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The anisotropic shape of calamitic liquid crystal (LC) particles results in distinct values of energy when the
nematogens are placed side by side or end to end. This anisotropy in energy which is governed by a parameter κ ′

has deep consequences on equilibrium and nonequilibrium properties. Using the Gay-Berne (GB) model, which
exhibits the nematic (Nm) as well as the low-temperature smectic (Sm) order, we undertake large-scale Monte
Carlo and molecular dynamics simulations to probe the effect of κ ′ on the equilibrium phase diagram and the
nonequilibrium domain growth following a quench in the temperature T or coarsening. There are two transitions
in the GB model: (i) isotropic to Nm at T 1

c and (ii) Nm to Sm at T 2
c < T 1

c . κ ′ decreases T 1
c significantly but has

relatively little effect on T 2
c . Domain growth in the Nm phase exhibits the well-known Lifshitz-Allen-Cahn

(LAC) law, L(t ) ∼ t1/2 and the evolution is via annihilation of string defects. The system exhibits dynamical
scaling that is also robust with respect to κ ′. We find that the Sm phase at the quench temperatures T (T >

T 1
c → T < T 2

c ) that we consider has SmB order with a hexatic arrangement of the LC molecules in the layers
(SmB-H phase). Coarsening in this phase exhibits a striking two-timescale scenario: First, the LC molecules
align and develop orientational order (or nematicity), followed by the emergence of the characteristic layering (or
smecticity) along with the hexatic bond-orientational-order within the layers. Consequently, the growth follows
the LAC law L(t ) ∼ t1/2 at early times and then shows a sharp crossover to a slower growth regime at later times.
Our observations strongly suggest that L(t ) ∼ t1/4 in this regime. Interestingly, the correlation function shows
dynamical scaling in both the regimes and the scaling function is universal. The dynamics is also robust with
respect to changes in κ ′, but the smecticity is more pronounced at larger values. Further, the early-time dynamics
is governed by string defects, while the late-time evolution is dictated by interfacial defects. We believe this
scenario is generic to the Sm phase even with other kinds of local order within the Sm layers.

DOI: 10.1103/PhysRevE.105.024706

I. INTRODUCTION

Liquid crystals (LCs) are a state of matter that is in-
termediate between liquids and crystals as they manifest
partial orientational and/or translational order [1–5]. The LC
mesophases emerge in response to changes in temperature or
concentration. Thermotropic LCs are usually pure compounds
of anisotropic organic molecules which exhibit phase changes
by variation of temperature. Depending on their structure,
the molecular shape can be rod like (calamitic), disk like
(discotic), or banana shaped (bent-core). Lyotropic LCs are
often mixtures of mesogens in a solvent and exhibit phase
changes as the concentration of one of the components is
varied. Among these different types, calamitic LCs are the
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most well studied due to their simplicity and wide appli-
cability. At high temperatures, they exhibit an isotropic (I)
phase where the rod-shaped molecules are randomly oriented.
At low temperatures, the molecules align statistically parallel
along a locally preferred axis to yield the nematic (Nm) phase
with purely orientational order. This I-Nm phase transition is
first order. If the Nm phase is uniaxial, then it is described by
a sign-invariant unit vector known as the director n.

As the temperature is further reduced, some LCs exhibit
another transition to the smectic (Sm) phase characterized by
partial translational order due to emergence of stacks of layers
in addition to the lamellar order along n. The Sm nomencla-
ture depends on the ordering in the layers. In the smectic A
(SmA) phase, the layers are fluidlike. SmB has local order
in the layers: For example, SmB-H has a sixfold or hexatic
bond-orientational-order (BOO) within the layers and SmB-C
has long-ranged translational or crystalline order in the lay-
ers. These smectic phases have been observed experimentally
in various LC compounds, either singly or together [6–10].
Depending on the coupling between the Nm and the Sm
order parameters, the Nm-Sm transitions could be either first
order or second order [11,12]. Several commercially used
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LCs such as the n-alkyl cyanobiphenyl (nCB) compounds
indeed exhibit these twin transitions for n � 8, as revealed by
light scattering and differential scanning calorimetry experi-
ments [13,14].

Liquid crystals are an important topic of research not only
because of their enormous variety of applications but also
because they provide a platform for addressing a variety of
fundamental problems in physics. The Nm phase is exten-
sively used in liquid crystal displays, and the search for newer
LCs with improved sensitivity and stability remains an on-
going activity [15]. The SmA mesophase provides a general
template for striped systems such as biological membranes
and flexible polymer crystallization [16]. It also shares sym-
metries with certain types of self-assembled block copolymer
films which have applications in photolithography [17–20].
In recent years, there has been considerable interest in the
study of the hexatic phase which was first predicted as an
intermediate state between a crystal and a liquid in the theory
of two-dimensional (2d) melting [21]. The SmB-H phase
provides the 3d analog for the 2d hexatic phase [9,10].
Furthermore, LCs are experimentally accessible continuous
symmetry systems. They have provided the framework for
development of the theory of topological defects [22]. The
latter are relevant for a wide range of fields encompassing
condensed matter physics, cosmology, and biology [23–28].

Experimental measurements to probe various equilibrium
and nonequilibrium responses, especially in LC mesophases
with lower symmetry, remain a challenge because length
scales (∼nm) of morphologies and timescales (∼ns) of evo-
lution are often too small to be accessible. Consequently,
computer simulations have emerged as a powerful tool for
these investigations. In this context, the most important ingre-
dient is the interparticle potential which takes into account
the anisotropy in the shape of the LC molecules as well as the
attractive forces between them. The form proposed by Gay
and Berne in 1981, based on the Gaussian overlap model of
Berne and Pechukas [29], is one of the most popular pair
potentials for anisotropic entities [30]. The Gay-Berne (GB)
model takes into account the aspect ratio κ of the mesogens
and their energy anisotropy κ ′. The latter is defined as the
ratio of the potential energies when a pair of mesogens are
placed side by side (ss) and end to end (ee), see Fig. 1. Further,
the model exhibits I, Nm, and Sm phases, and the computed
quantities agree well with the corresponding experimental
measurements [31–35]. The GB model has therefore become
a prototype for investigations of LC systems [36–46].

