of 1.24, the cylinder sinks completely. An
important characteristic of the sinking process in this type of
cylinder is that the intruder penetrates the granular medium
with almost no tilting, and a final inclination smaller than 5°.

Figure 6(b) is similar to the previous one, but measure-
ments were performed with Ring cylinders. The general
features of both graphics are similar, but there is a differ-
ence, that will be better observed in the following figures:
the dimensionless acceleration at which the cylinder sinks
completely in the medium is bigger for the Ring cylinders than
for the No-ring ones.

Figure 6(c) presents the time evolution of the tilting an-
gle for a Ring cylinder, a process that occurs simultaneously
with the sinking. The sinking and tilting dynamics of Ring
cylinders is more irregular than that of the No-ring ones.
This is illustrated in Figs. 6(b) and 6(c), even after being
submitted to a moving average process, to get a smoother
graph.

No-ring cylinders tend to sink vertically as the granular
soil is fluidized by horizontal shaking, while cylinders with
rings tend to tilt. Figure 7 quantifies the differences between
the initial and final stages of the process, for almost all the
range of accelerations our experimental setup was able to
reach.

(a)

(b)

(c)

FIG. 6. Experiments. Time evolution of penetration depths and
tilt angles. Time dependence of the penetration depth of a No-ring
cylinder (a), the penetration depth of a Ring cylinder (b). and the
tilting angle of a Ring cylinder (c), for different dimensionless ac-
celerations. The long-time creep process is not completely shown.
The tilting angle of No-ring cylinders is not displayed, due to its
oscillating around angles not larger than 5◦ relative to the vertical
direction.

Figure 7(a) shows sink data for No-ring cylinders. As can
be seen, for dimensionless accelerations up to � = 0.27, there
was no significant penetration of the intruder into the granu-
lar bed. Vertical penetrations started to increase significantly
above this acceleration, reaching a plateau around � ≈ 0.7.
At the plateau, the cylinder has sunk completely, but stays
“floating” into the fluidized granular medium, as expected
for an object isodense relative to it, so there is no further
sinking.
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(a)

(b)

(c)

FIG. 7. Experiments. Sinking and tilting: heights and angles for
different dimensionless accelerations �. Final sink heights for No-
ring cylinders (a) and for Ring cylinders (b). Final tilt angles for Ring
cylinders (c). Tilt angles of No-ring cylinders are not shown for the
same reasons as in the previous figure.

In Fig. 7(b) the sinking process of the Ring cylinders is
summarized. Though the low-acceleration part is similar to
Fig. 7(a), now the plateau is not observed for the range of
accelerations recorded. Notice that from the depth reached at
� ≈ 1.2, approximately the height of the cylinder hc, it would
not sink any further, and that from this value of � onwards a
plateau would appear.

Figure 7(c) shows the tilt data for Ring cylinders. No sig-
nificant tilting is observed for � smaller than approximately

0.25. With the increase of the dimensionless accelerations,
the cylinder significantly tilts, increasing abruptly the tilting
angle with �, until it slows down at � ≈ 0.7. We do not show
the tilting angle of No-ring cylinders, because it is always
smaller than 5◦, with a random distribution of values around
the vertical direction.

Figures 7(b) and 7(c) are closely related, because they are
two descriptions of the same process: the motion of Ring
cylinders into the granular medium, that includes both sinking
and tilting. The fact that at the accelerations shown in this
figure the plateau in the sinking depth is not reached while for
the tilting angle at higher values of � the inclination almost
saturates, could be explained by the increase of the friction
of the intruder with the granular medium when the tilting
angle increases. At � ≈ 0.7 the intruder has reached a large
inclination, but is not completely submerged into the medium.
An increase in the acceleration does not increase significantly
the angle, because the resulting torque has diminished due to
the influence of both sinking and tilting, but the increase in
fluidization helps further sinking, until most of the cylinder is
submerged.

The sinking process can be understood taking the exper-
imental results in Ref. [46] into account. When the system
is submitted to lateral shaking, a fluidized layer appears in
the upper part of the granular cell. This layer reaches a depth
h f that depends on the dimensionless acceleration �. Below
this layer exists a “solid” layer. For accelerations in the range
spanned in our experiments, h f varies almost linearly with �

[see Fig. 3(a) in Ref. [46]], so we can write

h f (�) = α(� − �∗); � > �∗, (1)

where �∗ is the onset of fluidization and α is the slope of the
linear dependence. If � � �∗ the depth of the fluidized layer
is zero.

