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Geometric frustration results from a discrepancy between the locally favored arrangement of the constituents
of a system and the geometry of the embedding space. Geometric frustration can be either noncumulative,
which implies an extensive energy growth, or cumulative, which implies superextensive energy scaling and
highly cooperative ground-state configurations which may depend on the dimensions of the system. Cumulative
geometric frustration was identified in a variety of continuous systems including liquid crystals, filament
bundles, and molecular crystals. However, a spin-lattice model which clearly demonstrates cumulative geometric
frustration was lacking. In this paper we describe a nonlinear variation of the XY -spin model on a triangular
lattice that displays cumulative geometric frustration. The model is studied numerically and analyzed in three
distinct parameter regimes, which are associated with different energy minimizing configurations. We show
that, despite the difference in the ground-state structure in the different regimes, in all cases the superextensive
power-law growth of the frustration energy for small domains grows with the same universal exponent that is
predicted from the structure of the underlying compatibility condition.
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I. INTRODUCTION

Geometric frustration arises whenever the geometry of the
constituents of an assembly and their interactions favor a
local motif that is incompatible with long-range order in the
ambient space in which the system is embedded. Because the
favored local motifs are ill fitting for long-range propagation,
the ground-state configuration of a given domain cannot be
obtained by local minimization of the individual interactions.
Instead, the ground state is obtained via a compromise that
best resolves the conflict, which might be nonlocal. In re-
cent years, geometric frustration was shown to underlie the
mechanism that leads to a variety of nontrivial morphologi-
cal responses, including size limitation [1], filamentation [2],
and other nontrivial response properties [3–6]. Such unique
characteristics have been observed in several different settings
including a colloidal crystal confined to a spherical interface
[2], filamentation of irregular elastic hexagons [7], twisted
molecular crystals [8], and bundles of twisted filaments [9].
Recent efforts seek to provide a unified framework that de-
scribes geometric frustration in these diverse systems and
unravels its common underlying mechanism [10,11].

Perhaps the most renowned geometrically frustrated sys-
tem, in particular in the field of hard condensed matter, is
the Ising antiferromagnet on a triangular lattice [12,13]. This
system is comprised of spins of values ±1 that are located at
the vertices of a triangular lattice. The interactions are set such
that every pair of adjacent spins favors antialignment accord-
ing to the Hamiltonian H = J

∑
〈i, j〉 si · s j , 0 < J . Although

the minimal energy per interaction is −J , the minimal energy
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per triangular facet which includes three edges is not −3J as
one could naively expect but rather −J as well. This is a result
of the topology of the lattice, as at least one of the edges in ev-
ery facet must connect spins of the same state. One can always
find a configuration that achieves this lower bound throughout
the system, rendering the system’s energy extensive. More-
over, the frustration in this system as well as in closely related
systems can be integrated out of the system in a coarse-
grained description [14]. The frustrated Ising antiferromagnet
on a triangular lattice does not exhibit any of the exotic mor-
phological response properties described above. Additional
types of frustrated spin systems include the XY model frus-
trated by a uniform magnetic flux through the lattice [15–18]
and the XY model embedded on hyperbolic surfaces that is
frustrated due to the curvature of the embedding space [19].
In these works the studied XY -spin systems were examined
in the large geometric frustration regime, and the observed
ground states did not exhibit superextensive energy scaling
nor long-range cooperativity. The planar formulation of both
systems requires choosing a gauge, rendering the comparison
of the obtained textures ambiguous. The continuum limit of
the systems is given by the nematic liquid-crystalline phase
on a curved surface, which was shown to yield superex-
tensive energy scaling on domains small compared to the
radius of curvature [11,20]. In the above-mentioned works,
the geometric length scale associated with the frustration
was comparable to the size of the lattice unit cell. The re-
sulting frustration saturation is the probable culprit for the
suppression of the expected superextensive energy scaling.
In the opposite limit of small frustration we expect the mod-
els to also exhibit superextensive energy scaling and highly
cooperative ground states, but these regimes are yet to be
explored.
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A well-studied system exhibiting a highly cooperative
ground state due to geometric frustration is that of bent-
core liquid crystals [20–23]. In this system the liquid crystal
forming molecules locally favor an arrangement of vanish-
ing twist and splay and a constant bend b0. Considering the
two-dimensional case, the system is described in terms of a
planar unit vector field that indicates the mean direction of the
orientation of the long axis of the molecules in a small volume
element, termed the director. The director can be defined as
n̂ = (cos θ, sin θ ) where θ is the angle the director forms with
the x axis. The perpendicular director field is then defined as
n̂⊥ = (− sin θ, cos θ ). Using these definitions one can relate
the directional derivatives of the director with the splay and
signed bend functions, respectively, through

s = ∇ · n̂ = n̂⊥ · ∇θ and b = n̂ · ∇n̂ = n̂ · ∇θ. (1)

The simplest liquid-crystalline phase is the simple nematic
where the director is uniform in space and both b and s vanish
in the ground state. The energetic cost of small deviations
from this preferred state are given by the Frank free energy,
which is quadratic in both s and b. For bent-core liquid crystals
the system locally favors a state of vanishing splay and a
constant bend giving rise to the modified Frank free energy,