Laboratory experiments generally require application of
external fields that drive the system out of equilibrium. The
system re-equilibrates, and the approach to equilibrium criti-
cally depends on the complexity of the free-energy landscape.
An important nonequilibrium study in this context is the ki-
netics of domain growth or coarsening, initiated by a sudden
quench of the system from the disordered phase to the ordered
phase [47–49]. The domains grow in size via annihilation
of defects. The subsequent domain growth, characterized by
a growing length scale L(t ), is monitored with time. The
growth law depends on several factors such as symmetry of
the order parameter, conservation laws, hydrodynamics, etc. It
also provides important insights on the barriers to coarsening
and relaxation timescales. Phase ordering in the d = 3 Nm
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FIG. 1. (a) Variation of the scaled GB energy between a pair of
ellipsoidal molecules as a function of their scaled separation (Ei j/ε0

vs ri j/σ0) in the ee configurations with κ = 3.0, μ = 1.0, ν = 3.0
for energy anisotropy κ ′ = 2.5 (red line), 5.0 (blue line), and 10.0
(green line). The inset shows the corresponding variation in the
ss configuration. Notice that the curves for different values of κ ′

overlap. It can be observed that the energy anisotropy parameter
affects the well depth for the ee configuration but not for the the ss
configuration. (b) Similar variation for μ, ν = 1.0, 3.0 (blue lines),
and 2.0, 1.0 (magenta lines) with κ = 3.0, κ ′ = 5.0. The exponents μ

and ν affect the well depth in the ee as well as the ss configurations.

LCs is well studied using coarse-grained free-energy mod-
els [50,51] and lattice models [52–55]. The domain growth
obeys the Lifshitz-Allen-Cahn (LAC) law, L(t ) ∼ t1/2 [56],
with strings as the dominant defects. However, work in the
context of this important nonequilibrium phenomenon for the
smectic mesophases remains limited. There have been few ex-
perimental [18] and computational [57] studies on coarsening
in the d = 2 SmA phase. They indicated that the orientational
correlation length obeys an unusual L(t ) ∼ t1/4 law. Similar
growth law, with speculations about logarithmic corrections,
has been predicted for the d = 3 SmA phase using coarse-
grained free-energy models [58]. Surprisingly, none of these
studies address the significant role of the energy anisotropy
that is a key feature of calamitic LCs.

Motivated to augment the above studies, we undertake
large-scale simulations of the d = 3 GB model to understand
the consequences of the energy anisotropy on equilibrium and
nonequilibrium properties. There are two significant aspects
of our study. First, using Monte Carlo (MC) simulations, we
identify the phase transition temperatures T 1

c (I → Nm) and
T 2

c (Nm → Sm) for a range of κ ′ values. These estimates
equip us to perform temperature quenches in the Nm and Sm
mesophases for the second part of our study. Subsequent to
the quench, we study phase ordering kinetics via molecular
dynamics (MD) simulations, which are better suited to mon-
itor the systemic evolution as compared to MC simulations.
The main results of our paper are as follows:

(a) The Nm and Sm phases are observed for all values of
κ ′. The Nm phase shrinks with increasing values of κ ′ due to
a (substantial) decrease in T 1

c and a (marginal) increase in T 2
c .

(b) When quenched from the I → Nm phase, domains
with orientational order or nematicity emerge and grow with
time. The correlation function C(r, t ) vs r exhibits dynamical
scaling indicating the presence of a unique length scale. The
scaling function is universal for different values of κ ′.

(c) The tail of the structure factor obeys the generalized
Porod law, S(k, t ) ∼ k−5 indicating scattering off string
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defects. The growth law in the Nm phase is the usual LAC
law, L(t ) ∼ t1/2 characteristic of systems with nonconserved
dynamics.

(d) For the quenches T > T 1
c → T < T 2

c , we access the
SmB-H phase. The coarsening in this phase is a two stage
process: First, there is emergence of nematicity, followed by
the layering of mesogens or smecticity along with the develop-
ment of hexatic order within the layers. The latter is enhanced
by increasing values of κ ′.

(e) The correlation function C(r, t ) exhibits dynamical
scaling. However the scaling functions show small variations
at short distances in the two regimes. These are reflected in the
tails of the structure factor: S(k, t ) ∼ k−5 (early time nematic-
ity) indicating scattering off strings; S(k, t ) ∼ k−4 (late time
smecticity) implying scattering off interfaces. The mechanism
of domain growth is thus distinct in the two regimes. The
growth law exhibits a previously unreported crossover from
t1/2 to t1/4 as time evolves.

Our paper is organized as follows. Section II provides a
detailed discussion of the GB model. In Sec. III, we present
the numerical details and results from our MC simulations for
the equilibrium phase diagram of the system for a range of en-
ergy anisotropy values. Section IV presents numerical details
and results from our MD simulations for the phase ordering
kinetics of the system. The various tools for analyzing the
coarsening morphologies are also discussed. In Sec. V, we
conclude with a summary and discussion of our results.

II. GAY-BERNE MODEL

The GB model is specially developed to mimic the inter-
actions between ellipsoidal LC molecules, which are of equal
size [30]. Besides Lennard-Jones potential with attractive and
repulsive parts which decrease with the intermolecular separa-
tion r as r−6 and r−12 respectively, the GB potential includes
terms with additional dependence on the orientations of the
LC molecules. The potential is anisotropic and can model
the orientational order observed in systems with anisotropic
constituents.

Let us consider two uniaxial LC molecules i and j, with
orientations defined by the unit vectors ui and u j , and centers
separated by r. The GB potential for this prototypical pair is
defined by [30]:

Ei j (ui, u j, r) = 4ε(ui, u j, r̂)

{[
σ0

r − σ (ui, u j, r̂) + σ0

]12

−
[

σ0

r − σ (ui, u j, r̂) + σ0

]6}
, (1)

where σ0 scales the distance and r̂ is the unit vector along r.
The other terms in Eq. (1) are as follows:

(a) The orientation-dependent range parameter
σ (ui, u j, r̂) contains information about the shape of the
LC molecules and is given by:

σ (ui, u j, r̂)

= σ0

{
1 − χ

2

[
(ui · r̂ + u j · r̂)2

1 + χ (ui · u j )
+ (ui · r̂ − u j · r̂)2

1 − χ (ui · u j )

]}−1/2

.

(2)

The shape anisotropy parameter χ determines the system’s
capability to form an orientationally ordered phase and is
given by:

χ = κ2 − 1

κ2 + 1
, (3)

where κ is the aspect ratio of the LC molecules. If σe and σs

are the length and breadth of the molecule, then κ ≡ σe/σs.
More precisely, σe and σs are the contact distances or inter-
molecular separations at which the attractive and the repulsive
terms in the potential cancel out each other when the LC
molecules are in the ee and the ss configurations.