Then, at low values of � the granular medium is not flu-
idized, and the cylinder almost does not sink [merely 5 mm
at � = 0.27; see Fig. 7(a)]. For accelerations above the flu-
idization threshold, the cylinder sinks until it gets in contact
with the solid layer. The larger is the acceleration, the deeper
is that layer, so the bigger is �h. But as soon as the solid layer
appears at a depth larger than the cylinder’s height, it does
not sink further: instead, it “floats” due to isodensity with the
sand, so a plateau is reached.

According to Ref. [57], �∗ can be taken as proportional to
the friction coefficient μ between the cylinder and the granular
medium. In these experiments we can approximate μ ≈ 0.3,
which is the value we use in the simulations. The authors also
conclude that the final depth of intrusion depends on isostasy,
and on the severity of shaking. It can be entirely determined
by isostasy, when the shaking completely unjam the medium
and suppresses the average friction around the intruder [50].

To better understand the differences in the dynamics of
both types of intruders, we performed numerical simulations
and their results are described below.

B. Sink vs tilt in quasi-2D numerical simulations

Figure 8 shows the time dependence of the penetration
depth [Fig. 8(a)] and tilting angle [Fig. 8(b)] for both types of
intruders at the dimensionless acceleration � = 1.0. In both
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(a)

(b)

FIG. 8. Simulations. Time dependence of sinking depth (a) and
tilting angle (b) for both types of intruders with � = 1.0. The central
lines are the average of six simulations, while the colored bands cover
±σ .

figures the thick curves represent the average value of six
repetitions varying the initial conditions and the surrounding
zone represents ±1 standard deviation.

Regarding the vertical sinking in Fig. 8(a), we do not
observe major changes between Ring and No-ring intruders;
both types of intruders sink less than in the experiments.
This may be related with the lower dimensionality of the
simulations relative to the real experiment. Quasi-2D granular
media allow less choices of readjustment than in 3D: they are
easily jammed, which makes it more difficult for an object to
sink. Moreover, the size ratio of the intruder over the particles
is eight times smaller in the simulations than in the experi-
ments (experiments: 44 mm/0.140 mm ≈ 300; simulations:
40 mm/1 mm= 40), which means that if one particle is stuck
under the intruder during the simulations, it will slow down
the intruder significantly more than if the particle were eight
times smaller.

Figure 8(b) indicates that the presence of a foundation at
the bottom of the intruder causes a large tilting. Indeed, for
the shaking with no ring, the intruder tilting angle is around
10◦, but during the shaking with ring, the intruder tilts fast,
reaching an angle around 50◦. This resembles what happens
in the experiments (see Fig. 4): the intruder almost ends up

FIG. 9. Simulations. Final depth reached for No-ring (squares)
and Ring (circles) cylinders as a function of the dimensionless ac-
celeration. Symbols represent the average of six experiments and the
error bars ±σ .

lying on one of its sides. Of course, the tilting is also limited
by the diminished dimensionality in the quasi-2D simulations.

Figure 9 compares the penetration depth reached for both
types of cylinders at different values of �. The conclusions
obtained from Fig. 8 are valid for all the dimensionless ac-
celerations used in the simulations: there are no significant
differences in the final sinking depth between both types of
intruders.

In Fig. 10, on the contrary, the difference in tilting angles
between the two types of intruders is clearly seen. For all the
values of � the simulated Ring intruder tilts more than the
No-ring one. For � = 1.50, the No-ring tilts up to an angle
that is closer to the Ring’s one, corresponding to preliminary
observations found in experiments with frequencies above
5 Hz for dimensionless accelerations � > 1.25.

