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Theory of the nanoscale surface ripples produced by ion irradiation
of a miscut (001) gallium arsenide surface
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We develop a theory for the surface ripples produced by near-normal-incidence ion bombardment of a (001)
GaAs surface with a small miscut along the [110] direction. We restrict our attention to the case in which
the energy of the incident ions is below the sputter yield threshold and the sample temperature is just above
the recrystallization temperature. Highly ordered, faceted ripples with their wave vector aligned with the [110]
direction form when the ion beam is normally incident and there is no miscut. Two additional terms appear in
the equation of motion when the beam is obliquely incident and/or there is a miscut: a linearly dispersive term
and a nonlinearly dispersive term. The coefficients of these terms can become large as the threshold temperature
for pattern formation is approached from above. In the absence of strong nonlinear dispersion, strong linear
dispersion leads to ripples with a dramatically increased degree of order. These ripples are nearly sinusoidal
even though they are on the surface of a single crystal. The exceptionally high degree of order is disrupted by
nonlinear dispersion if the coefficient of that term is sufficiently large. However, by choosing the angle of ion
incidence appropriately, the coefficient of the nonlinearly dispersive term can be made small. Ion bombardment
will then produce highly ordered ripples. For a different range of parameter values, nucleation and growth of
facets and spinodal decomposition can occur.
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I. INTRODUCTION

Bombarding a solid surface with a broad ion beam can pro-
duce a variety of self-assembled nanoscale patterns, including
surface ripples and hexagonal arrays of mounds [1–6]. The
spontaneous formation of these patterns is not just fascinating
in its own right: ion bombardment has the potential to become
a cost-effective method to rapidly fabricate large-area nanos-
tructures with features smaller than those that can be produced
by conventional optical lithography. The patterns that form,
however, are typically rife with defects, and this has been a
longstanding issue in this field. This problem has been the
primary obstacle that has prevented the widespread use of ion
bombardment as a nanofabrication tool, and a great deal of
work has been done with the goal of producing defect free
patterns [7–21].

In 2015, Ou et al. reported a dramatic breakthrough in
this quest: ripples with a remarkably high degree of order
emerged when a GaAs (001) surface was bombarded with a
normally-incident 1 keV argon ion beam and the sample was
maintained at a temperature T above its recrystallization tem-
perature TR [14,22]. Ripples of this kind have subsequently
been employed in a maskless, high-throughput method to
fabricate multilayer blazed diffraction gratings with periods
in the sub-50 nm range [23].

Ou et al. also introduced a phenomenological theory that is
able to at least partially account for the pattern formation they

observed [14]. In their theory, the role of the incident ions
is simply to produce vacancies in the crystal surface. These
vacancies diffuse on the crystal terraces until they attach to a
step edge. Ou et al. assumed that the slope dependence of the
sputter yield can be neglected [14]. They also assumed that
the ratio of gallium atoms to arsenic atoms remains one-to-
one even though one of the two atomic species would have
been preferentially sputtered. These assumptions are unnec-
essary, however, if the energy of the incident ions is on the
order of a few tens of electron volts since in this low-energy
regime, sputtering is negligible. Experiments in this regime
have already been carried out by Chowdhury and Ghose, who
bombarded a GaAs (001) surface with a normally-incident
30 eV argon ion beam while the sample was held at a temper-
ature T > TR [24]. The formation of well ordered ripples was
observed, although the order was not as strong as in the higher
energy experiments of Ou et al. [14]. Chowdhury and Ghose
also found that ripples formed for temperatures T above a
critical temperature Tc,0, whereas the surface remained flat for
T < Tc,0 [24].

In this paper, a theory for the pattern formation that occurs
when the surface of a GaAs single crystal is bombarded with a
near-normally-incident, low-energy noble gas ion beam is de-
veloped. We consider both (001) surfaces and (001) surfaces
with a small miscut along the [110] direction and focus on
temperatures T close to the threshold temperature for pattern
formation Tc,0.
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The equation that is found to govern the surface dynamics
of a (001) surface is identical to the one Ou et al. arrived
at using phenomenological arguments. In this case, ion bom-
bardment produces highly ordered, faceted ripples with their
wave vector aligned with the [110] direction. These ripples
are not perfectly ordered, however, since their wavelength can
vary along the [110] direction.

Our motivation for studying the effect of a miscut is that
there are a priori reasons to believe that ion bombardment of
a miscut surface could produce an even higher degree of order
than bombarding a surface without a miscut. Two additional
terms appear in the equation of motion (EOM) when there is
a miscut. One of these is a linearly dispersive term, and strong
linear dispersion has been shown to engender a high degree
of order in other contexts [18,20,25]. Consistent with this, we
find that when the coefficient of this term (γ ) is large, ripples
develop with a higher degree of order than for γ = 0. Our
simulations and analytical work establish that these ripples
are not faceted but instead have a nearly sinusoidal profile.
The second additional term that appears in the EOM when
there is a miscut can be thought of as a source of nonlinear
dispersion. When its coefficient (κ) is sufficiently large, this
term can disrupt the order produced by strong linear disper-
sion. However, by adjusting the angle of incidence θ , the ratio
κ/γ can be made small. Ion bombardment will then produce
highly ordered ripples with a nearly sinusoidal profile on the
GaAs surface.

This paper is organized as follows: We present a derivation
of the EOM in Sec. II. In Sec. III, we recast the EOM in
dimensionless form and consider the behavior of its solutions
at early times, before the effect of the nonlinear terms be-
comes appreciable. Previous results on the behavior of the
surface when the ion beam is normally incident and there is
no miscut are briefly summarized in Sec. IV. For a certain
special case, the EOM is equivalent to a generalization of the
one-dimensional Cahn-Hillard equation to two dimensions, as
we show in Sec. V. As a consequence, the surface can exhibit
nucleation and growth of facets as well as spinodal decom-
position. The case of strong linear dispersion is studied in
Sec. VI using an expansion in powers of γ −1 and simulations.
We place our results in context in Sec. VII and conclude in
Sec. VIII.

II. EQUATION OF MOTION

Consider the planar surface of a single crystal of GaAs. We
take the surface to be the (001) plane or the (001) plane with
a small miscut along the [110] direction. We place the origin
on the surface of the sample and orient the z axis so that the
sample occupies the region z � 0. In addition, we orient the x
axis so that it is parallel to the surface projection of the [110]
direction. The normal to the (001) crystal planes is −x̂ sin ψ +
ẑ cos ψ , where ψ is the miscut angle.

We now perturb the sample surface slightly and bombard it
with a broad noble gas ion beam. The energy of the incident
ions will be taken to be below the sputtering threshold so that
sputtering is negligible. The incident ion flux is J = −J ê,
where ê ≡ −x̂ sin θ + ẑ cos θ and θ is the the angle of in-
cidence, i.e., the angle between the global vertical and the
incident beam. The projected ion direction lies along the x
direction. We will take θ to be either zero or small.

We will employ a continuum description of the surface
dynamics in which the position of an arbitrary point r on
the film’s surface is given by r = xx̂ + yŷ + u(x, y, t )ẑ, where
u(x, y, t ) is the height of the point above the x-y plane at time
t . The surface height u is obtained by coarse-graining the
detailed microscopic surface configuration and is assumed to
be a smoothly varying function of its arguments x, y, and t . We
assume that no overhangs are initially present and that none
form as the film grows, so that u(x, y, t ) is a single-valued
function of x and y for all times t .

