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Surface-field-induced heliconical instability in the cholesteric phase of a mixture
of a flexible dimer (CB7CB) and a rodlike molecule (8CB)
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In 1968, de Gennes and Meyer independently predicted that a cholesteric phase can form a stable oblique
helicoidal (or heliconical) structure provided that K3 < K2 where K3 (K2) is the bend (twist) constant. This
structure usually develops under electric field when the material is of positive dielectric anisotropy and was
observed for the first time in 2014 by Xiang et al. in a cholesteric phase made of a liquid crystal dimer material
(CB7CB) in which K3 is anomalously small. Following a recent theoretical prediction by Poy and Žumer, I show
that confining a similar cholesteric phase between two glass plates treated for unidirectional anchoring can lead
to a similar heliconical instability. In that case, the confinement induces a surface field that acts as an effective
electric field E with E ≡ 1/d where d is the sample thickness. The experiment was conducted in a mixture of
CB7CB +50 wt% 8CB doped with a small amount of the chiral molecule R811. In addition, I show that this
mixture presents an unexpected compensation point near the transition to the NTB phase.
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I. INTRODUCTION

By doping a nematic phase with a small amount of a chiral
molecule, one obtains a cholesteric phase in which the director
�n rotates along a space direction called the helical axis [1]. In
the structure at equilibrium, the director is perpendicular to the
helical axis. If the bend elastic constant K3 is smaller than the
twist elastic constant K2 and if the dielectric anisotropy εa =
ε‖ − ε⊥ of the liquid crystal is positive, it is possible to induce,
by imposing an electric field E , a new director configuration
in which the director follows an oblique helicoid. This result
was independently shown by Meyer [2] and de Gennes [3] in
1968. The pitch P of this structure, also called the heliconical
pitch, is inversely proportional to the field [2]:

P = 2π

E

√
K3

ε0εa
(1)

and is independent of the equilibrium pitch P0 of the
cholesteric phase.

This solution develops when the electric field is decreased
below a critical field [2]

Ec = 2π

P0

K2√
ε0εaK3

(2)

above which the cholesteric phase is unwound and disappears
at fields lower than [4]

E �
c ≈ Ec

κ (2 + √
2(1 − κ ))

1 + κ
, (3)

where κ = K3/K2.
This solution was observed for the first time by Xiang

et al. [4] in the cholesteric phase of the bent flexible dimer
CB7CB doped with the chiral molecule S811 (for a review on
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the physical properties of liquid crystals (LC) of bent-shaped
molecules, see Ref. [5]) and was then intensively studied for
its capabilities in producing Bragg and Raman-Nath diffrac-
tion and mirrorless lasing (for a review, see Ref. [6]).

In this paper, I show experimentally that a similar solution
can be observed in a cholesteric phase confined between two
plates treated for planar unidirectional anchoring. In this ge-
ometry, the confinement can be used to unwind the cholesteric
phase and acts as an electric field. In that case, the equivalent
electric field is a surface field, which is here simply the re-
ciprocal of the sample thickness d . Indeed, it is well known
that the cholesteric phase unwinds when 1/d > 4/P0 [1]. By
analogy with the instability discovered by de Gennes and
Meyer, one can thus wonder if a confined unwound cholesteric
can become unstable with respect to a heliconical deformation
when its bend constant K3 is very small. This result was
actually demonstrated by Poy and Žumer in a recent paper
about the nonlinear optical response of a frustrated cholesteric
phase [7]. The aim of this paper is to show experimentally that
this instability does exist.

The plan of the paper is as follows. In Sec. II, I recall
the theoretical results obtained by Poy and Žumer about the
heliconical instability of the unwound solution in materials
with low K3 when the sample thickness is less than P0/4. I
then extend this analysis to the case of the π -twisted solution
that is usually observed when P0/4 < d < 3P0/4 [1] and I
show that a similar instability can develop. In Sec. III, I show
experimentally that this instability does exist in both unwound
and π -twisted cholesteric samples and I compare the exper-
imental results with the theoretical predictions. Conclusions
and perspectives are drawn in Sec. IV.

II. THEORETICAL PREDICTIONS

I consider a cholesteric sample sandwiched between two
glass plates treated for strong planar unidirectional anchoring
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along the x axis. The z axis is taken perpendicular to the
plates and d is the sample thickness. When d < P0/4 it is
well known that the cholesteric phase unwinds and adopts a
planar nematic-like structure while a planar π -twisted solu-
tion develops when P0/4 < d < 3P0/4. In most of the liquid
crystals, the bend constant K3 is larger than the splay and twist
constants K1 and K2 and these solutions are stable. The situa-
tion changes when K3 is small as shown recently by Poy and
Žumer [7] by analyzing the stability of the unwound solution.
In Sec. II B, I recall their main results. I will then generalize
the calculation to the case of the π -twisted solution.