FIG. 10. Simulations. Maximum tilting angle reached for No-
ring and Ring cylinders as a function of the dimensionless
acceleration. Symbols represent the average of six simulations and
the error bars ±σ .
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(a)

(b)

(d)

(c)

FIG. 11. Simulations. Temporal evolution of the calculated mag-
nitudes for the intruders during the first second of a simulation using
� = 1.0. From top to bottom: the evolution of the rotation θ (a),
the angular velocity � (b), the torque about the center of mass τ

(c), and finally, the position of the cell (d) showing the oscillation
described by it. The vertical line indicates the instant t = 1.84 T.
τmax is maximum torque on a nontilting but horizontally accelerated
No-ring intruder.

According to our simulations, the difference in tilting be-
tween intruders lies in that one type of intruder, the No-ring
one, is somehow more capable of rectifying its rotation dur-
ing sinking, while the other, the Ring intruder, is not. This
rectification can be understood as the process of returning to,
or recovering, the initial rotation angle once one oscillation
of the cell has concluded and, as can be seen in the temporal
evolution of θ [Fig. 11(a)], the difference in the rotation angles
between the No-ring and Ring intruders is produced by a
nonrectifying cumulative process taken by the latter.

To understand why the tilting dynamics is affected by the
presence of the legs, which makes the No-ring intruder able to
further rectify its rotation—at least for the values of gamma
between 0.25 and 1.25—we calculate from the simulations the
torque about the center of mass and the angular velocity.

Figure 11 shows the time evolution of θ , the angular ve-
locity, the torque about the center of mass and the oscillation
of the cell for the two types of intruders in a simulation with
� = 1.0. Focusing on the θ curve, the difference in tilting
can be noticed during the first second of the simulation [as
in Fig. 8(b) for the averaged values] as well as the aforemen-
tioned Ring intruder nonrectification process. Unexpectedly,
the values of the torques shown in Fig. 11(c) are very similar
for the two intruders, contradicting the intuitive idea that the
sole presence of the legs would produce higher torques about

(d)

(b)

(c)

(a)

FIG. 12. Simulations. Pressure field in the granular medium rep-
resented as a jet color map for No-ring (a) and Ring (c) intruders.
The color of the intruders represents their angular velocity using a
seismic color map. In (b) and (d) the outer segments of the intruders
are represented as a whole with a color corresponding to the resulting
torque about the center of mass that is generated on all grains belong-
ing to them. Notice that for the Ring intruder each leg is divided into
three segments. The grains in these segments are magnified for better
viewing. The resulting torque about the center of mass is represented
as the interior color of the intruder. For both angular velocity and
torque, blue color represents clockwise.

the Ring intruder’s center of mass making it rotate more. How-
ever, the slight differences may affect, to a greater or lesser
extent, the rotational movement of the latter with respect to
the No-ring intruder [see Fig. 11(b)].

In general, during the first half of a cell oscillation, both
intruders rotate in the same direction: counterclockwise due
to the fact that the granular bed moves from left to right.
But, during the second half, some forces appear in the bottom
and/or the inside of the Ring intruder’s right leg that do not
allow it to rotate in the same way as the No-ring does. In
some cases, these forces completely prevent it from rotating
clockwise, as in both first oscillations shown in Fig. 11. This
process is prone to occur in each of the oscillations during
the simulation, and its repetition causes the differences in
inclination observed for the two intruders after eight simulated
seconds (see Fig. 10).

Figure 12 illustrates in more detail what is described above.
In Figs. 12(a) and 12(c) it shows the pressure field in the
granular medium at t = 1.84 T (time indicated in Fig. 11 by
the vertical line), where the force chains are represented using
a sequential color map. In them, the color of the intruders rep-
resents their angular velocity, which in turn is displayed as a
diverging color map where blue indicates clockwise rotations.
Figures 12(b) and 12(d) show the contribution to the torque
about the center of mass of each of the intruder segments
as a result of the forces acting on them. In this case, the
color of the intruders is associated with the resulting torque
about the center of mass. Note that all the grains of each
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FIG. 13. Simulations. Grain tracking. Initial (left) and final
(right) positions of the No-ring (top) and Ring (bottom) intruders as
well as the grains of the granular medium next to them. The grains
right below the intruders are represented in blue, while yellow and
cyan represent the grains initially at the left and right side of the
intruders, respectively. Note that for the Ring intruder, the blue grains
initially located between the legs remain in the same region until the
end of the simulation

outer edge in Figs. 12(b) and 12(d) are represented with one
color corresponding to the resulting torque about the center
of mass obtained from the torques of all the particles on this
same edge, though only the parts of the edge in contact with
the granular medium are effectively interacting. These figures
help identify what type of torque, clockwise or counterclock-
wise, is generated in each part of the intruders (including the
legs), how it is generated, and how representative it is for
the resulting torque about the center of mass. In this partic-
ular case, it is observed for the Ring intruder that the force
associated with the lower part of the right leg is responsible for
almost canceling the torque about the center of mass. There-
fore, the Ring intruder remains inclined while the No-ring one
rotates back to its original position.