Well above the recrystallization temperature, the damage
done to the crystal structure by the ion impacts is rapidly
annealed away, and the sample remains essentially crystalline.
Pattern formation on the surface of materials that remain
crystalline during ion bombardment is strongly influenced by
the Ehrlich-Schwoebel (ES) barrier [26–29]. The ES barrier
makes the attachment of a surface vacancy more likely at
a descending step on a crystal surface than at an ascending
step. It therefore produces an effective uphill atomic current
on the crystal’s surface and tends to destabilize an initially
flat surface. This current is typically anisotropic, which is
a manifestation of the anisotropy of the underlying crystal
lattice. For T well below TR, on the other hand, the damage
quickly accumulates as time passes and an amorphous layer
develops at the surface of the solid. Momentum transfer from
the incident ions to atoms near the surface of the solid leads
to mass redistribution (MR) which has a stabilizing influence
for normal-incidence ion bombardment [30–32]. Between the
low- and high-temperature extremes, the subsurface damage
varies continuously with temperature, and therefore so does
the surface atomic current. The stabilizing effect of MR is
stronger than the destabilizing influence of the ES barrier for
T < Tc,0 and θ = ψ = 0 and, as a consequence, the surface
remains flat. Conversely, for T > Tc,0 and θ = ψ = 0, the
ES effect dominates MR, the surface is unstable, and ripples
with their wave vector along the x axis form on the surface.
The surface becomes unstable for T greater than the critical
temperature Tc(θ, ψ ) when θ and ψ are nonzero. Clearly,
Tc(−θ,−ψ ) = Tc(θ, ψ ) and Tc(0, 0) = Tc,0.

Ions are implanted in the low-energy regime. However, the
noble gas ions penetrate only a few nanometers into the solid,
are highly mobile, and usually desorb when they reach the
solid surface [33]. Ion implantation can therefore be safely
neglected.

When sputtering and implantation are neglected, the mass
of the solid is conserved. This makes the low-energy limit
fundamentally different than the higher energy regime in
which sputtering is significant. In addition, while curvature-
dependent sputtering and ion implantation can contribute to
the surface instability in the higher energy regime [34–36],
they do not do so in the low-energy regime.

The ratio of gallium atoms to arsenic atoms remains one-
to-one during the irradiation because there is no sputtering.
In principle, MR could affect the gallium and arsenic atoms
differently and so change the composition locally [4,5]. How-
ever, differential mass redistribution has been found to be
negligible for bombardment of GaSb with 250 eV Ar ions
[37,38]. Because the mass difference between Ga and As is
considerably smaller than the mass difference between Ga
and Sb, we will assume that differential mass redistribution
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is also negligible for GaAs. Furthermore, in the absence of
any information to the contrary, we will take the difference
between the surface currents of Ga and As due to the ES effect
to be small enough that it can be neglected. The composition
then remains stoichiometric throughout the sample, which
minimizes the chemical free energy of the solid. Similarly, Ou
et al. [14] assumed that the composition remains stoichiomet-
ric throughout the solid in developing their phenomenological
theory.

Let j = jxx̂ + jyŷ + jz ẑ be the atomic current on the sur-
face of the solid. The current j, which is everywhere tangent
to the solid surface, includes contributions from the ES
effect and thermally activated surface diffusion in the high-
temperature regime, while in the low-temperature regime, MR
and ion-induced surface viscous flow [39] could contribute to
j. Because mass is conserved, the equation of motion for the
surface is the continuity equation

ut = −�(∂x jx + ∂y jy), (1)

where � is the atomic volume. The surface current j depends
on the angle of ion incidence θ and the miscut angle ψ . Its
value at time t also depends in principle on the form of the
entire surface at that time. In other words, for i = x and y,

ji = ji(θ, ψ, ux, uy, uxx, uxy, uyy, . . .), (2)

where the subscripts on u denote partial derivatives. Hence,

�−1ut = −∂x jx(θ, ψ, ux, uy, . . .) − ∂y jy(θ, ψ, ux, uy, . . .).
(3)

j also depends on the sample temperature T , as we have
already noted. However, we have not included T in the list
of arguments of j for the sake of notational simplicity.

Equation (3) completely specifies the dynamics of the sur-
face but, in general, it is exceedingly complicated nonlinear
partial differential equation. In addition, how jx and jy depend
on the temperature T , the angle of incidence θ , the miscut

angle ψ and all of the surface derivatives ux, uy, uxx, uxy, uyy,

etc. is not known for any noble gas ion species or energy.
Fortunately, the surface dynamics become much simpler close
to the critical temperature Tc,0 and for small values of θ and
ψ . We set ε ≡ |T − Tc,0|1/2, where ε is small and positive.
Because we wish to consider small angles of incidence θ and
miscut angles ψ , we take θ and ψ to be of order ε and put

θ = ρθε (4)

and

ψ = ρψε, (5)

where ρθ and ρψ are constants of proportionality. (The special
case in which the ion beam is normally incident and there is no
miscut is obtained by setting ρθ = ρψ = 0.) We seek solutions
to Eq. (3) of the form

u(x, y, t ) = U (X,Y, τ ), (6)

where

X ≡ εx, Y ≡ ε2y, and τ ≡ ε4t . (7)

X , Y, and τ are the so-called “slow” variables and x, y and t
are the corresponding “fast” variables. Heuristically speaking,
Eqs. (6) and (7) say that for T close to the threshold temper-
ature Tc,0 and for small θ and ψ , the height of the surface
disturbance varies slowly in space and time. In addition, the
spatial variation in the y direction is more gradual than in the
x direction because ripples with their wave vector pointing
in the x direction develop for T > Tc(θ, ψ ). An a posteriori
justification for adopting the scaling ansatz given by Eqs. (4)–
(7) will be obtained once we have arrived at an EOM that is
well-behaved in the ε → 0 limit.

Using the scaling given by Eqs. (6) and (7) in Eq. (3), we
obtain

−�−1ε4Uτ = ε∂X jx(θ, ψ, εUX , ε2UY , ε2UXX , ε3UXY , ε4UYY , . . .)

+ ε2∂Y jy(θ, ψ, εUX , ε2UY , ε2UXX , ε3UXY , ε4UYY , . . .). (8)

Let jx,n denote the derivative of jx(θ, ψ, ux, uy, uxx, uxy, uyy, . . .) with respect to its nth argument evaluated for θ = ψ = ux =
uy = uxx = uxy = uyy = . . . = 0. We define jy,n in an analogous fashion. The definition of quantities like jx,n,m and jy,n,m should
now be apparent. We expand Eq. (8) in powers of ε and retain terms up to fourth order in ε. The EOM must be invariant under
the transformation Y → −Y and so the coefficients of terms that do not have this invariance must have coefficients equal to zero.
In addition, the EOM must be invariant under the transformation X → −X , θ → −θ , and ψ → −ψ . We obtain

−�−1ε4Uτ = ε2( jx,3 + 1
2 jx,1,1,3θ

2 + jx,1,2,3θψ + 1
2 jx,2,2,3ψ

2)UXX + ε4 jx,8UXXXX + ε4 jy,4UYY

+ 1
6ε4 jx,3,3,3∂XU 3

X + 1
2ε4 jx,3,5∂

2
XU 2

X + ε3( jx,1,5θ + jx,2,5ψ )UXXX + 1
2ε3( jx,1,3,3θ + jx,2,3,3ψ )∂XU 2

X . (9)

For normal-incidence bombardment of a surface with no miscut, the surface is stable for T < Tc,0 and is unstable for T > Tc,0.
This means that jx,3 is negative for T < Tc,0 and is positive for T > Tc,0. For small enough values of T − Tc,0, we can make the
approximation jx,3 = A1(T − Tc,0), where A1 is a positive constant. Hence, close to the critical temperature, jx,3 = sA1ε

2, where
s is the sign of T − Tc,0. Recalling that we set θ = ρθε and ψ = ρψε, Eq. (9) becomes

−�−1Uτ = (
sA1 + 1

2 jx,1,1,3ρ
2
θ + jx,1,2,3ρθρψ + 1

2 jx,2,2,3ρ
2
ψ

)
UXX + jx,8UXXXX + jy,4UYY

+ 1
6 jx,3,3,3∂XU 3

X + 1
2 jx,3,5∂

2
XU 2

X + ( jx,1,5ρθ + jx,2,5ρψ )UXXX + 1
2 ( jx,1,3,3ρθ + jx,2,3,3ρψ )∂XU 2

X . (10)
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Notice that ε does not appear in Eq. (10), and so the scaling
we adopted does indeed result in an EOM that is well de-
fined in the ε → 0 limit. Equation (10) is invariant under the
transformation Y → −Y . In addition, for normal-incidence
bombardment of a surface with no miscut, ρθ = ρψ = 0
and then Eq. (10) is also invariant under the transformation
X → −X .