A. Stability of the unwound solution

In their paper, Poy and Žumer analyze the determinant
of the self-adjoint differential operator governing the linear
response of the liquid crystal under the action of an external
field. This method is very general but a bit complicated. The
same result can be obtained by determining under which con-
ditions a perturbation of the type �n = �n0/‖−→n0 ‖ with

�n0 =
⎛
⎝ 1

δny sin
(

πz
d

)
sin(qx)

δnz sin
(

πz
d

)
sin(qx + φ)

⎞
⎠ (4)

becomes energetically favorable. Calculating the elastic free
energy per unit surface area:

F = q

2π

∫ 2π/q

0

∫ d

0
f dxdz, (5)

where

f = 1

2
K1div(�n)2 + 1

2
K2[�n. �curl(�n)

+ q0]2 + 1

2
K3[�n × �curl(�n)]2 (6)

gives, to second order in deformation,

F = 1
2 dK2q2

0 + π2K2+d2q2K3

8d δn2
y + π2K1+d2q2K3

8d δn2
z

+ 1
2 K2dqq0 sin(φ)δnyδnz. (7)

The system becomes unstable when the discriminant � of this
quadratic form in (δny, δnz ):

� = (π2K1+d2q2K3 )(π2K2+d2q2K3 )−4d4q2q2
0K2

2 sin(φ)2

16d2 (8)

becomes negative. This imposes that φ = ±π/2 and that the
equilibrium twist q0 is larger (in absolute value) than some
critical value [7]

q0c = π

d

√
K3(

√
K1 + √

K2)

2K2
. (9)

Equivalently, the ratio P0/d must be smaller (in absolute
value) than the ratio(

P0

d

)
max1

= 4K2√
K3(

√
K1 + √

K2)
. (10)

This condition was already given in Ref. [7]. At the onset
of instability, when |q0| = q0c or |P0/d| = (P0/d )max1, the

discriminant vanishes for

|q| = qc1 = π

d

(K1K2)1/4

√
K3

. (11)

This defines the wavelength at the onset of instability:

λc1 = 2π/qc1 = 2
√

K3

(K1K2)1/4
d. (12)

This formula was also given in Ref. [7]. A remarkable point is
that this wavelength is independent of the equilibrium twist
of the cholesteric phase. Finally, the ratio δny/δnz can be
calculated at the onset of instability. It is given by

δny

δnz
= −sign(q0)

(K1

K2

)1/4

(13)

by choosing, without any loss of generality, φ = π/2 and q =
qc1.

This formula (not given in Ref. [7]) shows that the director
rotates in the midplane of the sample on a cone of axis parallel
to the anchoring direction on the plates, proving that we are
well dealing with a heliconical instability. This cone is ax-
isymmetric if K1 = K2 and slightly flattened otherwise [with
a flattening given by (K1/K2)1/4]. As expected, the sense of
rotation of the director on the cone is given by the sign of q0.

Finally, note that when |q0| > q0c, there is a band of un-
stable wavelengths [λmin, λmax]. These two wavelengths are
given by λmin = 2π/qmax and λmax = 2π/qmin, where qmax

and qmin are the solutions of equation � = 0 with φ = ±π/2.
A direct calculation gives:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

λmin = 2π
√

2K3 d√
K +

√
K2 − 4π4K1K2K2

3

λmax = 2π
√

2K3 d√
K −

√
K2 − 4π4K1K2K2

3

, (14)

where

K = 4K2
2 d2q2

0 − π2(K1 + K2)K3. (15)

Of course, λmin = λmax = λc1 when q0 = q0c. Experimentally,
the system will select a wavelength in the interval [λmin, λmax].
One could think that the most unstable wavelength is selected.
It is possible to calculate this wavelength by calculating the
principal curvatures of the potential at the origin. Above the
onset of instability, one of them becomes negative and there
is a wavelength for which it is minimal. This defines the most
unstable wavelength. This calculation is straightforward but
I have found that this wavelength is very different from the
measured wavelength. For this reason, I will not detail this
calculation here. This simply shows that only a full nonlinear
analysis of the problem can give the measured wavelength.
This is, however, beyond the scope of the present study.

In practice, this heliconical solution will be observable and
stable with respect to the nucleation of the π -twisted solution
only in samples of thickness d < |P0|/4. This imposes that
4 < |P0|/d < (P0/d )max. This is only possible in materials in
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which the elastic constants satisfy the following condition:

g1(K1, K2, K3) : =√
K3

√
K1 + √

K2

K2
< 1. (16)

This condition is not satisfied in usual liquid crystals of rod-
like molecules in which K3 is larger than K1 and K2. By
contrast, I will show in the experimental section that this
condition can be fulfilled in liquid crystals containing flexible
dimers such as CB7CB in which K3 is anomalously small with
respect to K1 and K2 [8–11]. Before that, I analyze the stability
of the π -twisted solution.