Those forces acting on the Ring intruder’s legs could be
associated with the grain jamming between them. Figure 13
shows that almost all the blue grains that were initially in
the region between the legs remain there throughout the sim-
ulation. Furthermore, it can be seen that some of the grains
(cyan) around the Ring intruder accumulate between its legs:
this is because during the first part of the oscillations these
grains tend to move towards the legs, however, they cannot
leave them during the second part. In contrast, grains in the
region below No-ring intruders have more freedom to exit.
The previous process suggests that the Ring intruder along
with the grains between the legs could be treated as a No-ring
intruder with increased friction at the bottom. This increase
in friction will make the grains underneath more likely to
get stuck, preventing them from coming out and thus creat-
ing force chains capable of stopping the clockwise rotation
(restoring towards vertical position) of the intruder.

A final observation from the simulations for dimensionless
accelerations of � = 1.5 is that the No-ring intruder rotates

almost 90◦ in a 100% of the cases where it reached 45◦,
doing so in an abrupt way. The Ring intruders, however,
show a constant growth up and, in some cases (after reaching
90◦), increase the slope reaching values of up to 180◦. It is
worth noting that once Ring intruders turn 90◦ they begin to
resemble No-ring ones as the presence of the legs loses im-
portance in the penetration dynamics. Behaviors such as those
described before were not observed experimentally since the
� values used in the experiments did not exceed 1.24 due to
technical limitations of the shaker used.

The experimental findings are explained not only by the
numerical simulations, but also by a Newtonian model de-
veloped in the Appendix Sec. A 1. This model is based in
the force balance on a cylinder sinking in a granular medium.
The forces considered in the 1D model are gravity, a frictional
force proportional to velocity and a pressure like force, pro-
portional to the depth h, as expressed in Eq. (A13). Though
this model does not include the degree of freedom associated
with tilting, the consideration of its influence in the lineal and
surface dimensions of the intruder is enough to explain why a
tilted intruder reaches a final depth smaller than that reached
by a nontilted intruder for a given �.

Now we examine the influence of the intruder’s aspect ratio
on the penetration dynamics. The results of the simulations
performed with the intruders of different aspect ratios are
summarized in Fig. 14. Figure 14(a) compares the dependence
of the final tilt of two intruders with the same aspect ratio
(1), one with legs and the other with a flat bottom. With the
exception of the smaller values of � where no noticeable
differences are apparent, the intruder with legs always tilts
more. This behavior is repeated in the results of Fig. 14(b) for
a larger aspect ratio (1.1125): again the intruder with legs has
a final tilt larger than the one with a flat bottom. Therefore, the
above suggests that the presence of a ring at the bottom of the
intruder causes a higher final tilt, although it might become
less important with increasing aspect ratio. Figures 14(c) and
14(d) compare intruders with the same foundation and differ-
ent aspect ratios. Both figures lead to the same conclusion: the
larger the aspect ratio, the larger the tilt angle. Summarizing
the results of Fig. 14, the intruder with higher aspect ratio
and ring placed on the bottom has the largest tilt angle for all
dimensionless accelerations, and the intruder with flat bottom
and lower aspect ratio has the smallest tilt angle. Interestingly,
the other two intruders show approximately equal final tilt
angle values for equal values of �.

IV. CONCLUSIONS

We have studied the behavior of cylindrical objects as
they sink into a dry granular bed fluidized by horizontal
oscillations, as a model system to understand the effects of
earthquake-related fluidization of soils on human construc-
tions and other objects like rocks.

We have found that, within a relatively large range of
lateral shaking amplitudes at a frequency of 5 Hz, cylinders
with flat bottoms sink vertically, while those with a “founda-
tion” consisting of a shallow ring attached to their bottom, tilt
laterally besides their vertical sinking.