We must have jx,8 > 0, since otherwise arbitrarily short
wavelengths are linearly unstable and the continuum descrip-
tion breaks down. In addition, jx,3,3,3 cannot be positive since
if it were, the slope of the surface would grow without bound.
Finally, jy,4 must be negative because the flat surface is stable
for T < Tc,0 and θ = ψ = 0. Equation (10) becomes

Uτ = −AUXX − BUXXXX + DUYY + α∂XU 3
X

+ β∂2
XU 2

X + μUXXX + ν∂XU 2
X , (11)

where

A ≡ �
(
sA1 + 1

2 jx,1,1,3ρ
2
θ + jx,1,2,3ρθρψ + 1

2 jx,2,2,3ρ
2
ψ

)
,

(12)

B ≡ � jx,8, D ≡ �| jy,4|, α ≡ �| jx,3,3,3|/6, β ≡ −� jx,3,5/2,

μ ≡ −�( jx,1,5ρθ + jx,2,5ρψ ), (13)

and

ν ≡ − 1
2�( jx,1,3,3ρθ + jx,2,3,3ρψ ). (14)

The coefficients B and D in Eq. (11) are positive whereas α

is nonnegative. (As we shall see shortly, α must in fact be
positive.) In addition, by replacing U by −U if necessary, we
can arrange for β to be nonnegative. We can also arrange for
μ to be nonnegative by replacing X by −X if necessary.

When there is no miscut and the ion beam is normally
incident, μ = ν = 0 and Eq. (11) with s = +1 reduces to the
EOM that Ou et al. used to model the dynamics of the (001)
surface of GaAs when it is subjected to normal-incidence
bombardment at temperatures T > Tc,0 [14]. Ou and cowork-
ers arrived at this EOM using phenomenological arguments,
but we have shown rigorously that it is valid close to the
critical temperature.

Thermally activated surface diffusion and/or ion-induced
surface viscous flow lead to the presence of the term
−BUXXXX in Eq. (11) [39,40]. The terms proportional to UXX ,
UYY , ∂XU 2

X , and ∂XU 3
X all result from the dependence of the

surface current j on the surface gradient ∇u. This depen-
dence stems from the ES effect and ion-induced MR. The
term α∂XU 3

X in particular is familiar from the theory of the
mounding instability that can occur during molecular beam
epitaxy and can lead to the formation of a faceted surface [29].
Because the GaAs surface facets for T > Tc,0 and θ = ψ = 0,
the coefficient α cannot be zero. The term β∂2

X u2
X , on the

other hand, is the so-called conserved Kuramoto-Sivashinsky
(CKS) nonlinearity. Although it was first encountered in the
theory of molecular beam epitaxy [29,41], this term is also
believed to play a role in the dynamics of ion-bombarded
surfaces [42,43]. The CKS nonlinearity tends to produce
coarsening of the surface patterns, i.e., the characteristic lat-
eral and vertical length scales tend to increase with time. If
there is no miscut, the beam is normally incident and β is
nonzero, this term breaks the U → −U symmetry that would

otherwise be present. Since there is vacuum above the surface
and solid below, there is no reason that such a symmetry
should exist.

The final two terms on the right-hand side of Eq. (11)
break the X → −X symmetry and appear only when θ and/or
ψ is nonzero. The term proportional to UXXX arises because
the surface current due to MR depends on the curvature of
the surface, as shown by molecular dynamics simulations of
bombardment of silicon with a 1 keV argon ion beam [33].
This term produces linear dispersion, i.e., the propagation
velocity of low amplitude surface ripples depends on their
wavelength. A term proportional to UXXX also appears in the
EOM that describes the step bunching instability of a vicinal
surface [44] and so its appearance in Eq. (11) when there is
a miscut is perhaps not surprising. The term proportional to
∂XU 2

X appears in Eq. (11) because the angles that the facets
make with the X -Y plane depend on the angle of incidence
θ and the miscut angle ψ [14,45]. This term can change the
ripple velocity as its amplitude grows [46] and will therefore
be referred to as nonlinearly dispersive.

How slowly must the height of the surface disturbance u
vary with x for Eq. (11) to be valid? Let a0 be the characteristic
size of a collision cascade, or, equivalently, the characteristic
lateral length scale of the crater that the impact of a single
ion produces on the GaAs surface. The characteristic lateral
length scale (or length scales) of the surface ripple must be
large compared to a0 for Eq. (11) to be a good approximation.
If the surface disturbance is sinusoidal, then it has a single
characteristic lateral length scale—its wavelength. However,
if the surface disturbance is periodic but the characteristic lat-
eral length scale of the crests l+ differs from the characteristic
lateral length scale of the troughs l−, then both l+ and l− must
be large compared to a0 for Eq. (11) to apply. This possibility
is not academic—in general, l+ and l− differ [47].

Equation (11) is

ut = ∂x
(
aux + bu2

x + αu3
x

) − Buxxxx + Duyy + β∂2
x u2

x + cuxxx

(15)
when written in terms of the original variables. Here

a ≡ −�
[
A1(T − Tc,0) + 1

2 jx,1,1,3θ
2

+ jx,1,2,3θψ + 1
2 jx,2,2,3ψ

2
]
, (16)

b ≡ −�( jx,1,3,3θ + jx,2,3,3ψ )/2, (17)

and

c ≡ −�( jx,1,5θ + jx,2,5ψ ). (18)

Recall that the surface is stable for T < Tc(θ, ψ ) and is
unstable for T > Tc(θ, ψ ). Therefore, a is positive for T <

Tc(θ, ψ ) and is negative for T > Tc(θ, ψ ). It follows that

Tc(θ, ψ ) = Tc,0 − 1

2A1
( jx,1,1,3θ

2 + 2 jx,1,2,3θψ + jx,2,2,3ψ
2).