B. Stability of the π-twisted solution

In practice, a π -twisted configuration develops in samples
of thickness |P0|/4 < d < 3|P0|/4 [1]. It turns out that this
solution is not always stable as I will show in the experimental
section and develops a texture with a wave vector perpendic-
ular to the anchoring direction (i.e., parallel to the director in
midplane of the sample). For this reason, it becomes pertinent
to analyze the stability of the π -twisted solution with respect
to a perturbation of the type �n = �n0/‖−→n0 ‖ with

�n0 =
⎛
⎝cos

(
πz
d

) + δnx sin
(

πz
d

)
sin(qy)

sign(q0) sin
(

πz
d

)
δnz sin

(
πz
d

)
sin(qy + φ)

⎞
⎠. (17)

As before, the anchoring direction is along the x axis and the z
axis is perpendicular to the plates. In this formula, sign(q0) =
+1 for a right-handed cholesteric and sign(q0) = −1 for a
left-handed cholesteric. The procedure is exactly the same as
before. Calculating the average free energy leads to

F = K2(π − dq0)2

2d
+ a δn2

x + b δn2
z + c δnxδnz, (18)

where⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a = π2K2
8d + 1

64 (K1 + 5K3)dq2

b = 4π2(K1−2K2+K3 )+(K2+3K3 )d2q2+sign(q0 )8πK2dq0

32d

c = − (πK1−4πK2+3πK3+sign(q0 )6K2dq0 )q sin φ

16

. (19)

The π -twisted configuration becomes unstable when the
discriminant � = 4ab − c2 of this quadratic form becomes
negative. This happens when φ = ±π/2 and when the ratio
P0/d is smaller (in absolute value) than(P0

d

)
max2

= 36K2

K +
√

KK
�
, (20)

where ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

K = K1 + 5K3

K� = K2 + 3K3

K = −2K1 + 12K2 − 4K3 + 6
√

K2K�

K
� = 13K1 − 12K2 + 5K3 + 12

√
K2K�

. (21)

When |P0|/d = (P0/d )max2, the discriminant vanishes for

|q| = qc2 = 2π√
3d

√√√√ (K +
√

KK
�
)
√

K2

K
√

K�
, (22)
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√

FIG. 1. Ratio (K +
√

KK̄�)/(27K2) as a function of K3/K2 when
K1 = K2.

which defines the wavelength at the onset of instability:

λc2 = 2π/qc2 =
√

3d

√√√√ K
√

K�

(K +
√

KK
�
)
√

K2

. (23)

In practice this instability will be observable if |P0|/d >

4/3—otherwise the π -twisted configuration is replaced by
a 2π -twisted configuration, more favorable energetically—
which imposes that

g2(K1, K2, K3) := K +
√

KK
�

27K2
< 1. (24)

In Fig. 1, I plotted this ratio as a function of K3/K2 by as-
suming that K1 = K2. It appears that this ratio is smaller than
1 when K3 is small, less than 0.558K2. In usual liquid crystals,
K3 is larger than K2, which explains why this instability is
never observed. By contrast, K3 is anomalously small in LC of
flexible dimers such as CB7CB, making them good candidates
for the observation of this instability. This is indeed the case
as I will show in the next section.

Finally the ratio δnx/δnz can be calculated by taking φ =
π/2 and q = qc2. The calculation gives:

δnx

δnz
= sign(q0)

√√√√1 +
√

K
�
/K

3

(
K�

K2

)1/4

. (25)

In the limit K3 	 K1 and K2, one calculates δnx/δnz ≈
1.24 sign(q0), which means that the director rotates on a cone
slightly flattened in the center of the sample. We are thus again
dealing with a heliconical instability.

III. EXPERIMENTAL EVIDENCE OF THE HELICONICAL
INSTABILITIES

A. Materials and experimental setup

All my experiments were performed with a mixture of
CB7CB and 8CB in equal proportion by weight doped with
0.182 wt% of the chiral molecule R811. This mixture has a
cholesteric phase (Ch) between 30 and 61 ◦C and a twist-bend
nematic (NTB) phase below 30 ◦C. The two LCs, CB7CB, and
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COO COO-CH-C6H13C6H13-O
*

CH3

CN

CNNC

C8H17

(b)

(c)

(a)

FIG. 2. Molecules used: (a) 1′′, 7′′-bis(4-cyanobiphenyl-
4′–yl)heptane, CB7CB (flexible bend core); (b)
4-n-octylcyanobiphenyl, 8CB (rod-shaped); (d) R-(+)-octan-2-yl
4-((4-(hexyloxy)benzoyl)oxy) benzoate, R811 (chiral dopant).