(b) The energy term ε(ui, u j, r̂) is defined as:

ε(ui, u j, r̂) = ε0ε
μ
1 εν

2 , (4)

where ε0 scales the energy. The parameters ε1 and ε2 are
defined follows:

ε1 = 1 − χ ′

2

{
(r̂ · ui + r̂ · u j )2

1 + χ ′(ui · u j )
+ (r̂.ui − r̂ · u j )2

1 − χ ′(ui · u j )

}
, (5)

ε2 = [1 − χ2(ui · u j )
2]−1/2. (6)

The energy anisotropy parameter χ ′, analogous to Eq. (3), is
defined as:

χ ′ = κ ′1/μ − 1

κ ′1/μ + 1
, (7)

where κ ′ is the energy anisotropy which if greater than 1
promotes orientational order characteristic of LCs. If εe and
εs are the well depths for the ee and the ss configurations, then
κ ′ ≡ εs/εe. The parameters μ and ν modify the well depths
of the potential, and hence their impact on the nematicity and
smecticity is very subtle. For instance, in the ee configuration,
κ = 3.0 and κ ′ = 5.0 yields ε/ε0 = 1/3 for μ = 2, ν = 1,
and 25/27 for μ = 1, ν = 3. Similarly in the ss configuration,
ε/ε0 = 5/3 for μ = 2, ν = 1, and 125/27 for μ = 1, ν = 3.
Figure 1 shows variation of the GB potential Ei j/ε0 vs ri j/σ0

in the ee configuration for different values of (a) the energy
anisotropy κ ′ and (b) the exponents μ, ν. The corresponding
variation in the ss configuration is shown in the insets. From
the inset of Fig. 1(a), it is clear that the ss configuration is
energetically favorable for all values of κ ′ (the curves for
different values of κ ′ are coincident as the energy in the ss
configuration depends only on κ and ν).

Summarizing, the GB model contains four essential param-
eters: κ , κ ′, μ, and ν. Clearly, there is a large variety of GB
homologues which differ from each other in terms of the val-
ues chosen for the four parameters [30,32,33,45]. A frequently
employed choice of GB parameters is κ = 3, κ ′ = 5, μ = 1,
and ν = 3 due to Berardi et al. [32]. The choice of κ = 3.0
is elementary as for real LC systems, the length-to-breadth
ratio of the constituent molecules must be equal to or greater
than about 3:1. The parameters used by Berardi et al. have
two important features. First, they provides diverse phases,
viz. isotropic, nematic, and smectic. The nematic phase is
observed over a wide range of temperatures unlike the nar-
row region observed with the original GB parametrization:
κ = 3, κ ′ = 5, μ = 2, and ν = 1 [30]. Second, the simulation
results exhibit convergence with experiments. For instance,
the computed temperature variation of the orientational order

024706-3



NISHANT BIRDI et al. PHYSICAL REVIEW E 105, 024706 (2022)

parameter is in agreement with the experimental data in many
real systems [32]. Consequently, the parameters κ = 3, κ ′ =
5, μ = 1, and ν = 3 are frequently chosen for simulations
of the GB model. We use this set of values in our present
work and plan to do a comparative study with other choices
of parameters at a later stage.

III. EQUILIBRIUM STUDIES USING MONTE
CARLO SIMULATIONS

A. Simulation details

Prior to investigating the phase ordering kinetics, we first
visit the problem of equilibrium phase transitions in the GB
model to precisely identify the quench temperatures for the
Nm and the Sm regimes. To sample the available phase space,
MC simulations are performed in the canonical (NV T ) en-
semble. We use the simulation program DL_MONTE [59,60]
for this purpose. DL_MONTE is a general-purpose MC
program which supports a wide range of MC simulation
techniques and interatomic potentials. However, prior to this
work it was not applicable to particles with implicit orienta-
tions and anisotropic interaction potentials, for instance the
GB particles. Our work is a step in that direction since it
involved extending DL_MONTE to make it suitable for such
systems. The latest version of DL_MONTE which includes
our improvements is available in Ref. [61]. This code is a
beneficial resource for the research community to study uniax-
ial GB systems with a number of MC simulation techniques,
including grand-canonical and constant-NPT ensembles [62].
In this work, we only present results using MC in the NV T
ensemble. Our DL_MONTE input files with all the necessary
commands, parameters, and comments are provided in the
Supplemental Material [63] for interested readers together
with further details regarding the improvements we have made
to DL_MONTE to treat the GB and similar models.

We consider a system of N ellipsoidal particles interacting
via the GB potential specified in Eq. (1) and use κ = 3.0, κ ′ =
5.0, μ = 1.0, and ν = 3.0 unless specified. It is convenient to
define scaled variables E∗ = E/ε0 = ∑N

i, j;i< j (Ei j/ε0), E∗
1 =

E∗/N , T ∗ = kBT/ε0, r∗ = r/σ0, and ρ∗ = Nσ 3
0 /V . Simula-

tions have been performed on cubic lattices with N = 512
and 1000 particles using periodic boundary conditions and ρ∗
is set to 0.30. The initial configuration is a perfectly aligned
state. The MC moves are performed according to the Metropo-
lis algorithm [62]. In these moves, a randomly selected LC
molecule is either translated or rotated with translations and
rotations attempted in each move with equal probability. The
maximum angle to rotate an LC molecule is kept as 15◦. In
order to compute the energy efficiently, a spherical cutoff of
rc = 4.0σ0 is employed in conjunction with the Verlet neigh-
bor list scheme [62]. The simulations are performed for 106

MC cycles (one MC cycle corresponds to N MC moves).
The initial 5×105 cycles are necessary for equilibration. The
remaining 5×105 cycles are used for thermal (block) averag-
ing of various thermodynamic quantities of interest and the
ensemble averaging is performed over 500 configurations.

B. Phase diagram

The GB phase diagram is obtained by studying the
average energy per particle 〈E∗

1 〉 vs T ∗ for values of the energy

anisotropy κ ′ = 1.25, 2.5, 5.0, 10.0, and 20.0. For each value,
the transition temperatures T 1

c (I → Nm transition) and T 2
c

(Nm → Sm transition) are identified from the discontinuity
in 〈E∗

1 〉. It is pertinent to point out here that for our coarsening
experiments, we only need approximate boundaries as we
consider the quenches far away from these. The I and Nm
phases are confirmed by evaluation of the orientational order
parameter, S given by:

S = 〈P2(cos θi )〉 =
〈

3 cos2 θi − 1

2

〉
, (8)

where cos θi = ui · n and the angular brackets 〈· · ·〉 indicate
an ensemble average. S = 0 in the I phase, while S = 1 in the
perfectly aligned Nm phase. The defects correspond to regions
with S � 0, even if the defect cores are biaxial [64].