(19)
Tc(−θ,−ψ ) = Tc(θ, ψ ) and Tc(0, 0) = Tc,0, as we have al-
ready observed. In addition, combining Eqs. (16) and (19),
we obtain

a = −�A1[T − Tc(θ, φ)]. (20)
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III. PRELIMINARY CONSIDERATIONS

Consider the behavior of solutions to the EOM (11) for
T > Tc, so that A > 0 and the surface is unstable. We intro-
duce the dimensionless quantities

x̃ ≡
(

A

B

)1/2

X, ỹ ≡ A

(DB)1/2
Y,

t̃ ≡ A2

B
τ, and ũ ≡

(
α

B

)1/2

U . (21)

Making these substitutions in Eq. (11) and dropping the tildes
yields

ut = −uxx + uyy − uxxxx + ∂xu3
x + r∂2

x u2
x + γ uxxx + κ∂xu2

x,

(22)

where r ≡ β(αB)−1/2 � 0, γ ≡ μ(AB)−1/2 � 0, and κ ≡
ν(AB)−1/2 are dimensionless parameters. If the surface height
u does not depend on the transverse coordinate y, then Eq. (22)
reduces to

ut = −uxx − uxxxx + ∂xu3
x + r∂2

x u2
x + γ uxxx + κ∂xu2

x, (23)

which we will refer to as the 1D EOM.
Because the surface is nominally flat at time t = 0, Eq. (22)

can be linearized at early times. The linearized EOM has
sinusoidal solutions of the form

u(x, y, t ) = Re [u0 exp(ik · x + σ t )], (24)

where u0 is an arbitrary complex constant, x ≡ xx̂ + yŷ, k ≡
kxx̂ + kyŷ is the wave vector, and

σ = σ (k) = k2
x − k4

x − k2
y − iγ k3

x . (25)

The amplitude of this sinusoidal ripple grows exponentially
in time with the rate Re σ (k) = k2

x − k4
x − k2

y . [The amplitude
decays exponentially if Re σ (k) is negative.] In addition, the
ripple propagates with the velocity −Im σ (k)/k = γ k3

x /k in
the direction of its wave vector. If γ is nonzero, then the
propagation is dispersive because the velocity of propaga-
tion depends on the wavelength. Re σ (k) is maximized for
kx = 1/

√
2 and ky = 0. It follows that ripples with wavelength

2
√

2π and with their wave vector along the x direction emerge
shortly after the irradiation begins. These ripples propagate in
the x direction with velocity γ /2.

The full nonlinear EOM (22) depends on three dimension-
less parameters, r, γ , and κ . The parameters r, γ , and κ are
measures of the strength of the CKS nonlinearity, linear dis-
persion and nonlinear dispersion, respectively. For the sake of
simplicity, we will begin by studying the behavior of Eq. (22)
for the special cases in which only r is nonzero (Sec. IV) and
in which only κ is nonzero (Sec. V). We will then move on to
study the case in which γ is nonzero in Sec. VI. In that section,
we will also study cases in which either r or κ is nonzero. The
distinctive features of the dynamics will be highlighted in each
these of three sections.

IV. NORMAL-INCIDENCE BOMBARDMENT
OF A SAMPLE WITH NO MISCUT

If there is no miscut and the ion beam is normally incident
on the sample surface, then γ = κ = 0 in the EOM (22)

but r is in general nonzero. This is the partial differential
equation (PDE) Ou et al. used to model normal-incidence
bombardment of the (001) surface of GaAs above the recrys-
tallization temperature [14]. It is also the EOM for the surface
of a growing thin amorphous film that is deposited by two
diametrically opposed atomic beams that are obliquely inci-
dent on a planar substrate and has been studied extensively in
that context [47]. Here we will simply summarize the results
of that investigation, rephrasing them in the context of the
current problem.

At early times, the ripples that form on the surface are
rounded and roughly sinusoidal in form, but as time passes,
they coarsen and become more faceted. At long times, the
ripples become highly ordered in the transverse direction and
few dislocations remain. The ripple wavelength and amplitude
vary in the longitudinal direction, however, and so the ripples
are not perfectly ordered.

The selected gradients are ∇u = ±x̂. Thus, surprisingly,
the selected slope does not depend on the coefficient r of
the CKS nonlinearity. The ripple crests and troughs are both
rounded, but for r > 0, the troughs are more rounded than
the crests. The surface ripples therefore display vertical asym-
metry, i.e., the appearance of the ripples changes if they are
reflected about the x-y plane. As r is increased, the rounding
of the troughs becomes more pronounced, while the crests
become progressively sharper. At the same time, the facets
become smaller. All of these aspects of the dynamics are
discussed in detail in Ref. [47] and are illustrated there by
quite a number of simulations.

V. NUCLEATION AND GROWTH OF FACETS
AND SPINODAL DECOMPOSITION

We now move on to the case in which κ is nonzero and the
linearly dispersive and CKS terms do not appear in Eq. (22),
i.e., γ and r both vanish. In this case, it is best to study
the EOM written in terms of the original, unscaled variables,
Eq. (15). The reason for this is that we will want to study the
behavior of the surface for both positive and negative values
of A, but we limited ourselves to the case in which A > 0 in
deriving Eq. (22). In the special case we are currently con-
sidering, β = c = 0 in Eq. (15), and we are interested in the
effect of varying the parameter b. This parameter is nonzero
only if there is a miscut.

Differentiating Eq. (15) with respect to x, setting β = c =
0 and defining φ ≡ ux, we obtain

φt = ∂2
x (aφ + bφ2 + αφ3 − Bφxx ) + Dφyy. (26)

If the surface height u does not depend on the transverse
coordinate y, then φy = 0 and Eq. (26) reduces to the one-
dimensional Cahn-Hilliard (CH) equation. Equation (26) is
therefore an anisotropic generalization of the one-dimensional
CH equation to two dimensions (2D). Variations of the surface
height in the transverse direction tend to be smoothed out in
the course of time as a result of presence of the term Dφyy in
Eq. (26), and so the solutions of this equation increasingly re-
semble solutions to the one-dimensional (1D) CH equation as
time passes. Because the behavior of solutions to the 1D CH
equation is well known [48], our discussion of the behavior of
Eq. (15) with β = c = 0 will be brief.
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We study the behavior of the solutions to Eq. (15) with
β = c = 0 in the domain in which 0 � x � L and 0 � y �
L and apply periodic boundary conditions. We introduce the
effective free energy

F ≡
∫ L

0

∫ L

0

[
1

2
Bu2

xx + f (ux, uy )

]
dxdy, (27)

where

f (ux, uy) ≡ a2

4α
+ 1

2
au2

x + 1

3
bu3

x + 1

4
αu4

x + 1

2
Du2

y (28)

will be referred to as the effective potential. Equation (15)
with β = c = 0 can be written

ut = −δF

δu
, (29)

where δF/δu denotes the variational derivative of F with
respect to the surface height u. Equation (29) implies that
dF/dt � 0, i.e., the effective free energy can never increase.
The dynamics therefore tends to minimize the value of F . This
greatly facilitates the analysis.

When θ = ψ = 0 and T > Tc,0, a is negative and b = 0. In
this case, the behavior is analogous to the behavior of the 1D
CH equation for a critical quench and the surface undergoes
spinodal decomposition [48]. The effective potential f has
minima at (ux, uy) = (±(|a|/α)1/2, 0). Therefore, the surface
will tend toward a state in which most of the surface has a
gradient ∇u nearly equal to ±(|a|/α)1/2x̂, i.e., the surface
will facet. The facets have an effective free energy equal to
zero. Adjacent facets are separated by “edges” which have a
positive free energy per unit length. ∇u changes rapidly but
not discontinuously as an edge is traversed. As some facets
contract and disappear and others grow, the pattern coarsens,
the total length of the edges declines, and the effective free
energy decreases.

The facet slope that is selected is (|a|/α)1/2 =
(�A1/α)1/2(T − Tc,0)1/2 and will be referred to as the
selected slope for the sake of brevity. It increases with the
temperature and decreases with the coefficient α of the cubic
ES nonlinearity.