8CB, were purchased at Synthon (Germany) and used without
further purification. The molecule R811 was produced by
Merck KGaA (Germany) and is known to give right-handed
cholesteric phase in usual LCs. These molecules are shown in
Fig. 2. The constants K1 and K3 were measured previously
in the mixture CB7CB+50 wt% 8CB [11]. In addition, I
measured K2. The details on this measurement are given in
Appendix A. Their variation in temperature is shown in Fig. 3.
This figure shows that K1 and K2 increase when the tempera-
ture decreases whereas K3 decreases and then increases when
the temperature decreases. This increase of K3 is generally
attributed to the presence of the nematic twist-bend (NTB)
phase in which the molecules form pseudolayers [8,10]. I

10

8

6

4

2

0

K
i (

pN
)

30252015105
T-TNB

 K1

 K2

 K3

FIG. 3. Elastic constants as a function of temperature. The data
for K1 and K3 are taken from Ref. [11]. The solid lines are the best
fits with a polynomial of order 8.
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FIG. 4. (a) Equilibrium twist as a function of temperature. The
solid line is the best fit with a function of the type a + bx2 +
c/(x − x0 )n + d (x1 − x)m. (b) Equilibrium pitch as a function of
temperature.

nonetheless note that neither K3 nor K2 seem to diverge at the
NTB phase transition, contrary to what is observed at the smec-
tic A phase transition (when it is second order [1,11]). In the
following, I will assume that the elastic constants are the same
in my cholesteric mixture. This assumption is reasonable in
view of the very small amount of R811 added in the mixture.

Another important parameter in my study is the temper-
ature evolution of the equilibrium twist q0. The classical
method to measure q0 is to use a Cano wedge [1]. It turns
out that this method is not applicable here because of the
heliconical instabilities that develop in the sample near the
χ -disclination lines of the Cano wedge. Because of these
instabilities, the lines no longer lie at places where d =
P0/4, 3P0/4, 5P0/4, . . . but shift towards smaller thicknesses,
which makes this method inapplicable. In addition, the LC
is very viscous, which constitutes another severe limitation
to the use of a Cano wedge. For these reasons, I chose an-
other method consisting in measuring the rotatory power of
a thin sample sandwiched between a plate treated for planar
unidirectional anchoring and a second one treated for pla-
nar sliding anchoring. The details of this measurement are
reported in Appendix B. The temperature evolution of the
equilibrium twist q0 and of the pitch P0 are shown in Fig. 4.
As expected with R811, I found that the cholesteric is right
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handed at high temperature (q0 > 0). I also observed that q0

decreases when the temperature decreases, which I expected
upon approaching TNB because of the layered structure of the
NTB phase. However, I observed that q0 vanishes and changes
sign in the cholesteric phase at a temperature Tc slightly larger
than TNB (Tc − TNB ≈ 0.9 ◦C). The presence of this compen-
sation point is surprising. This behavior contrasts with that
previously observed in similar mixtures doped with larger
concentrations of chiral molecules in which the pitch seems to
diverge at TNB [12]. It turns out that this unexpected property
is very interesting to test the present theory on the heliconical
instability induced by confinement.

All observations were made with a Leica Laborlux 12 Pol
Microscope equipped with a Guppy F-503 CMOS camera.
The samples were prepared between indium tin oxide (ITO)
coated glass slides. Their thickness was fixed thanks to nickel
wires used as a spacer and was measured with an Ocean
Optics USB2000 spectrometer. A homemade oven was used
to fix the temperature of the samples. The temperature was
regulated to within ±0.01◦C thanks to an ATNE ATSR100
PID temperature controller. The polyimide Nissan 0825 was
used to prepare the plates treated for planar unidirectional
anchoring according to the protocol described in Ref. [11]. A
thin polymercaptan layer was used to obtain a planar sliding
anchoring according to the protocol described in Ref. [13].

B. About the choice of the current cholesteric mixture

The theory predicts that the heliconical instability may
develop in the unwound configuration if condition (16) is
satisfied and in the π -twisted configuration if condition (24)
is satisfied. To test these predictions, I plotted the functions
g1(K1, K2, K3) and g2(K1, K2, K3) given in Eqs. (16) and (24)
as a function of temperature in Fig. 5. These functions were
calculated by using the polynomial fits of the elastic constants
shown in Fig. 3. These two graphs show that the two functions
are less than 1 in a large interval of temperature above TNB,
making the mixture CB7CB+50 wt% 8CB a good candidate
to evidence the heliconical instability in confined geometry.