The smectic (layered) phases can be distinguished from
the I and Nm phases by evaluating the translational order
parameter [33]:

T = |〈τ (ri)〉| = |〈exp(2iπri · n/dl )〉|, (9)

where ri is the position vector of the LC molecule i and dl

is the layer spacing. In simulations, T is determined by first
separately performing the ensemble averaging of the real and
imaginary terms: cos(2πri · n/dl ) and sin(2πri · n/dl ), fol-
lowed by calculation of the modulus for the ensemble average
and further maximizing it with respect to dl [33]. In the I
phase, T → 0 as the layers are not well defined. On the other
hand, T → 1 in a perfectly layered structure.

A clear distinction between the SmA and SmB phases can
be made by evaluating the hexatic bond-orientational order
parameter given by [33]:

C6 = |〈ψ6(ri)〉| =
∣∣∣∣
〈(∑

k w(r∗
ik ) exp(6iφik ))∑
k w(r∗

ik )

)〉∣∣∣∣, (10)

where the summation is over the nearest neighbors (nn) k
of the LC molecule i, φik is the angle between the vector
(ri − rk) projected onto the plane normal to the director and
a fixed reference axis (x axis, say), and w(r∗

ik ) is a cutoff
function to select the nn for evaluation of ψ6(ri). (Like T ,
for C6 also first the ensemble averaging is done separately
for the real and imaginary terms followed by calculation of
the modulus for the average.) It is important to use the cutoff
function as the number of nn might not be 6 and could be
7, 5, or 4 when the local translational order is imperfect. In
our work, we used the procedure in Ref. [33] to evaluate
this cutoff function: w(r∗

ik ) is unity for r∗
ik below 1.4, zero

for r∗
ik above 1.8, and with a linear interpolation in between

these two extremes. If there is hexatic order, then C6 has an
appreciable nonzero value and also the ensemble average for
the cutoff function, 〈w(r∗

ik )〉 → 6. In its absence, C6 vanishes
and 〈w(r∗

ik )〉 < 6.
The radial distribution function g(r) is routinely obtained

in scattering experiments and measures the probability of
finding two molecules separated by distance r relative to that
in an ideal gas [62]. It is a useful tool to distinguish between
the local order in the different phases [33] and is given by:

g(r∗) = 〈ρ(r∗)〉
ρ0

, (11)
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where ρ0 = N/V is the density of the ideal gas and ρ(r∗) is
the average density of the system around r∗. The numerical
evaluation is facilitated by the following formula [62,65]:

g(r∗) = 1

Nρ0

〈
N∑
i, j

i �= j

δ(r∗ − r∗
i j )

(4/3)π [(r∗ + �r∗)3 − (r∗)3]

〉
. (12)

The δ function is unity if r∗
i j falls within the shell centered on

r∗ and is zero otherwise. The division by N is done to normal-
ize g(r∗) to a per-molecule function. By construction, g(r∗) =
1 for an ideal gas and any deviation implies correlations be-
tween the particles due to the intermolecular interactions. In
the Nm phase, it has a noticeable maximum for small-r∗ and is
1 for large-r∗ indicating short-range order. In the SmA phase,
g(r∗) exhibits a large nn peak and small oscillations thereafter
with periodicity ∼dl due to the layering. In the SmB-H phase,
on the other hand, g(r∗) shows an oscillatory behavior with
many sharp peaks separated by r∗ � 1 and a split-peak at
r∗ � 2 characteristic of hexatic order within the layers. In the
case of SmB-C order, the peak intensities do not decay until
large distances.

We now proceed to evaluate the phase diagram in (T ∗, κ ′)
space for κ ′ = 1.25, 2.5, 5.0, 10.0, and 20.0. In Fig. 2(a),
we show the variation of the per-particle equilibrium energy
〈E∗

1 〉 vs T ∗ for N = 512 (open up-triangles) and N = 1000
(open down-triangles) at κ ′ = 5.0. (For brevity, we do not
show the data sets for other values of κ ′.) The angular brack-
ets indicate thermal averages. The simulation data coincide,
indicating that the average energies are independent of the
system size. We also plot the corresponding benchmarking
results of Berardi et al. for N = 512 (white circles) and N =
1000 during heating (white up-triangles) and cooling (white
down-triangles) protocols [32]. There is an excellent agree-
ment with our simulation results obtained using DL_MONTE,
even though the initial conditions in the two sets of simula-
tion experiments are quite distinct. Furthermore, the effects
of system size on the average energy are negligible (except
near the transition in some cases). The left and right edges
of the Nm region (in green) provide the scaled transition
temperatures T ∗2

c and T ∗1
c as indicated. Both the transitions

are discontinuous (first-order).
To confirm the phase corresponding to each data point, we

have also evaluated for the N = 1000 system the tempera-
ture variation of the average order parameters 〈S〉, 〈T 〉, and
〈C6〉, or g(r∗) vs r∗ as appropriate. Figure 2(b) shows the
typical behavior of the order parameters in various phases.
Note the rise in 〈S〉 as the temperature crosses T ∗1

c from
above, indicating the onset of nematic order. Similarly, note
the rise in translational order parameter 〈T 〉 as the temperature
crosses T ∗2

c indicating the development of SmA order (while
evaluating T , we have observed that the layer spacing dl

which maximizes T is less than the aspect-ratio κ = 3.0 due
to interdigitation of the layers [33]). At slightly lower values
of T , the hexatic order parameter 〈C6〉 becomes significant,
suggesting that the phase is SmB-H. Accurate determination
of the phase boundaries will require careful evaluations. We
refrain from going in this direction as the focus of the present
study is on coarsening and approximate phase boundaries are
sufficient for this purpose. (We wish to mention here that
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FIG. 2. (a) Variation of the scaled per-particle energy for the GB
model system, 〈E∗

1 〉 with respect to the scaled temperature T ∗ with
κ = 3.0, κ ′ = 5.0, μ = 1.0, and ν = 3.0 for the two system sizes
N = 512 (open up-triangles) and N = 1000 (open down-triangles).
Corresponding results from Berardi et al. [32] for N = 512 (white
circles), and for N = 1000 during heating (white up-triangles) and
cooling (white down-triangles) protocols are also shown for compar-
ison. (b) Variation of 〈S〉 (scalar nematic), 〈T 〉 (translational), and
〈C6〉 (hexatic) order parameters with respect to T ∗ at κ ′ = 5.0 for
the N = 1000 system. (c) Radial distribution function g(r∗) vs r∗

at T ∗ = 1.0 (Sm phase) and T ∗ = 2.5(Nm phase) for κ ′ = 5.0 and
N = 1000. (d) Phase diagram in the T ∗ − κ ′ plane indicating the
isotropic (I) phase (yellow), nematic (Nm) phase (green), and Sm
phase (blue). The asterisks and crosses indicate the quenches in the
Nm and Sm regimes to study coarsening. The arrows indicate two
typical quenches from I → Nm and I → Sm.

though the equilibrated configurations, their energies in var-
ious phases and the order parameter 〈S〉 were obtained using
DL_MONTE, the codes for evaluation of the order parameters
T and C6 were written separately.)