When θ and/or ψ is nonzero, b is nonzero and the effec-
tive potential f (ux, uy) is asymmetric, i.e., it is not invariant
under the transformation ux → −ux. In this case, the behav-
ior is analogous to the behavior of the 1D CH equation for
an off-critical quench [48]. For a > ac = 2b2/(9α), the state
ux = uy = 0 is stable. Thus, for temperatures T sufficiently
far below Tc, the surface smooths. In the coexistence region
0 < a < ac, on the other hand, there is a local minimum in
the potential f (ux, uy) at ux = uy = 0. The global minimum
in the potential is at ux = φ∗ ≡ −(b + √

b2 − 4aα)/2α < 0
and uy = 0. The flat state ux = uy = 0 is therefore metastable.
Noise in the initial condition or shot noise in the ion beam
could lead to nucleation and growth of regions with ux values
φ1 and φ2 which satisfy φ∗ < φ1 < 0 and φ2 > 0. The value of
uy in these regions is zero. The surface slope varies smoothly
in interfacial regions between adjacent regions in which the
slope is very nearly constant. The width of these interfacial
regions depends on B. The precise values of the slopes φ1 and
φ2 can be determined using the requirement that the line join-
ing the points (φ1, f (φ1)) and (φ2, f (φ2)) must be tangent to

the curve f = f (φ) at these two points. Finally, for a � 0, the
flat state ux = uy = 0 is unstable and spinodal decomposition
occurs. Once again, regions in which uy = 0 and ux is nearly
equal to one of two selected values develop at long times and
are separated by interfacial regions in which the slope varies
smoothly.

The behavior for a case in which 0 < a < ac and b is
nonzero is illustrated by Fig. 1. In this simulation, a small
nucleation site was introduced at time t = 0. To create this
nucleus, we first introduced a small region with the selected
slopes on a surface. This region had discontinuities in height
at its edges, and so the surface was smoothed by averaging
the height at each grid point with the heights of its nearest
neighbors, giving us the initial condition seen in Fig. 1(a). As
time progressed, the area of the region in which ux is nearly
equal to one of the selected values φ1 and φ2 increased, as
shown in Figs. 1(b) and 1(c). Ultimately, this region expanded
to fill the entire domain (not shown).

VI. HIGHLY ORDERED, NEARLY SINUSOIDAL RIPPLES

It would be natural at this point to study the special case
of Eq. (22) in which r = κ = 0 and the coefficient of the
linearly dispersive term γ is nonzero. (Note that for γ to be
nonzero, θ and ψ cannot both be zero.) As we shall see, in
this case, highly ordered, nearly sinusoidal ripples form if γ

is sufficiently large. In fact, even if r or κ is nonzero, highly
ordered, nearly sinusoidal ripples emerge if γ is large enough.
We will therefore also consider cases in which r or κ are
nonzero in this section.

It is important to note that it is possible to make γ large
relative to r and κ in an experiment. To see this, we begin by
noting that

γ = − �( jx,1,5θ + jx,2,5ψ )

{�A1B[T − Tc(θ, ψ )]}1/2
. (30)

γ can therefore be made as large as desired by choosing T to
be close to Tc(θ, ψ ) but greater than it. In addition,

2
κ

γ
= jx,1,3,3θ + jx,2,3,3ψ

jx,1,5θ + jx,2,5ψ
. (31)

Suppose the miscut angle ψ is fixed. Equation (31) shows that
it is possible to arrange for κ/γ to be zero by an appropriate
choice of the angle of incidence θ . In an actual experiment,
κ/γ could not be made equal to zero precisely but it certainly
could be made small, and so the requirement κ � γ can
be satisfied by adjusting the angle of incidence. Finally, r
does not depend on θ or ψ and depends only weakly on the
temperature T . This means that we can also arrange to have
γ � r by choosing T − Tc(θ, ψ ) to be small and positive.

Because we are especially interested in finding means to
produce highly ordered ripples, the emphasis in this sec-
tion will be on the behavior for large γ . As we shall see, it is
possible to make analytical progress on Eq. (22) in that limit.

A. Perturbation expansion

To gain insight into the form that the surface takes at long
times when γ is large, we will find approximate solutions to
the 2D EOM (22) by carrying out a perturbation expansion in
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FIG. 1. Top row: Plots of the surface height u at (a) t = 0, (b) t = 50, and (c) t = 500, obtained from integration of Eq. (15) with the
following parameter values: a = 0.1, α = 1, B = 1, D = 1, β = 0, c = 0, and b = 2. Bottom row: Cuts of the surface along the horizontal
axis at y = 75, (d), (e), and (f), at the corresponding times. The domain size is 150 × 150.

powers of the small parameter ε ≡ 1/γ . (ε is not to be con-
fused with ε ≡ |T − Tc,0|1/2.) In particular, we seek solutions
of the form u = u(ξ ), where ξ ≡ x − vt . These traveling wave
solutions are independent of time in the frame of reference
that propagates in the x direction with the wave velocity v.
We obtain

−vuξ = −uξξ − uξξξξ + ∂ξ u3
ξ + γ uξξξ + r∂2

ξ u2
ξ + κ∂ξ u2

ξ .

(32)

We integrate this equation once with respect to ξ and eliminate
the resulting constant of integration C by setting ũ = u − C/v

and then dropping the tildes. Equation (32) becomes

uξξ + ωu + ε
(−uξ − uξξξ + u3

ξ + r∂ξ u2
ξ + κu2

ξ

) = 0, (33)

where ω ≡ εv.
We now set u = u0 + u1 + · · · and ω = ω0 + ω1 + · · · ,

where un and ωn are of order εn. Working to order ε0, we
obtain

u0ξξ + k2u0 = 0, (34)

where k ≡ √
ω0. This equation has the solution

u0 = A0 cos(kξ ), (35)

where we have chosen a phase and the amplitude A0 is a
constant. The equation we obtain by retaining terms up to
order ε1 is

Lu1 = q, (36)

where L ≡ ∂2
ξ + k2 is a differential operator and

q ≡ −ω1u0 + ε
(
u0ξ + u0ξξξ − u3

0ξ − r∂ξ u2
0ξ − κu2

0ξ

)
. (37)

Inserting our result Eq. (35) into Eq. (37), we find that

q = −ω1A0 cos(kξ ) + εkA0

(
−1 + k2 + 3

4
k2A2

0

)
sin(kξ )

− 1

2
εκk2A2

0 + 1

2
εκk2A2

0 cos(2kξ ) − εrk3A2
0 sin(2kξ )

− 1

4
εk3A3

0 sin(3kξ ). (38)

The operator L is self-adjoint, and so according to the Fred-
holm alternative, Eq. (36) has a solution if and only if q is
orthogonal to the kernel of L. sin(kξ ) and cos(kξ ) are in the
kernel of L, and so the coefficients of sin(kξ ) and cos(kξ ) in
q must be zero. As a consequence,

k = (
1 + 3

4 A2
0

)−1/2
(39)

and

ω1 = 0. (40)

Recalling that ω = εv = ω0 + ω1 + . . . and ω0 = k2, we ob-
tain

v = γ
(
1 + 3

4 A2
0

)−1 + O(ε). (41)

Making use of Eqs. (39) and (40), we see that Eq. (36)
reduces to

Lu1 = − 1
2εκk2A2

0 + 1
2εκk2A2

0 cos(2kξ ) − εrk3A2
0 sin(2kξ )

− 1
4εk3A3

0 sin(3kξ ). (42)

We set

u1 = B0 + B1 cos(2kξ ) + B2 sin(2kξ ) + B3 sin(3kξ ) (43)
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FIG. 2. Plots of the surface height u vs x at t = 1500 obtained from integration of Eq. (23) with the following parameter values. Top:
r = κ = 0 and (a) γ = 0, (b) γ = 1, (c) γ = 10. Middle: r = 1, κ = 0 and (d) γ = 0, (e) γ = 1, (f) γ = 10. Bottom: r = 0, κ = 1 and
(g) γ = 0, (h) γ = 1, (i) γ = 10. The domain size is 250 for all cases.

in Eq. (42) solve for the values of the constants B0, B1, B2, and
B3. This leads us to the conclusion that

u = A0 cos(kξ ) + ε
[− 1

6κA2
0 cos(2kξ ) + 1

3 rkA2
0 sin(2kξ )

+ 1
32 kA3

0 sin(3kξ )
] + O(ε2), (44)

where the irrelevant constant term εB0 has been dropped from
the right-hand side. Equation (44) shows that for large γ , the
steady-state solution is a sinusoid plus a small correction term.
The wave number is k, and it is related to the amplitude of the
steady-state solution A0 by Eq. (39).