We have been able to mimic the above described behaviors
by quasi-2D numerical simulations. With their help we found
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(d)

(b)

(c)

(a)

FIG. 14. Simulations. Final tilt angles at different � for two intruders with (a) aspect ratio 1 and different foundations; (b) aspect ratio
1.1125 and different foundations; (c) a flat bottom and different aspect ratios and (d) a ring at the bottom and different aspect ratios.

that these differences are not necessarily due to the sole exis-
tence of the legs that generate bigger torques about the center
of mass. Instead, they can be associated with the jamming of
the particles in the region between the legs, which can increase
the friction at the bottom of the Ring intruder generating
force chains capable of preventing the total recovery of its
initial angle of rotation. Numerical experiments also helped
to clarify the influence of the intruder aspect ratio on the tilt
dynamics: of two intruders with the same foundation, the one
with higher aspect ratio will have a larger tilt angle. So the
aspect ratio and the foundation type cooperate to establish the
penetration dynamics of the intruder.

We have also reproduced the vertical sink dynamics of
cylinders with a flat base using a Newtonian equation of
motion for an object penetrating a fluidized layer of granular
matter, where the granular effective density increases with
depth, eventually reaching a solid phase. The same model
allows to understand the sinking even in the present of tilting
(Appendix Sec. A 1).

Finally, it is worth noting that preliminary experimental
data and quasi-2D numerical simulations suggest that, when

strong enough lateral shaking is applied, the tilting scenario
tends to dominate regardless the nature of the intruder’s foun-
dation.
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APPENDIX

1. Sink dynamics: A phenomenological Newtonian model

The model to be formulated should account for two related
processes, the sinking in the vertical direction and the oscilla-
tions perpendicular to it. But as was shown above, the No-ring
intruders have only small oscillations that end fast, being the
overall sinking process almost vertical. Regarding the Ring
intruders, though they strongly oscillate, the tilting process
ends first, so we will consider only the equation controlling
the vertical sinking, figuring out how the tilting angle affects
the sinking dynamics.

In order to formulate a model to describe analytically
the sinking process, let us consider the forces acting on the
cylinder. As soon as the shaking starts, if the dimensionless
acceleration is above threshold, the upper part of the granular
bed is fluidized, and the intruder sinks.

Let us assume that the cylinder just sinks vertically, and let
us name the vertical downward axis as z. The force balance on
the intruder can be written as

m�a = m�g +
∫

(−P)n̂ dS +
∫

σs · n̂ dS, (A1)

where P is the pressure, σs the shear stress tensor, n̂ is the
vector normal to the intruder’s surface, and the integrals run
over the boundary of the intruder that is inside the granular
material. Assuming a hydrostatic pressure profile, we can
write

P =
∫ h

0
ρ(z′)gdz′, (A2)

where h, as previously, is the depth reached by the cylinder
below the surface of the granular medium. In Eq. (A2) we
have made explicit that the density of the material varies with
depth. Let us assume that it varies as a power law between
zero and the density of the solid layer, ρsl , that is reached at a
depth h f :

ρ(z′) = ρsl

(
z′

h f

)p

, (A3)

where p ∈ [0, 1]. The selection of the value of p is discussed
below (see also Appendix Sec. A 2).

By combining (A3) and (A2) and integrating, we find
the hydrostatic buoyancy force acting on the cylinder with a
length h under the (average) level of the granular bed, as∫

(−P)n̂ dS = − ρsl Sg

(p + 1)hp
f

hp+1ĥ, (A4)

where S is the characteristic area of the intruder cross section,
and ĥ is a unit vector pointing downwards. It is easy to see that
the buoyancy force depends on the volume submerged into the
granular medium.