To evaluate g(r∗), we have used a set of 745 bins with a
separation cutoff of r∗ = 7.45 which yields �r∗ = 0.01 (see
the Supplemental Material for details regarding specification
of parameters for DL_MONTE [63]). Figure 2(c) shows the
g(r∗) vs r∗ behavior for the Nm phase (green line, T ∗ = 2.5)
and the Sm phase (blue line, T ∗ = 1.0). It is characterized by
multiple sharp peaks with a split peak at r∗ � 2, characteristic
of the SmB-H order. Further, it can be seen that g(r∗) decays
as r∗ increases, implying that the translational order is lost
at larger distances and hence the SmB phase is not of crystal
type.

Figure 2(d) depicts the variation of T ∗1
c (white up-triangles)

and T ∗2
c (white down-triangles) for a range of κ ′ values. To be

noted here is that T ∗1
c decreases considerably with increasing

κ ′ thereby shrinking the Nm phase. On the other hand, T ∗2
c

increases only slightly. With the original GB parametrization,
de Miguel et al. also reported similar observations [66].
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IV. KINETIC PROPERTIES FROM MOLECULAR
DYNAMICS SIMULATIONS

A. Methodology

We now turn to a study of domain growth kinetics in the
d = 3 GB model via MD simulations. To the best of our
knowledge, they have not been addressed. There have been
some coarsening studies for the Nm phase of the GB model
in d = 3. A relevant contribution in this context is by Billeter
et al. [67]. They observed the usual defect structures (e.g.,
disclinations and monopoles) but could not extract a reliable
growth law due to the small system size considered (∼60 000
particles). Using large systems (∼260 000 particles), we per-
form deep quenches from the I phase to the Nm and the Sm
phases [shown in Fig. 2(d)] and allow the system to evolve
for long times. Our main interest is to determine the novel
defects and growth laws in the Sm phase and the impact
of the energy anisotropy κ ′ on ordering. We also undertake
analogous studies for the Nm phase to complement previous
works [67].

All our MD simulations have been performed in the NV T
ensemble using the LAMMPS software package [68,69].
The details regarding implementation of the model into
LAMMPS [70] and also the analytical expressions for the
forces and torques have been described in Ref. [72]. We con-
sider N = 262 144 uniaxial ellipsoidal particles confined in a
cubic box of linear size Lsσ0 with periodic boundary condi-
tions in all three coordinate directions. Hence the volume V =
(Lsσ0)3 = (95.6033σ0)3 such that ρ∗ � 0.3. The parameters
in the GB potential of Eq. (1) are those employed by Berardi
et al. [32]. We also study the effects of varying the energy
anisotropy parameter κ ′. The MD runs are carried out using
the standard velocity Verlet algorithm. In LAMMPS, the di-
mensionless MD time unit t0 =

√
m0σ

2
0 /ε0 = 1.0. We choose

the reduced MD integration time step �t∗ = �t/t0 = 0.001.
The temperature T ∗ is controlled and maintained constant
via the Nosé-Hoover thermostat, which is known to preserve
hydrodynamics [62,73,74]. The homogeneous initial config-
urations are prepared by equilibrating the system at a high
temperature (T = 6.0) for about 105 MD steps. To initiate
the coarsening process (t = 0), the system is quenched to
the indicated temperatures in Fig. 2(b). The evolution of the
system is then monitored. All statistical quantities of interest
are averaged over 19 independent initial conditions. Our input
files and parameters used in LAMMPS are provided in the
Supplemental Material [63].

B. Characterization tools

For a translationally invariant system, the usual probe to
characterize configurational morphologies is the equal-time
correlation function [49]:

C(�r, t ) = 〈ψ ( �r1, t )ψ ( �r2, t )〉 − 〈ψ ( �r1, t )〉〈ψ ( �r2, t )〉, (13)

where ψ (�r, t ) is a suitable order parameter and �r = �r2 − �r1

and 〈· · ·〉 represents the ensemble average. Small-angle scat-
tering experiments yield the structure factor:

S(�k, t ) =
∫

d�r ei�k·�r C(�r, t ), (14)

where �k is the wave vector of the scattered beam. A charac-
teristic length scale L(t ) is usually defined as the distance at
which C(�r, t ) decays to, say, 0.2 times its maximum value.
If the domain growth is characterized by a unique length
scale L(t ), then C(�r, t ) and S(�k, t ) show the dynamical scaling
property [48,49]: C(�r, t ) = g(r/L); S(�k, t ) = Ld f (kL). The
asymptotic (large-k) tail of S(�k, t ) contains information about
the defects in the system. Continuous O(n) spin models ex-
hibit the generalized Porod law, with the asymptotic form:
S(k, t ) ∼ k−(d+n) [75–77]. For n = 1, the defects are inter-
faces, and the corresponding scattering function exhibits the
usual Porod law: S(k, t ) ∼ k−(d+1). For n > 1, the different
topological defects are vortices (n = 2, d = 2), strings (n =
2, d = 3), and monopoles or hedgehogs (n = 3, d = 3). So
in d = 3, S(k, t ) ∼ k−5 or ∼k−6 depending on whether strings
or monopoles dominate in the defect dynamics.

In LC mesophases such as the Sm phase, an appropri-
ate measure of the orientational and translational order is
provided by the longitudinal pair correlation function g‖(r‖)
(parallel to the long axis of the LC molecules) and the trans-
verse pair correlation function g⊥(r⊥) (perpendicular to the
long axis of the LC molecules) [78]. Evaluation of g‖(r‖) em-
ploys a cylindrical volume to probe the LC molecules aligned
in the ee configuration and is given by [78,79]:

g‖(r‖) =
〈

N∑
i �= j

δ(r‖ − ri j,‖i )θ (σ0 − ri j,⊥i )θ (σ0 − ri j,⊥ j )

Nρ∗π (σ0/2)2h

〉
.