Combining Eqs. (39) and (41), we see that the propagation
velocity v can be written

v = γ k2 + O(ε). (45)

The dispersion relation for the linearized EOM is given by
v = γ k2 for sinusoidal waves with wave vector k = kx̂. Equa-
tion (45) therefore shows that the nonlinear terms in the full
EOM (22) make higher-order contributions to the dispersion
relation.

There is a solution to the EOM (22) of the form Eq. (44)
for arbitrary amplitudes A0. The wave number and velocity of
the propagating wave are related to A0 by Eqs. (39) and (41),
respectively.

Although we have found approximately sinusoidal travel-
ing wave solutions to the EOM (22) when γ is large for all
amplitudes A0, there is no guarantee that a solution to Eq. (22)
with a low amplitude spatial white noise initial condition will
converge to a sinusoidal traveling wave solution at long times.
Moreover, even if this does happen, we do not know a priori
which value of A0 will be selected. To address these issues,
we carried out simulations of the EOM (22).
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FIG. 3. Plots of the RSDW vs γ at t = 1000 obtained from simulations of Eq. (23) with (a) r = 0 and κ = 0, (b) r = 1 and κ = 0, and
(c) r = 0 and κ = 1. The domain size was 250.

B. Simulations in one dimension

To begin, we will study the 1D EOM (23). We integrated
this PDE numerically using the fourth-order Runge-Kutta
exponential time-differencing method described by Cox and
Matthews [49] on the domain 0 � x � L and employed peri-
odic boundary conditions. An initial condition of spatial white
noise with amplitude 0.001 was used. The linear terms were
computed in Fourier space, and the nonlinear terms in real
space. A central finite differencing scheme accurate to fourth
order in the grid spacing was used to compute the nonlinear
terms.

Figure 2 shows plots of the surface at time t = 1500
for several representative choices of γ , r, and κ . This fig-
ure strongly suggests that cases in which γ is much larger than
r and κ produce surfaces with a much higher degree of order
than cases in which γ is zero or comparable in magnitude to
the other two parameters. This observation is confirmed by a
quantitative analysis, as we will see momentarily.

For a given set of parameters γ , r, and κ , we carried
out multiple simulations. We computed the distances between
pairs of adjacent peaks and between pairs of adjacent troughs
in each simulation. The average interextremum distance in the
simulations is an estimate of the mean wavelength �. We
also computed the standard deviation of the interextremum

distances and divided it by � to give the relative standard de-
viation of the wavelength (RSDW). The RSDW is a measure
of the degree of order in the ripple pattern; it is small if the
pattern is highly ordered and large if it is not.

The RSDW was computed at time t = 1000 and was av-
eraged over 100 runs for each set of parameters we studied.
The results are plotted versus γ for three choices of r and
κ in Fig. 3. In each case, the distribution of interextremum
distances becomes narrow and the ripples become highly or-
dered as γ becomes large. Interestingly, for the cases in which
r �= 0 or κ �= 0, the degree of order initially deteriorates as γ

is increased from zero, but then steadily improves.
Our analysis of the steady states of Eq. (23) given in

Sec. VI A suggests that if γ is sufficiently large, the surface
is approximately sinusoidal at long times. The power spectral
densities (PSDs) shown in Fig. 4 confirm this: sharp peaks
appear in the PSDs at a certain wave number k for relatively
large γ but not for γ = 0. For the case with γ = 10, r = 1,
and κ = 0, a small peak can be discerned at a value of k
approximately equal to 2k, in accord with Eq. (44).

Additional evidence that the surface is approximately si-
nusoidal at long times if γ is sufficiently large is given in
Fig. 5. This figure shows the slope distributions of the sim-
ulated surfaces at t = 1000, averaged over 100 runs. Each

FIG. 4. PSDs for single simulations of Eq. (23) at t = 1500. Top: γ = 0 and (a) r = κ = 0, (b) r = 1 and κ = 0, and (c) r = 0 and κ = 1.
Bottom: γ = 10 and (d) r = κ = 0, (e) r = 1 and κ = 0, and (f) r = 0 and κ = 1. The black crosses are the actual data points, and the blue
dashed curves are guides to the eye. The domain size was 250.
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FIG. 5. Slope distributions obtained from simulations of Eq. (23) at time t = 1000. Top row: r = 0, κ = 0 and (a) γ = 0, (b) γ = 1, and
(c) γ = 10. Middle row: r = 1, κ = 0 and (d) γ = 0, (e) γ = 1, and (f) γ = 10. Bottom row: r = 0, κ = 1 and (g) γ = 0, (h) γ = 1, and
(i) γ = 10. The domain size was 250. For each of the three cases with γ = 10, the PDF is close to the slope distribution of a sinusoid with a
wavelength and amplitude equal to the average values of these quantities in the corresponding simulations. The latter distribution is shown in
orange.

distribution has been normalized so that the area under the
histogram is equal to unity, which converts them into prob-
ability distribution functions (PDFs). For each of the three
cases with γ = 10, the PDF is close to the slope distribu-
tion of a sinusoid with a wavelength and amplitude equal to
the average values of these quantities in the corresponding
simulations.

As we saw in Sec. V, most of the surface has a slope close
to one of two selected values for γ = r = 0. This is in accord
with the slope distributions in Figs. 5(a) and 5(g), both of

which display sharp peaks at two values of the slope. These
peaks broaden considerably as γ is increased and the surface
approaches a sinusoidal form.

According to the perturbation expansion, the wave number
k and the amplitude A0 are related by Eq. (39) in the steady
state. To test this prediction, we took k to be the wave number
of the Fourier mode with the largest amplitude and A0 to be the
amplitude of this mode. Different spatial white noise initial
conditions lead to different values of k and A0, and so the
values of these quantities were recorded separately for each
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FIG. 6. Plots of the quantity (1 + 3
4 A2

0)−1/2 vs k with values of k and A obtained at t = 1000 from simulations of Eq. (23) with (a) γ = 10,
(b) γ = 50, and (c) γ = 100. r = κ = 0 in all cases. The domain size was 250, and 100 simulations were carried out in each case. Each black
cross represents the measurements of a single simulation.

simulation we carried out. (1 + 3
4 A2

0)−1/2 is plotted against k
at time t = 1000 for r = κ = 0 and three different values of γ

in Fig. 6. Each data point represents a single simulation. The
vertical lines correspond to values of k that are allowed by
the periodic boundary conditions—specifically, the lines show
the values k = 2πn/L, where n is the number of wavelengths
present on the surface, and L is the domain size. The dashed
red line shows the expected linear relationship. The agreement
improves as γ increases and is quite impressive for γ = 100.
This is to be expected, since the perturbation expansion is an
expansion in powers of ε ≡ 1/γ .

The perturbation expansion also predicts how the prop-
agation velocity v depends on the wave number k in the
steady state—see Eq. (45). The value of k in our simulations
was determined as described in the preceding paragraph. We
computed the velocity of the ripples by measuring the rate
of change of the phase of the Fourier transform of u(x, t ) for
the wave number k. Figure 7 shows v plotted against γ k2,
with each data point representing a single simulation. v and k

FIG. 7. Plot of v vs γ k2 at time t = 1500 for simulations of
Eq. (23) with r = κ = 0. The domain size was 250. The dashed red
line is v = γ k2.

were measured at t = 1500. The dashed red line is v = γ k2,
the leading-order term in the perturbation expansion for the
velocity. The agreement is excellent, even for values of γ that
are not large.