C. Experimental evidence of the heliconical instability
in an unwound sample

To observe the instability in the unwound cholesteric, the
sample thickness must be adequately chosen. Indeed, this
instability will develop if the cholesteric pitch P0 satisfies
4 < |P0|/d < (P0/d )max1. A good choice of thickness is d =
7.5 μm as can be seen in Fig. 6(a) in which I plot the ratio
|P0|/d measured experimentally and the two limits P0/d = 4
and P0/d = (P0/d )max1 given by Eq. (10). This graph shows
that the instability must develop in two intervals of temper-
ature: very close to the transition to the NTB phase between
TNB and T1 (with T1 − TNB ≈ 0.65 ◦C) and between T2 and T3

(with T2 − TNB ≈ 1.44 ◦C and T3 − TNB ≈ 13.2 ◦C). At these
temperatures, the wavelength of the instability can be calcu-
lated by using the graph of Fig. 6(b) in which λc1/d has been
plotted by using Eq. (12) and the polynomial fits of the elastic
constants shown in Fig. 2. This gives λc1(T1) ≈ 2.25 μm,
λc1(T2) ≈ 1.75 μm and λc1(T3) ≈ 5.05 μm.

2.0

1.5

1.0

0.5

0.0

g 1
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K
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K
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K
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302520151050
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1.2

1.1

1.0

0.9

0.8

0.7

g 2
 (

K
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K
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K
3)

302520151050
T - TNB (°C)

Unstable

Stable

(a)

(b)

FIG. 5. Functions (a) g1 and (b) g2 as a function of temperature
calculated for the mixture CB7CB+50 wt% 8CB by using the poly-
nomial fits of the elastic constants shown in Fig. 3.

To test these theoretical predictions, I prepared a 7.5 μm-
thick sample of the cholesteric mixture and I observed it under
the microscope. All the observations were made with the
polarizer and the analyzer parallel to the anchoring direction
on the plates. As expected, I observed that the cholesteric
phase was unwound and stable at high temperature. On the
other hand, I observed, by decreasing the temperature, that a
band texture—with the bands perpendicular to the anchoring
direction—successively developed in two intervals of tem-
perature, between T3(exp) ≈ 42 ◦C and T2(exp) ≈ 34 ◦C and
then between T1(exp) ≈ 30.5 ◦C and TNB ≈ 30 ◦C. Outside of
these two intervals, the bands disappear, as predicted theoret-
ically in the previous section. A few micrographs of the band
texture are shown in Fig. 7 and the wavelengths measured
experimentally are shown in Fig. 8. Note that before each
measurement of the wavelength, the sample was equilibrated
during half an hour typically. The equilibration was possible
thanks to the climb of the numerous edge dislocations present
in the band texture. Some of them are visible in Fig. 7(c),
for instance. In Fig. 8 the three wavelengths λc1 calculated
theoretically at the onset of the heliconical instability (filled
symbols in the graph) are also reported. The curves λmin(T )
and λmax(T ) calculated from Eqs. (14) by using the fits of
the elastic constants and of the equilibrium twist are also
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FIG. 6. Graphical determination of the temperatures T1, T2, and
T3 (indicated by the three vertical arrows) at which the instability oc-
curs and of the corresponding wavelengths. In (a) I plot as a function
of temperature the curve (P0/d )max1, the curve P0/d = 4 marking the
limit between the unwound and the π -twisted configurations and the
experimental curve |P0|/d (d = 7.5 μm) and in (b) the curve λc1/d
is plotted.

plotted (dashed and solid lines, respectively). This graph
shows that there is a good quantitative agreement between
the theoretical predictions and the experiment. In particular,
the measured wavelengths extrapolate well to wavelengths λc1

theoretically calculated at temperatures T1, T2, and T3. Note
that the temperatures T1, T2, and T3 measured experimentally
are a bit different from the predicted temperatures. This is
normal because the band contrast strongly decreases when the
bifurcation (presumably of the second order) is approached,
making the bands difficult to discern under the microscope at
the onset of instability.