(15)

The Heaviside step function θ (x) = 1 when x � 0 and θ (x) =
0 otherwise, 〈·〉 indicates an ensemble averaging over different
initial (independent) conditions, h is the cylinder height used
to discretize the volume, and ri j,‖i = |ri j,‖i | = |ri j · ui| is the
center-of-mass separation along the director of molecule i
(the director for molecule j of the pair could also be con-
sidered in this δ-function evaluation as the value remains
almost the same in the ee configuration). ri j,⊥i = |ri j,⊥i | =
|ri j − ri j,‖i | and ri j,⊥ j = |ri j,⊥ j | = |ri j − ri j,‖ j | are the corre-
sponding transverse separations from ui and u j . The quantity
g‖(r‖) probes the average orientation of the LC molecules and
the layering or smecticity in the system.

Evaluation of g⊥(r⊥) employs hollow, concentric cylinders
to probe LC molecules aligned in the ss configuration and is
given by [78,79]:

g⊥(r⊥)

=
〈

N∑
i �= j

δ(r⊥ − ri j,⊥i )θ (δL⊥/2 − ri j,‖i )θ (δL⊥/2 − ri j,‖ j )

Nρ∗π ((r⊥ + δL⊥)2 − r2
⊥)h

〉
.

(16)

In the above equation, δL⊥ represents the thickness of the hol-
low cylinder and as for the g‖(r‖) case, we can use the director
for molecule j of the pair in the δ-function evaluation since
the value remains almost the same in the ss configuration. The
quantity g⊥(r⊥) probes the translational structure about the
LC molecules and their arrangement within layers.
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(a)

(b)

(c)

FIG. 3. Evolution snapshots after a quench from the I phase to
the Nm phase (T ∗ = 2.5) for different values of t and κ ′: (a) κ ′ = 5.0,
t = 8192; (b) κ ′ = 5.0, t = 53248; and (c) κ ′ = 10.0, t = 53248.
Left: 203 corner portions of the entire simulation box allowing for
visibility of individual particles. Right: the corresponding top d = 2
cross sections.

C. Morphologies, textures, and growth laws

Let us first discuss the kinetics of domain growth follow-
ing a quench from the I phase to a temperature T ∗ = 2.5 in
the Nm phase. The left panel of Fig. 3 shows representa-
tive snapshots from the time evolution of the configurational
structure for (a) κ ′ = 5.0, t = 8192; (b) κ ′ = 5.0, t = 53248;
and (c) κ ′ = 10.0, t = 53248. For clarity, we have shown
only a 203 corner of the entire box. These corners on av-
erage consist of about N = 2400 particles. The right panel
shows the corresponding top surface (d = 2 cross sections).
There is emergence and growth of orientational Nm order,
and the energy anisotropy does not affect the coarsening phe-
nomenon. We characterize the morphologies and their texture
by evaluating the correlation function and the structure factor.
These are obtained by a coarse-graining procedure in which
the system is divided into nonoverlapping sub-boxes of size
(3.0σ0)3. The sub-box size is carefully chosen to ensure that
each one contains about 8 to 10 particles. The continuum LC
configurations are thus mapped onto a simple cubic lattice of
size (32σ0)3. The relevant order parameter is the orientational
order parameter defined in Eq. (8), i.e., P2(cos θi ). Here θi is
the angle made by a molecule located in the ith box with the
global director n of the system (determined by taking average
of orientations for all the N particles present in the system),
and the overline implies an average over all the particles in
the sub-box.

Figure 4(a) shows the scaled correlation function, C(r, t )
vs r/L(t ) at t = 8192, 16384 and 32768 for κ ′ = 5.0 and at
t = 32768 for κ ′ = 2.5 and 10.0. The data exhibit dynamical
scaling as well as superuniversality with respect to the energy
anisotropy κ ′. The dynamical scaling property demonstrates
that the coarsening patterns are statistically self-similar in
time. The property of superuniversality indicates that the mor-
phologies in the Nm phase are independent of the energy
anisotropy. This is expected because the GB energy between
a pair of ellipsoids in the ss arrangement depends only on
κ and ν. A log-log plot of the corresponding scaled struc-
ture factors, S(k, t )L(t )−3 vs kL(t ) is shown in Fig. 4(b). In
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FIG. 4. (a) Scaled correlation functions C(r, t ) vs r/L(t ) for the Nm phase at the specified values of κ ′ and t . The data collapse indicates that
the system exhibits dynamical scaling, and the morphologies are invariant with respect to κ ′ and t apart from a scale factor. (b) Corresponding
scaled structure factors S(k, t )L(t )−3 vs kL(t ) on a log-log plot. The dashed line of slope −5 denotes the expected generalized Porod tail.
(c) Domain length scale L(t ) vs t for different values of κ ′. The growth obeys the LAC law, L(t ) ∼ t1/2 (dashed line) characteristic of systems
with nonconserved order parameter and is slower for larger values of κ ′.
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(a)

(b)

(c)

FIG. 5. Evolution snapshots after quenches from the I to the
Sm phase [T ∗ = 1.0, see Fig. 2(d)] for (a) κ ′ = 5.0, t = 4096;
(b) κ ′ = 5.0, t = 98304 and (c) κ ′ = 10.0, t = 98304. Left: 203

corner portions of the entire simulation box allowing for visibility
of individual particles. Right: the corresponding top d = 2 cross
sections. Notice that smecticity is enhanced by larger values of κ ′.
The layers are interdigitated and within a layer, the particles exhibit
hexagonal order.

the asymptotic large-k limit, the structure factor follows the
generalized Porod law: S(k, t ) ∼ k−5, indicating scattering off
string defects [50,55]. Next, we study the time-dependence of
the domain size. Figure 4(c) shows the variation of L(t ) vs
t on a log-log scale for κ ′ = 2.5, 5.0, and 10.0 respectively.
It can be clearly observed that after an initial transient, the
evolving systems are consistent with the t1/2 growth regime
(LAC law) characteristic of systems with nonconserved order
parameter. The system size and time scales of our simulation
are sufficient to establish the LAC domain growth law for
the Nm phase of the GB model although there is onset of
finite-size effects at late times.