As we have seen, for γ = r = κ = 0, the EOM (23) is
equivalent to the 1D CH equation. In this case, surface ripples
coarsen indefinitely, i.e., the surface width w and the mean
wavelength � increase for all times. (The coarsening does,
however, become logarithmically slow at long times [50].)
As Figs. 8 and 9 show, for nonzero γ , dispersion slows or
even arrests the coarsening that would otherwise occur. This
remains true if r or κ is nonzero provided that γ is sufficiently
large. Once again, this is consistent with the perturbation
expansion, since for large γ and at long times, the surface
approaches an approximately sinusoidal form that propagates
without significantly changing its shape.

Although the surface evolves into a highly ordered sinu-
soidal form when γ is large relative to r and κ , its behavior is
decidedly different if κ is comparable in magnitude to γ . As
illustrated by Fig. 10, in this case the term κ∂xu2

x destroys the
high degree of order that would exist in its absence.

C. Simulations in two dimensions

Because the term uyy in the 2D EOM (22) tends to smooth
out any variations of u in the y direction, the behavior of the
2D EOM is in most respects quite similar to that of the 1D
EOM (23). We will therefore only briefly discuss the behavior
of the solutions to the 2D EOM.

In Fig. 11, plots of the surface at time t = 1500 for several
representative choices of γ , r and κ are shown. As in 1D, cases
in which γ is significantly larger than r and κ produce surfaces
with a much higher degree of order than cases in which γ is
zero or comparable in magnitude to the other two parameters.
Further evidence that supports this conclusion is provided by
plots of the RSDW versus γ . These plots are not reproduced
here since they look very much like the corresponding plots in
1D (Fig. 3).

The PSDs at time t = 1000 in Fig. 12 have sharp peaks
for relatively large γ , confirming that just as in 1D, in 2D
the surface is approximately sinusoidal at long times if γ is
sufficiently large. As before, sharp peaks do not appear for
γ = 0. Distributions of the slope ux for simulations in 2D are
similar to those shown in Fig. 5 for 1D and are not included
for the sake of brevity. They provide additional support for
the conclusion that the surface is approximately sinusoidal at
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FIG. 8. Plots of the RMS surface width w vs t obtained from simulations of Eq. (23) with (a) r = 0 and κ = 0, (b) r = 1 and κ = 0, and
(c) r = 0 and κ = 1. The domain size was 250 and an average over 100 simulations was taken.

long times if γ is sufficiently large. As in 1D, plots of w and
� versus time (not shown) demonstrate that dispersion slows
or stops coarsening.

Although the dynamics are in many ways similar in one
and two dimensions, there is an aspect of the dynamics in
2D that occurs for relatively large γ that does not have a 1D
analog. In 2D, as time passes, multiple band-shaped regions
develop in which the ripples are highly ordered, as shown
in Fig. 13(a), for example. These bands are roughly aligned
with the x direction. Each pair of adjacent bands is separated
by a unique type of defect that we will refer to as a “seam.”
Typically, the number of wavelengths on either side of a seam
differ by one. A seam can therefore be thought of as a disloca-
tion that is spread out along the x direction. Analogous defects
occur in the anisotropic Kuramoto-Sivashinsky equation with
an added strongly dispersive term [18]. Clearly, seams are a
feature of the 2D dynamics that have no 1D counterpart.

Seams travel either parallel or anti-parallel to the y di-
rection, toward the region with the shorter wavelength, as
illustrated by Fig. 13. When two seams meet, they either
combine to form a new seam or, as in Fig. 13, annihilate.
Ultimately, no seams remain and a defect-free, highly ordered
ripple pattern remains.

To compare the results of our simulations in 2D with the
predictions of the perturbation expansion, we made 1D cuts
of the surface along the x direction at several equally spaced
values of y. These cuts are shown on the surfaces in Fig. 14.
We calculated the quantities A0, kx and v for each cut in

precisely the same way that we found these quantities for our
simulations in 1D.

The surfaces in the top row of Fig. 14 come from a simula-
tion of Eq. (22) with γ = 50 and r = κ = 0 and are at times
t = 100, 250, and 1000. In the second row of the figure, the
quantity (1 + 3

4 A2
0)−1/2 is plotted versus the wave number kx

for the surface above it. One point was plotted for each cut.
Because one or more points could lie atop one another, we
made the darkness of the crosses proportional to the number
of points that exactly coincided. At time t = 100, some of the
points in Fig. 14(d) do not agree with the perturbation theory
prediction, which is shown with a blue line. These points come
from cuts that happen to run through or near a seam. Because
the ripple amplitude is reduced in magnitude within a seam,
these points lie above the perturbation theory prediction. At
time t = 250, the agreement between the data and the predic-
tion is better, as seen in Fig. 14(e). Finally, at time t = 1000,
no seams remain and the agreement is excellent. A steady
state has very nearly been achieved at this time, and so the
agreement with the approximate steady-state solution found
using perturbation theory is to be expected.

There is an interesting sidelight to Figs. 14(d)–14(f). At
times t = 100 and 250, there are two different values of kx in
which the agreement between the perturbation theory predic-
tion and the simulation is very good. The reason for this is
that there are two bands of y values with different values of kx

where the ripple amplitude is close to the value predicted by
perturbation theory.

FIG. 9. Plots of the wavelength � vs t obtained from simulations of Eq. (23) with (a) r = 0 and κ = 0, (b) r = 1 and κ = 0, and (c) r = 0
and κ = 1. The domain size was 250 and an average over 100 simulations was taken.
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FIG. 10. Plots of the surface height u vs x at t = 750 obtained from integration of Eq. (23) with r = 0 and (a) κ = γ = 1, (b) κ = γ = 3,
and (c) κ = γ = 5. The domain size is 250 for all cases.

FIG. 11. Plots of the surface height u at t = 1500 obtained from integration of Eq. (22). Top row: r = κ = 0 and (a) γ = 0, (b) γ = 5,
(c) γ = 10. Middle row: r = 1, κ = 0 and (d) γ = 0, (e) γ = 5, (f) γ = 10. Bottom row: r = 0, κ = 1 and (g) γ = 0, (h) γ = 5, (i) γ = 10.
The domain size was 150 × 150 for all cases.
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FIG. 12. PSDs of the surface for single simulations of Eq. (22) at t = 1000. Top row: γ = 0 and (a) r = 0 and κ = 0, (b) r = 1 and κ = 0,
and (c) r = 0 and κ = 1. Bottom row: γ = 10 and (d) r = 0 and κ = 0, (e) r = 1 and κ = 0, and (f) r = 0 and κ = 1. The domain size was
150 × 150 in all six cases.

The velocity v is plotted versus γ k2
x for the surface above

it in Figs. 14(g)–14(i). Even at times t = 100 and 250, when
defects still remain in the patterns and there are bands of
ripples with different wave numbers, the agreement between
the simulations and the perturbation theory prediction is very
good. The defects have all disappeared by t = 1000, and the
points from all of the cuts very nearly coincide with each other
and the perturbation theory prediction.

To test the perturbation theory prediction for the depen-
dence of the ripple velocity on γ , we simulated Eq. (22) until
time t = 1000 for r = κ = 0 and a selection of γ values. Five
simulations were carried out for each choice of parameters.
The results are shown in Fig. 15. In this figure, points were
plotted for each 1D cut and each simulation, but this is not
apparent because the points for each choice of parameters
very nearly lie on top of one another. The agreement with the

leading-order prediction of perturbation theory, v = γ k2
x , is

excellent even for γ as small as two.
As in 1D, when κ is comparable in magnitude to γ , non-

linear dispersion disrupts the high degree of order that would
prevail if it were not present. This is illustrated by Fig. 16.