In practice, it should always be possible to observe the
heliconical instability of the unwound configuration in the
vicinity of the compensation point, because the pitch diverges
at this temperature (see Fig. 6). To check this point, I pre-
pared two samples of thickness d = 14.5 μm and d = 26 μm,
which I unwound at temperature Tc ≈ 30.9 ◦C. In agreement
with the theory, I observed that the texture was stable within
a narrow interval of temperature [T1(exp]), T2(exp)] around
Tc and destabilized by forming bands perpendicular to the

FIG. 7. Snapshots of the band texture observed in a 7.5 μm-thick
sample as a function of temperature. The vertical double arrow indi-
cates the rubbing direction and the white bar is 20 μm long. From
(a) to (l), T = 29.95 (NTB phase), 30.1, 30.2, 30.3, 30.35, 30.5, 31.3,
32.5, 33.5, 35, 37, 39, 41 ◦C.

anchoring direction outside of this interval. The band wave-
length as a function of temperature is shown in Fig. 8 for
the two samples and compared to the wavelengths λc1(T1)
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FIG. 8. Wavelength of the band texture observed in an unwound
sample as a function of temperature. The open symbols represent the
experimental points and the filled symbols represent the theoretical
predictions at the onset of the heliconical instability (λc1). For the red
circles d = 7.5 μm, for the blue triangles d = 14.7 μm and for the
green squares d = 26 μm. The red solid (dashed) line corresponds
to λmax (λmin) calculated for d = 7.5 μm by using Eqs. (14). All
the wavelengths inside the domain bounded by these two curves are
unstable. The measured wavelengths are well inside this domain. For
more clarity, the curves λmax and λmin are not plotted for the two other
thicknesses.

and λc1(T2) predicted by the theoretical model. Again, the
agreement between theory and experiment is good.

D. Experimental evidence of the heliconical instability in a
π-twisted sample

As previously, the sample thickness must be adequately
chosen to observe the heliconical instability in a π -twisted
configuration. Indeed, the cholesteric pitch must now satisfy
conditions 4/3 < |P0|/d < 4 and |P0|/d < (P0/d )max2. This
is the case for a sample of thickness d = 22.7 μm as can be
seen in Fig. 9. According to this figure (identical to Fig. 6),
a heliconical instability should appear in the π -twisted con-
figuration only in the temperature interval [T4, T5] with T4 −
TNB ≈ 3.6 ◦C and T5 − TNB ≈ 20.7 ◦C. At these temperatures
the theory predicts that λc2(T4) ≈ 19.5 μm and λc2(T4) ≈
23.4 μm.

To test these predictions, I made a 22.7 μm-thick sample
of the cholesteric mixture and I observed its texture under the
microscope. All the observations were made with the polarizer
and the analyzer parallel to the anchoring direction on the
plates. As predicted, I observed that the sample was twisted
by π and stable at high temperature (except very close to
the clearing temperature where 2π -twisted domains nucleated
due of the decreasing of the pitch, see Fig. 4). Subsequently,
I observed by decreasing the temperature that a band texture
formed between T5(exp) ≈ 50 ◦C and T4(exp) ≈ 35 ◦C. A few
snapshots of this texture are shown in Fig. 10 and the wave-
lengths measured experimentally after a recovery of about half
an hour are shown in Fig. 11. The two wavelengths λc2(T4)
and λc2(T5) are also given in this graph. Again the agreement
between the theory and the experiment is satisfactory.
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P 0

/ d
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2 /
 d

FIG. 9. Graphical determination of the temperatures T4 and T5

(indicated by the two vertical arrows) at which the instability occurs
and of the corresponding wavelengths. In (a) are plotted as a function
of temperature the curve (P0/d )max2, the curve P0/d = 4/3 marking
the limit between the π and the 2π -twisted configurations and the
experimental curve |P0|/d (with d = 22.7 μm) and in (b) is plotted
the curve λc2/d .

IV. CONCLUSION AND PERSPECTIVES

By doping with a small concentration of chiral molecules
the mixture CB7CB+50 wt% 8CB in which K3 is anoma-
lously small, I was able to evidence the heliconical instability
predicted by Poy and Žumer in a cholesteric confined between
two plates treated for strong planar anchoring [7]. I found
that this instability could develop not only in the unwound
state (as predicted by these authors) but also in the π -twisted
state in which I generalized the calculation of stability. In the
two cases, I found a good agreement between the theory and
the experiment, and this without any adjustable parameters. In
particular, the intervals of temperature in which the instability
develops are correctly predicted by the theory as well as the
wavelengths at the onset of the instability.

A natural extension of this work would be to perform a
nonlinear analysis of this instability to prove it is second
order as it seems to be the case experimentally. It would also
be interesting to numerically compute the wavelength in the
nonlinear regime to compare with the experimental values.
These calculations could also be generalized to more twisted
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FIG. 10. Snapshots of the band texture observed in a 22.7 μm-
thick sample as a function of temperature. The vertical double arrow
indicates the rubbing direction and the white bar is 100 μm long.
From (a) to (h), T = 35, 36, 37, 41, 45, 47, 49, 50 ◦C.

configurations in which this instability still exists as I have
found by making a Cano wedge. In particular, a similar band
texture, with the bands perpendicular to anchoring direction
develops in the 2π -twisted region near the third χ line sep-
arating the 2π - and 3π -twisted regions. I emphasize once
again that the presence of this instability makes impossible
a precise measurement of the pitch with the Cano wedge
technique because the lines are no longer at positions d =
P0/4, 3P0/4, 5P0/4, . . . as it must be without instability.