We now come to the primary focus of our paper: kinetics of
domain growth in the Sm mesophase. The coarsening is ini-
tiated by a quench from T ∗ = 6.0 (I phase) to T ∗ = 1.0 (Sm
phase). Figure 5 shows the prototypical evolution morpholo-
gies for: (a) κ ′ = 5.0, t = 4096; (b) κ ′ = 5.0, t = 98 304; and
(c) κ ′ = 10.0, t = 98 304. As in Fig. 3, we have shown only a
203 corner of the entire box, consisting of about 2400 particles
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FIG. 6. (a) Time evolution of the longitudinal radial distribution
functions g‖(r‖/σ0 ) vs (r‖/σ0) for the I → Sm quench at the specified
values of κ ′ and t signaling layering in the system which occurs
only at later times (t � 104). As time evolves, subsequent peaks
emerge at separations corresponding to multiples of the ellipsoid
length (3σ0) indicating ee alignment for the LC molecules (the sep-
arations between the peaks is � 3σ0 due to interdigitation of the
layers). With increase in κ ′, the intensity of the first peak increases
and the variation between the intensities for the first and second
peaks decreases. Hence, the degree of smecticity increases as κ ′

increases. (b) Time evolution of the corresponding transversal radial
distribution functions g⊥(r⊥/σ0) vs (r⊥/σ0). These functions indicate
alignment within the layers. The peaks in these functions indicate
SmB-H ordering, see corresponding text for details.

on average. The frames on the right show the corresponding
top surface. It is interesting to note the initial onset of nematic-
ity at the earlier time (t = 4096) followed by the development
of smecticity at later time (t = 98 304). Additionally, as ob-
served in Fig. 5(c), the smecticity is significantly enhanced
for κ ′ = 10.0.

To characterize the Sm order, Fig. 6 shows for the specified
values of t and κ ′: (a) the longitudinal pair correlation func-
tion g‖(r‖/σ0) vs r‖/σ0 evaluated using Eq. (11) and (b) the
transversal pair correlation function g⊥(r⊥/σ0) vs r⊥/σ0 eval-
uated using Eq. (12). Notice that in Fig. 6(a), the early-time
behavior at t = 4096 predominantly exhibits a single peak at
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FIG. 7. Scaled correlation functions for the SmB-H phase at specified values of κ ′ and t : (a) C(r, t ) vs r/L(t ), (b) Cl (r, t ) vs r/Ll (t ), and
(c) CH (r, t ) vs r/LH (t ) (see text for evaluation of these correlation functions). The data collapse in all the three evaluations suggests that the
system exhibits dynamical scaling, and the morphologies are invariant with respect to t and κ ′ although the coarsening scenario is distinct at
early and late times. The corresponding structure factors are shown on a log-log plot: (d) S(k, t )L(t )−3 vs kL(t ), (e) Sl (k, t )Ll (t )−3 vs kLl (t ),
and (f) SH (k, t )LH (t )−3 vs kLH (t ). The dashed line of slope −5 in (d) indicates the Porod tail characteristic of scattering off string defects.
Similarly, the dashed lines with slope −4 in (e) and (f) indicate interfacial scattering.

3σ0—the length of the LC molecule. It is characteristic of Nm
order with molecular alignment along an average direction or
the director. As time evolves, there is emergence of newer
peaks at approximately 6σ0, 9σ0, etc., as the system coarsens.
This signifies development of long-range longitudinal order
or layers with an interlayer spacing of ∼3σ0. (The average
separation between the peaks can be an approximate measure
of the interlayer spacing dl . In Fig. 6(a), dl ≈ 2.5σ0 due to
interdigitation of the neighboring layers.) Notice that increase
in κ ′ reduces the intensity variation between the first and sec-
ond peaks implying enhancement of smecticity. (Recall that
perfect translational order is characterized by peaks of equal
intensity in the pair distribution function). On the other hand,
g⊥(r⊥/σ0) vs r⊥/σ0 in Fig. 6(b) exhibits peaks around mul-
tiples of σ0—the width of the ellipsoidal LC molecule. The
splitting of the peak at r⊥ � 2.0σ0, a signature of BOO within
the layers, is clearly seen at later times. Further, the transla-
tional order within the layers is not long ranged as consecutive
peaks have decreasing intensity. These characteristics, along
with the nonzero value of the hexatic order parameter 〈C6〉
in Fig. 2(b), confirm the presence of the SmB-H phase. The
intralayer BOO is not affected by κ ′.

The observations from Fig. 6 suggest the following sce-
nario for coarsening of the SmB-H phase: It is a two-timescale
process, with the onset of Nm order followed by SmB-H order.
To confirm this, we have also performed a similar study for
the Nm → SmB-H quenches and evaluated these distribution
functions. Except for the emergence of multiple peaks at ear-
lier time in the longitudinal pair correlation function (it is now
a one-timescale process as Nm order is already present and
hence with time, the system exhibits only layering with BOO),

the behavior of the correlation functions is qualitatively simi-
lar to that observed in Fig. 6 and hence we do not present them
separately. Quantitatively, the peaks in both the functions have
much higher intensity compared to the corresponding peaks
in Fig. 6, indicating faster layering as well as development of
BOO. We do not present these data sets to prevent repetition.
The two-timescale process is the most significant outcome
from our study of the GB model. It is further reiterated by
the growth laws which will be discussed shortly.

We next focus on the scaling functions that describe the
time-dependent morphologies. To evaluate them, we follow
the same coarse-graining approach, but now the system is
divided into nonoverlapping sub-boxes of size (6.0σ0)3, which
maps the system onto a simple cubic lattice of size (16.0σ0)3.
This procedure gives us a continuous order parameter field
and eliminates any molecular-level anisotropies. We have
changed the system size to ensure that even at later times,
the sub-boxes contain about 60 to 70 particles. In Fig. 7(a),
we plot C(r, t ) vs r/L(t ) for three specified values of t and
κ ′. The typical scalar nematic order parameter P2(cos θi, t ) is
determined at each site i of this discretized lattice (as for the
nematic regime earlier) and subsequently the standard probes
are evaluated. The data sets for κ ′ = 5.0 at different times
neatly collapse onto a single master function, showing that the
scaling regime has been reached. This data collapse indicates
the existence of dynamical scaling. Furthermore, the excel-
lent data collapse for different κ ′ values at time t = 98 304
suggests that the scaling functions are robust with respect to
the anisotropy in energy. Figure 7(d) shows the corresponding
scaled structure factor, S(k, t )L(t )−3 vs kL(t ), for a range of t
and κ ′ values. There is an excellent data collapse, confirming
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FIG. 8. Growth laws (log-log scale) for the SmB-H phase at different values of κ ′: (a) L(t ) vs t , (b) Ll (t ) vs t , and (c) LH (t ) vs t . Dashed
lines of slope 1/2 and 1/4 are a guide to the eye. Early time data obeys the LAC law. The data indicates crossover to a slower growth at late
times and hints at ∼t1/4 growth. The two-timescale scenario seen is reconfirmed by these distinct evaluations.

both dynamical scaling and superuniversality. The tail decays
as S(k, t ) ∼ k−5 due to the presence of string defects.