VII. DISCUSSION

Suppose a solid surface is sputtered by an obliquely
incident noble gas ion beam and that a layer at the surface
of the solid is amorphized by the bombardment. It was
shown in recent work that for angles of ion incidence θ just
above the threshold angle for pattern formation θc, linear
dispersion strongly affects the dynamics and highly ordered
ripples form [20]. That work suggests that in the problem
studied in the current paper, linear dispersion could lead to

FIG. 13. Plot of the surface height u at (a) t = 400, (b) t = 755, and (c) t = 800 for the case with γ = 50, r = 0, and κ = 0.
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FIG. 14. Top row: Plots of the surface height u for simulations of Eq. (22) with r = κ = 0 and γ = 50 at (a) t = 100, (b) t = 250, and
(c) t = 1000. The domain size was 150 × 150, and horizontal lines are drawn to show where cuts were made. Each cut yields one point in
each of the corresponding plots. Middle row: Plots of the quantity (1 + 3

4 A2
0)−1/2 vs kx at (d) t = 100, (e) t = 250, and (f) t = 1000. Bottom

row: Plots of v vs γ k2
x at (g) t = 100, (h) t = 250, and (i) t = 1000. In both the middle and bottom rows, the blue lines show the perturbation

theory predictions.

highly ordered ripples close to the the critical temperature
Tc when there is a nonzero miscut angle ψ . This is because
the coefficient γ of the linearly dispersive term in Eq. (22)
becomes large as T approaches Tc from above. However,
for highly ordered, nearly sinusoidal ripples to develop, γ

must be large compared to r, 1, and the coefficient of the
nonlinearly dispersive term κ . To ensure that γ is much
larger than κ , the angle of ion incidence θ must be chosen
appropriately. Once this has been done, ion bombardment
will produce highly ordered, nearly sinusoidal ripples.

To identify the angle θ that leads to highly ordered rip-
ples in an experiment, a shortcut could be employed. In
particular, the (001) surface of GaAs with a given mis-
cut angle ψ could be bombarded with a broadly divergent
ion beam at nominal normal incidence. In this way, by
imaging the surface at different points, the effect of bom-
barding with a range of angles of incidence could be
determined. Once the appropriate value of θ has been de-
termined, highly ordered ripples could be produced in future
experiments using a collimated ion beam with this angle of
incidence.

From a mathematical point of view, in earlier work it was
shown that if a sufficiently strong linearly dispersive term is
added to the 1D Kuramoto-Sivashinsky equation, then ripples
with a high degree of order will develop [25]. In the present
paper, we have shown that if a sufficiently strong linearly dis-
persive term is appended to the 1D CH equation for a critical
quench, then a highly ordered pattern will emerge. However, a
pattern with a high degree of order does not necessarily result
when a strong linearly dispersive term is added to the 1D CH
equation for a off-critical quench,

φt = ∂2
x (aφ + bφ2 + αφ3 − Bφxx ). (46)

This is due to the presence of the term b∂2
x φ2.

A natural question to ask is whether our theory could be
applied to other surfaces besides the (001) surface of GaAs.
At the present time, highly ordered ripples are known to form
on only one other surface that remains crystalline when it is
bombarded at normal incidence: the (001) surface of InAs
[14]. However, it is not known whether InAs is amorphized
by ion bombardment below a temperature TR. If there is
such a temperature TR, then it is below room temperature
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FIG. 15. v plotted versus γ k2
x at time t = 1000 for simulations of

Eq. (22) with the parameter values r = 0, κ = 0, and γ as indicated.
Five simulations were carried out for each value of γ . Each data
point represents a cut from a single simulation, but the points for
each choice of parameters very nearly lie on top of one another. The
dashed red line shows v = γ k2

x , the leading-order term in the pertur-
bation expansion for the velocity. The domain size was 150 × 150.

[45]. In addition, it has not yet been determined whether
highly ordered ripples form on InAs if the incident ions
have an energy below the sputtering threshold. If it turns
out that there is recrystallization temperature TR and highly
ordered ripples form on InAs when it is bombarded with
low-energy ions at a temperature T > TR, then our theory will
apply.

In the past, an imprecise analogy has often been made
between nanoscale surface ripples produced by oblique-
incidence ion bombardment of solid surfaces and aeolian sand
dunes (see Ref. [51], for example). For ion bombardment of
solids in the high energy regime, however, the analogy is
actually rather poor: incident ions move ballistically until they
reach the surface of the solid but air flows hydrodynamically
over a dune. In addition, the sputtering produced by the im-
pinging ions leads to nonlinear terms in the EOM that do
not conserve mass. In contrast, the mass is conserved in the
dynamics of aeolian sand dunes and therefore terms of this
kind do not appear in the EOM.

The analogy becomes much stronger when a crystalline
solid is bombarded in the low-energy regime in which sput-
tering does not occur because then mass is conserved. In the

FIG. 16. Simulations of Eq. (22) at t = 500 with the parameter
values (a) r = 0 and κ = γ = 3 and (b) r = κ = 0 and γ = 3. The
domain size was 150 × 150.

case of a miscut GaAs target, we have shown that the EOM is
Eq. (22) for temperatures T just above the critical temperature
Tc,0 and for small miscut angles. Precisely this EOM has been
studied as a model of the dynamics of aeolian sand dunes
[52,53]. In that model, u is the height of the sand surface, the
x axis points in the direction of the wind, and the y direction
is the transverse horizontal direction.

The EOM (22) studied in this paper is actually quite
generic. In addition to being used as a model of aeolian sand
dunes, the version that has γ = κ = 0 has been employed as a
model of surface ripple formation during thin film deposition
with diametrically opposed, obliquely incident broad atomic
beams [47] and as a model of pattern formation on solid
surfaces bombarded by two broad ion beams in the regime
in which sputtering is negligible [54].

VIII. CONCLUSIONS

When the (001) surface of a GaAs single crystal is bom-
barded with a normally-incident, low-energy noble gas ion
beam and the sample temperatures T is close to the threshold
temperature for pattern formation Tc,0, highly ordered, faceted
ripples with their wave vector aligned with the [110] direction
form. Because the wavelength can vary along the [110] direc-
tion, these ripples are not perfectly ordered.

Two additional terms appear in the equation of motion
when there is a miscut along the [110] direction, a linearly
dispersive term and a nonlinear dispersion term. The co-
efficients of both of these terms can become large as the
threshold temperature is approached from above. In the ab-
sence of strong nonlinear dispersion, strong linear dispersion
leads to very highly ordered ripples. These ripples are not
faceted, but instead have a nearly sinusoidal profile even
though they are on the surface of a single crystal. In gen-
eral, this order is disrupted by nonlinear dispersion. However,
the effect of nonlinear dispersion can be made negligibly
small by choosing the angle of incidence appropriately. If
that is done, then ion bombardment will lead to the for-
mation of highly ordered ripples with a nearly sinusoidal
profile.

We also found an interesting special case in which the
linearly dispersive and the conserved Kuramoto-Sivashinsky
terms do not appear in the equation of motion. In this case,
depending on the values of the parameters, either nucleation
and growth of facets or spinodal decomposition can occur.

As mentioned in the Introduction, Chowdhury and Ghose
have bombarded the (001) surface of GaAs with a normally
incident, low-energy noble gas ion beam [24]. The sample
temperature T was not close to the threshold temperature for
pattern formation Tc,0, however, and so a comparison between
the results of these experiments and our theoretical predictions
for the case θ = ψ = 0 cannot be made.

To date, no systematic studies of the ion bombardment
of the (001) surface of GaAs with a miscut have ap-
peared in print. Because a rich variety of phenomena could
result—including the formation of highly ordered, nearly si-
nusoidal ripples, nucleation and growth of facets, and spinodal
decomposition—experiments of this kind would likely lead to
fascinating results as well as providing a test of the theory
presented in this paper.
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