Neglecting the inertial forces, which according to our sim-
ulations is typically two orders of magnitude smaller than the
contact forces, the shear stress component goes as∫

σsn̂ dS = −Dγ vĥ, (A5)

where γ has the dimensions of a viscosity, D is the charac-
teristic size of the cross section of the intruder and v is its

FIG. 15. Time dependence of sinking depth for the No-ring
cylinder from experiment, compared with that determined from Eqs.
((A9) and (A10)). The inset shows the solutions of Eq. (A6) for
different values of p (see text).

sinking speed [58,59]. By substituting Eq. (A4) and Eq. (A5)
into Eq. (A1), and recovering only the modular values, we get

m
d2h

dt2
+ Dγ

dh

dt
+ ρsl Sg

(p + 1)hp
f

hp+1 = mg. (A6)

Before solving Eq. (A6) we will assume that the sink veloc-
ity is constant, which follows quite well the behavior during
the fast sink regime, as seen in Fig. 15 (i.e., we neglect the
inertial term). So

dh

dt
+ ρsl Sg

Dγ (p + 1)hp
f

hp+1 = mg

Dγ
, (A7)

which can be written as

dh

dt
+ ahp+1 = b. (A8)

The definitions of a and b are easily deduced by comparing
Eqs. (A7) and (A8).

Equation (A8) has analytical solutions if p = 0 or p = 1,
which correspond to the extreme cases of constant density and
a linear density profile with depth, respectively. The solutions
are

h(t ) = b

a
(1 − e−at ) (A9)

if p = 0, and

h(t ) =
√

b

a
tanh(

√
abt ) (A10)

if p = 1.
It is easy to see that both expressions correspond to an

exponential growth that saturates.
Figure 15 shows the experimental results (continuous line)

obtained for a dimensionless acceleration � 	 0.3. It is pos-
sible to see in more detail the initial fast sinking process,
followed by the slow creep. Figure 15 also shows the fitting
of Eqs. (A9) and (A10) to experimental data. Both solutions
reproduces well the main features of the sinking process.
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It is almost impossible to determine experimentally the
exact density profile. But we do not need to know it in order to
validate our model, if we use the following rationale. First, we
fit Eqs. (A9) and (A10) to the experimental data and obtain the
values of a, b that correspond to p = 0 [a(p = 0), b(p = 0)]
and p = 1 [a(p = 1), b(p = 1)]. Let us assume that a and b
vary linearly with p between the extremes values which were
obtained from the fitting process. For an intermediate value of
p (e.g., p1) we can calculate the corresponding values of a(p1)
and b(p1). With them, we can in turn determine the constants
of Eq. (A6). Then, we solve this equation numerically. This
procedure is repeated for values of p between 0 and 1, with a
step of 0.1.

The inset in Fig. 15 shows some of the numerical solutions
for the values of p in the legend. The main conclusion is that
the density profile has small influence on the first (and most
important) part of the sinking process. Of course, the final
depth is influenced by the value of p, but due to experimental
uncertainties, it is almost impossible to choose any particular
value.

Let us now study the influence of the values of p in the
quality of the fit of the solution of Eq. (A6) to the experimental
data. For doing this we notice that the values of a and b
in Eq. (A9) can be easily obtained from the experiments.
Considering Eq. (A8) in the first moments of motion, as h
is small, h′(t ) 	 b, so b can be evaluated as the initial slope.
As at large times h(t ) ∼ heq [heq = �h if h(0) = 0] then a =
b/hp+1

eq . Then solving Eq. (A6) for a given value of b, p, a(p)
and naming the result hmod, the best value of p arises from the
minimization:

popt = arg min
N∑

i=1

[hmod(ti, p) − hexp(ti )]
2, (A11)

where hexp(t ) are the experimental values of h.
The result for � � 1.0 is indifferent to p: the fit is equally

good no matter which is the value of p ∈ [0, 1]. For � = 1.24
there are differences in the quality of the fits for various
values of p, but Eq. (A11) gives a minimum for p = 0, so,
we will use p = 0 in the following (Appendix Sec. A 2 sup-
ports the selection of p from the simulations). Then Eq. (A6)
becomes

m
d2h

dt2
+ Dγ

dh

dt
+ ρsl Sg

h f
h = mg, (A12)

which can be taken as the simplest equation of motion describ-
ing the vertical sink dynamics of our cylinders. It is worth
noticing that Eq. (A12) reproduces quite closely the results
reported in Fig. 15, and can be used to qualitatively describe
the vertical sinking of Ring-cylinders while tilting, as we
will see below. It is possible to demonstrate that Eq. (A12),
developed for a granular bed fluidized by shaking, is closely
related with that proposed in [30] to describe the penetration
of an intruder into ultralight granular material that eventu-
ally behaves like a fluid medium even in the absence of
shaking.