It is also possible to determine the correlation between the
Sm layers by evaluating the translational correlation function
Cl (r, t ). This can be done by evaluating the translational order
parameter, |τ (ri, t )| = |exp(2iπri · n/dl )|. Here ri is the posi-
tion vector of the LC molecule (located in the sub-box with
index i), n is the global director of the system, and the layer
spacing dl is evaluated from the average separation between
the peaks in the longitudinal pair correlation function at a
given t . The overline implies an average over all the particles
located in the sub-box with index i. Figure 7(b) shows the
scaled translational correlation function Cl (r, t ) vs r/Ll (t ) for
the specified values of t and κ ′. The corresponding structure
factors Sl (k, t )Ll (t )−3 vs kLl (t ) are shown in Fig. 7(e). The
high quality of the data collapse again confirms dynamical
scaling and superuniversality of the scaling functions. The
structure factor tail exhibits the Porod decay, Sl (k, t ) ∼ k−4,
characteristic of scattering off sharp interfaces arising be-
tween the Sm layers.

We have also determined the correlation function CH (r, t )
using the bond-orientational order parameter |ψ6(ri, t )|. Here
ri is the position vector of the LC molecule located in the
sub-box with index i, and the overline implies an average over
all the particles located in the sub-box with index i. Figure 7(c)
shows the scaled correlation function CH (r, t ) vs r/LH (t ) for
the specified values of t and κ ′. The corresponding structure
factors SH (k, t )LH (t )−3 vs kLH (t ) are shown in Fig. 7(f). The
good data collapse reconfirms dynamical scaling and supe-
runiversality of the scaling functions.

Finally, we study the domain growth laws for the SmB-H
mesophase. Figure 8(a) shows L(t ) vs t , Fig. 8(b) shows Ll (t )
vs t , and Fig. 8(c) shows LH (t ) vs t on a log-log scale for the
three typical values of κ ′. (There are small differences in the
prefactors of the data sets, but they are not evident on the log-
log scale.) The data sets exhibit an initial LAC growth regime
∼t1/2 characteristic of the Nm phase and then a crossover
to a slower t1/4 growth regime. The dashed lines have been
shown for reference. (Larger system sizes and longer simula-
tion times will be required to remove the finite size effects
observed at late times.) These observations emphasize the
two-timescale scenario identified in Fig. 6, and are the second
novel aspect of our study.

V. SUMMARY AND DISCUSSION

We conclude with a summary and discussion of our results.
We have undertaken a comprehensive numerical investiga-
tion of the equilibrium and nonequilibrium phenomena in
the d = 3 Gay-Berne model. This model is known to exhibit
isotropic, nematic, and smectic phases and yields satisfactory
comparisons with experimental observations in liquid crystal
systems. There are two important parameters in this model:
(i) the shape anisotropy parameter κ which is the length-to-
breadth ratio of the ellipsoidal molecules and (ii) the energy
anisotropy parameter κ ′ which is the ratio of energies when
molecules are in the ss and in the ee configurations, see Fig. 1.
In all our studies, we make a standard choice of κ = 3.0 and
vary κ ′ over a wide range of values from 1.25 to 20. The
primary focus of our work is to understand domain growth
in the Sm mesophase. To the best of our knowledge, this is the
first such study.

Equilibrium studies have been performed using canoni-
cal (NV T ) ensemble MC simulations on systems with 512
and 1000 particles. Equilibration was achieved in approxi-
mately 5 × 105 MC cycles and the observations were made
in the window of 5 × 105–106 MC cycles. We confirmed the
presence of I, Nm, and Sm phases, and two distinct phase tran-
sitions: (i) I → Nm at T ∗1

c and (ii) Nm → Sm at T ∗2
c < T ∗1

c .
Our numerics indicate that T ∗1

c decreases substantially as κ ′
increases, but T ∗2

c increases only slightly.
We studied the nonequilibrium phenomenon of coarsening

via MD simulations of the Gay-Berne model with ∼260 000
particles in the NV T ensemble. An initially disordered and
homogeneous state was rapidly quenched from (a) I → Nm
and (b) I → Sm phases, see Fig. 2(d). The system was then
allowed to evolve to late times, and we identified the mor-
phology textures and growth laws through this evolution.

(a) Our results for the nematic quench (I → Nm) are as
follows: The equal-time spatial correlation function C(r, t )
exhibits dynamical scaling and is robust with respect to
κ ′. Coarsening is due to annihilation of the string defects
[S(k, t ) ∼ k−5], and the domain growth obeys the LAC law:
L(t ) ∼ t1/2. Earlier results in the literature were inconclusive
due to small system sizes used in simulations [67].

(b) In our I → Sm quenches, the low temperature phase
has a Sm B hexatic (SmB-H) order. With regard to our novel
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results on coarsening in this phase, the domain growth exhibits
a two-timescale scenario: With the onset of coarsening, the LC
molecules align and develop orientational order (nematicity).
The arrangement in layers (smecticity) with hexatic BOO
within the layers follows thereafter. Consequently, the growth
follows the LAC law, L(t ) ∼ t1/2, at early times and then
a crossover to a slower growth at later times. Interestingly,
the correlation functions and corresponding structure factors
show dynamical scaling in both the regimes with universal
scaling functions. These are also robust with respect to κ ′,
and the smecticity and BOO are pronounced at larger val-
ues. Furthermore, the early-time dynamics is governed by
string defects [S(k, t ) ∼ k−5], while the late-time evolution is
dictated by interfacial defects [Sl (k, t ) ∼ k−4 and SH (k, t ) ∼
k−4]. We believe these results to be valid for other classes of
the Sm phase as well.

In conclusion, we believe that the novel results presented in
this paper reveal many unusual aspects of ordering in the Sm
phase. Although of consequence in the LC arena, it has re-
ceived little attention due to experimental and computational
difficulties. The methodology presented in this work to study
equilibrium and nonequilibrium phenomena in calamitic LCs

could also be applied to study the mesophases that occur in
discotic and bent-core LC systems. Another significant aspect
of our work has been incorporation of the Gay-Berne potential
in the general-purpose MC program, DL_MONTE [61]. This
new functionality should prove useful for future MC studies
of uniaxial as well as biaxial and bent core LC systems.
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