30
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15
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)

2520151050
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FIG. 11. Wavelength of the band texture observed in a π -twisted
sample as a function of temperature. The open symbols represent the
experimental points and the filled symbols represent the theoretical
predictions at the onset of the heliconical instability. The cell spacing
is d = 22.7 μm.

A surprising point of this study is the existence of a com-
pensation temperature in the mixture chosen. This observation
is unusual for several reasons:

First, because a compensation point is not observed in
ordinary liquid crystals doped with R811. However, such a
behavior is usually observed with particular chiral molecules
such as the esters of cholesteryl. In this category, the
cholesteryl choride (CC) is the most popular [14].

Second, because this compensation point is observed at
very low concentration of chiral molecules. This is again
unusual as most of the liquid crystals have a compensation
point at concentrations of chiral molecules close to 50%. This
is the case in the mixtures of ordinary liquid crystals such
as 8CB or MBBA (p-methyloxybenzilidene-p-n-butylaniline)
doped with CC. Note nonetheless one exception in the
mixture CCN37 (4α, 4′α-propylheptyl-1α, 1′α-bicyclohexyl-
4β-carbonitrile) + CC in which a compensation point was
observed for a concentration of CC close to 3% [15].

Third, because the pitch does not diverge at the phase
transition towards the NTB phase in spite of its lamellar-like
structure [5]. This result is compatible with the absence of
a clear divergence of the twist constant K2 at TNB as can be
seen in Fig. 3 (the divergence of K2 is indeed responsible for
the divergence of the pitch at the cholesteric-smectic A phase
transition [16]).

In the future, it would be interesting to test other chiral
molecules to check if the presence of the compensation point
is due to R811 or to a particular property of the mixture
CB7CB/8CB such as the proximity of a NTB phase. Another
interesting point would be to change the concentration of
R811 to see if the compensation point disappears. This should
be the case if I refer to a recent work by Kasian et al. [12] in
which there is no mention of a compensation point in similar
mixtures doped with a larger concentration of R811 (more
than 4% in their paper).
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FIG. 12. Capacitance curve measured at T = 40 ◦C. The critical
voltage Vc is not well defined. The solid line is the best fit with the
theoretical curve calculated by taking into account the pretilt angle
on the plates.
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APPENDIX A: EXPERIMENTAL MEASUREMENT OF K2

A classical method to determine K2 is to measure the crit-
ical Fredericksz voltage in a planar sample twisted by π/2.
If the anchoring is strong and if there is no pretilt angle, the
critical voltage is given by

Vc = π

√
K1 + K3−2K2

4

ε0εa
, (A1)

where ε0 is the vacuum permittivity and εa = ε‖ − ε⊥ is the
dielectric anisotropy. Thus, measuring Vc allows us in princi-
ple to measure K2 provided that εa and the elastic constants
K1 and K3 are known. This is the case for the mixture CB7CB
+ 50 wt% 8CB in which these constants have already been
measured [11].

To implement this method, I prepared a twisted sample
of thickness d = 50 μm. Each ITO electrode was treated for
planar unidirectional anchoring with the polyimide Nissan
0825 by following the same protocol as in Ref. [11]. A RLC
meter HP 4284A was used to measure the sample capacitance
as a function of the applied voltage. All measurements were
performed at 50 kHz in the dielectric regime. A typical capac-
itance curve is shown in Fig. 12. This example shows that the
capacitance curve is rounded at the onset of instability, making
a direct determination of Vc very imprecise, if not impossible.
This problem is due to the presence of a small pretilt angle θa

at the surface of the electrodes.
To take into account this angle, I solved numerically with

Mathematica the full set of equations given the capacitance as
a function of the applied voltage. To simplify, I assumed that
the anchoring energy was infinite, which is a good approxi-
mation at large thickness as in my experiment. The equations

to solve read [17]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

2
=

∫ θm

θa

f1(θ, θm, φ′
m,C)dθ

π

2
=

∫ θm

θa

f2(θ, θm, φ′
m,C)dθ

V

2
= D

ε0ε‖

∫ θm

θa

f3(θ, θm, φ′
m,C)dθ.