In order to understand the influence of the tilting dynamics
in the sinking process, it is useful to note that, when applying
Eq. (A12) to a tilted cylinder, the values of both D and S
change. The reason is that when we calculate the surface

FIG. 16. Time dependence of sinking depth as calculated solving
numerically Eq. (A12) considering the variation of S and D provoked
by tilting (see text). Upper curve is for θmax = 0, while the lower one
is for θmax = π/3. Between them, θmax varies in steps of π/15. The
inset shows the last three seconds.

integrals, the result will be proportional to the cylinder’s
immersed volume. As the cylinder tilts, both the immersed
surface and linear dimensions increase more than in the case
of sinking without tilting, so the drag force is bigger in the
former case. Considering, for instance, the situation repre-
sented in the lower row of Fig. 2, when the cylinder sinks
a distance �h, the surface and linear dimensions increase as
the inverse of cos θ (of course, other intruder geometries may
follow different laws).

To test it, let us assume a simplified model: the increase
factor of S and D is proportional to the characteristic size
of the cross section of the cylinder projected on the hori-
zontal plane, i.e., it is proportional to the inverse of cos θ .
Then, instead of D and S, we will solve Eq. (A12) using
D/ cos θ (t ) and S/ cos θ (t ), where θ (t ) is a function that
grows from zero to the maximum angle θmax reached by
the cylinder, mimicking Fig. 6(c), i.e., with the same time
constant.

The consequences can be seen in Fig. 16. While in the
beginning the sinking process in all situations occurs with the
same dynamics, as the cylinder approaches the final angle,
the behavior changes, being the final depth larger for the
situations corresponding to low tilting.

The upper curve, calculated for θ = 0 coincides with the
upper curve in the inset of Fig. 15 (calculated for p = 0).
Subsequent curves are calculated for values of θmax vary-
ing in steps of π/15, the lowermost curve corresponds to
θmax = π/3. As the inclination of the cylinder increases, both
the buoyancy and the viscous drag do. The effect of these
factors on the sinking process of Ring cylinders was al-
ready noted in Fig. 6(b): an immediate consequence is the
decrease of the sinking depth (for a given �), compared
with that of the No-ring ones, which can be easily observed
in the experiments. From the inset it is possible to deduce
that, for the larger angles, a small decrease in the depth is
observed.
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FIG. 17. Density profiles for the different values of dimension-
less acceleration � obtained from the simulations. The background
shows the subdivision of the simulation box where the color of
each rectangle goes sequentially from blue to red and represents its
density. The intruder is represented in light gray.

In spite of the simplifications assumed, it is worth not-
ing that one of the basic differences between Figs. 7(a)
and 7(b)—for a given � the No-ring cylinders sink deeper
than the Ring ones—could be qualitatively described by our
model.

Finally, there is another element that was neither consid-
ered by us: as the container shakes horizontally, it produces

a horizontal drag that changes periodically its direction. Ac-
cording to [60], it creates an additional lift force, and also a
dependence of the drag force with depth, which, of course,
must influence the detailed penetration dynamics of the Ring
cylinders. The results of Li et al. [40] also support these
ideas.

2. Density profile of the granular medium

At each time step the simulation box is subdivided into a
fixed number of rectangles for which the density is calculated
as ρ = m/V , where m is the sum of the masses of all the par-
ticles of the granular medium within each rectangle and V is
the volume of the rectangle calculated as its area multiplied by
the average diameter of the particles of the medium inside it.

The density profile for each dimensionless acceleration �

is obtained by calculating the average of the density profile at
each time step. The latter is obtained by averaging the profiles
of a set of rectangle columns near the intruder. These columns
are chosen avoiding the presence of the intruder in them in
order not to affect the density profile since only the particles
that compose the granular medium are taken into account in
its calculation.

Figure 17 shows the density profiles as a function of depth
for the different values of �. As can be seen in the region of
the graph enclosed by dashed lines, the density of the medium
saturates rapidly with increasing depth for all dimensionless
accelerations. This fact supports from the simulations the use
of p = 0 in expression (A4).
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