(A2)

The first two come from the bulk torque equation and the third
one comes from the Maxwell equation for the electric field.
In these equations, C = C/C⊥ is the capacitance normalized
with the capacitance C⊥ = ε0ε⊥S

d (with S the electrode surface
area) and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(θ, . . . ) =
√

1 − γ1 sin2 θ

(cos2 θ − cos2 θm)g(θ, . . . )

f2(θ, . . . ) = cos2 θm(1 − γ2 cos2 θm)

cos2 θ (1 − γ2 cos2 θ )
f1(θ, . . . )

f3(θ, . . . ) = 1

1 − α cos2 θ
f1(θ, . . . )

, (A3)

where

g(θ, θm, φ′
m,C)

= D2 α

K3ε0ε‖

1

(1 − α cos2 θ )(1 − α cos2 θm)

+cos2 θm(1 − γ2 cos2 θm)(1 − γ2(cos2 θ + cos2 θm))

cos2 θ (1 − γ2 cos2 θ )
φ′

m
2
.

(A4)

Angles θ and φ are the polar and azimuthal angles, with θ =
θa and φ = 0 on the bottom electrode at z = 0 and θ = θa and
φ = π/2 on the top electrode at z = d , θm = θ (d/2), φ′

m =
(dφ/dz)(d/2), γ1 = 1 − K1/K3, γ2 = 1 − K2/K3, α = εa/ε‖,
and D = CV/S = ε0ε⊥(V/d )C is the electric displacement,
constant within the sample thickness in the dielectric regime.

To solve the set of equations (A2) with unknowns θm, φ′
m,

and C, I used the values of K1, K3, and εa given in Ref. [11]
and I fitted the capacitance curves by taking θa and K2 as fit
parameters. The best fits—one example is shown in Fig. 12—
were obtained for θa = 1.8◦, which is a little bit larger than
the value of 1.7◦ given in Ref. [11]. The values of K2 obtained
in this way are shown in Fig. 3.

APPENDIX B: EXPERIMENTAL MEASUREMENT OF P0

It turns out that the Cano wedge method is not suitable
to measure the pitch of the current cholesteric mixture. The
main reason is the presence of the heliconical instability,
which develops at low temperature in the vicinity of the χ

lines. Another problem comes from the large viscosity of the
phase, in particular close to the NTB phase, which considerably
increases the equilibration time of the samples. For these
two reasons, I have chosen another more versatile method
consisting of measuring the rotatory power of the cholesteric
phase. To this end, I made two 8 μm-thick cells, each of
them with the bottom plate treated for planar unidirectional
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anchoring with the polyimide Nissan 0825 while the top plate
was treated for planar sliding anchoring with a polymercaptan
layer, following the protocols given in Refs. [11] and [13].

The first cell was filled with the nematic mixture
CB7CB+50 wt% 8CB. With this cell, I measured the bire-
fringence of the liquid crystal by using a Berek rotating
compensator Leica 0989. A red filter (λ = 633 nm) was used.
With this sample, I found that the apparent birefringence was
the same (to within 5%) as the one found previously with a
planar parallel sample [11]. This proves that the anchoring is
well planar at the interface with the polymercaptan.

The second cell was filled with the cholesteric mixture
and illuminated with a polarized light beam whose incident
polarization was parallel to the director on the bottom plate. I
then measured with the CCD camera the transmitted intensity
Itr in red light (λ = 633 nm) across the rotating analyzer of the
microscope and I determined for which angle φmax of angle
φ between the polarizer and the analyzer Itr was maximum.
From this measurement, I deduced the rotation angle θ of
the director across the sample thickness. The pitch was then
calculated by using the formula P0 = 2πd/θ . The results are
shown in Fig. 4.

Note that when the birefringence is large (rigorously when
P0�n � λ) there is adiabatic rotation of the light polarization,
so that one has simply θ = φmax. In my experiment, this

condition was not always fulfilled, in particular close to the
melting temperature where �n decreases. For this reason, I
systematically used the Ong formula [18,19]

Itr (φ) = cos2(θ − φ) − cos[2(θ − φ)] sin2[θ
√

1 + u2]

1 + u2

+ sin[2(θ − φ)] sin[2θ
√

1 + u2]

2
√

1 + u2
(B1)

in which u = πd�n
θλ

to calculate with Mathematica the correct
value of θ corresponding to φmax.

Last but not least, I mention that my measurements were
performed by both decreasing and increasing the temperature.
In doing this, no hysteresis was observed, meaning that the
anchoring was perfectly sliding during the measurements. The
same behavior was incidentally observed during several days
with the same sample, without notable memorization of an
anchoring direction, even when the temperature was kept con-
stant. This behavior is different from the one observed with
pure cyanobiphenyls in which memorization effects occur
after a few hours [20]. This behavior is clearly due to the
presence of CB7CB and could be interesting for applications
that require a sliding anchoring.
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