H = 1

2

∫
[K1s2 + K3(b − b0)2]dA, (2)

where K1 and K3 are the Frank coefficients related to splay
and bend, respectively [21,23,24]. Since the splay and bend
fields are not the native variables of the system, these fields
cannot assume arbitrary values. In order to correspond to a
viable planar director configuration, these fields must satisfy
the compatibility condition [20]

s2 + b2 + n̂ · ∇s − n̂⊥ · ∇b = 0. (3)

From this compatibility condition it is clear that a uniform
field of vanishing splay and constant nonvanishing bend can-
not be formed, and necessitates the emergence of gradients in
these fields. The combination of splay and bend gradients that
constitute the ground-state configuration depends on the ratio
of the Frank coefficients and the dimensions of the system. In
the limits of K1 � K3 and K1 � K3 the ground state can be
analytically obtained and their energy in isotropic domains of
area A was shown to grow as E ∝ A2 [20]. The case of K1 =
K3 was numerically solved and shown to follow the same
energy scaling. This value of the energy scaling exponent can
be predicted directly from the structure of the compatibility
condition [11]. As the director orientation can be measured
globally relatively to the x axis and the preferred misalignment
is prescribed along the director, no gauge freedom remains in
the system.

The geometric frustration of systems whose ground state
is highly cooperative and associated with a superextensive
energy (i.e., an energy term that grows faster than the mass
of the system) was termed cumulative geometric frustration
[11,25]. The frustration in systems whose ground states are
associated with extensive energy scaling and with short-range
or no cooperativity, is termed noncumulative frustration. The
Ising antiferromagnet, as well as a variety of frustrated binary

FIG. 1. Upright (left) and upside down (right) triangles’ nota-
tions for vertices.

spin models, were recently shown to support only noncumu-
lative frustration [14].

To the best of our knowledge, no spin lattice model
was shown to exhibit superextensive energy scaling due to
frustration. As spin-lattice models are important tools for
establishing a theoretical understanding of complex physical
behavior our main aim in what follows is to formulate and
study a model that will display cumulative geometric frus-
tration, and superextensive energy scaling with a continuum
limit that is well understood. We next come to construct such a
model inspired by planar bent-core liquid crystals. The model
demonstrates superextensive energy scaling, long-range co-
operativity, and distinct conformations that best resolve the
frustration in different parameter regimes. Despite the vari-
ance in the ground-state textures for the different parameters,
we show that the power law of the energy scaling is universal
and can be predicted from the continuum limit of the corre-
sponding compatibility condition.

II. THE MODEL

The constituents of the model are classical XY spins
located at the vertices of a triangular lattice. Unlike the inter-
actions in ferromagnetism and antiferromagnetism that tend to
align or antialign the spins, respectively, the spin interactions
in our model are designed to favor only slightly misaligned
orientations. The designed nonlinear interactions are inspired
by bent-core liquid crystals. Each spin is characterized by
its relative angle to the x axis, θ ∈ [0, 2π ). The orientations
of the three spins at each triangular facet are assumed to
not be too dissimilar, such that the average direction, θ̄ =
(θ1 + θ2 + θ3)/3, is well defined and not far from the ver-
tices’ θi values. We next define on every facet two auxiliary
variables,

�1 = − θ2 − θ1

l
sin(θ̄ ) ± 2θ3 − θ2 − θ1√

3l
cos(θ̄ ),

�2 =θ2 − θ1

l
cos(θ̄ ) ± 2θ3 − θ2 − θ1√

3l
sin(θ̄ ),

(4)

where the + (−) signs above correspond to upright (upside
down) triangles according to the notations defined in Fig. 1
and l is the length of edges in the lattice. The Hamiltonian
expressed in terms of the auxiliary variables reads

H = 1

2

∑
facets

K1�
2
1 + K3(�2 − b0)2. (5)

To unravel the source of frustration in this system, one
should first scrutinize the structure of the compatibility
condition associated with the auxiliary variables �i. The
Hamiltonian involves only two auxiliary variables per facet,
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FIG. 2. Results of lattices of size 60 × 60 for different limiting values of k: (a) k = 1, (b) k = 103, and (c) k = 10−3 for b0 = 0.015. For
every quartet, color maps of energy (top left), bend b0 (top right), and splay (bottom left) are presented together with an interpolated plot of
the resulting streamlines (bottom right). The inset on the right displays a magnification of the area marked in the orange rectangle in b − b0 in
(c). Note that the panels employ different color-bar scales.

�1 and �2, which are naturally insufficient to fully determine
all three spin values of the vertices of the facet. Given the
values of �1 and �2, the space of possible spin values reduces
to a one-dimensional curve in the space of all possible three
spin values at the vertices. Considering two adjacent facets
that share an edge we obtain four � values that, in turn,
fully determine the associated four spin values. Each facet
in the bulk belongs to three distinct edge-sharing facet pairs,
in which the local � values determine all spin values. The
compatibility condition emerges from the requirement that
the spin values calculated through each of these three distinct
pairs agree. Considering the continuum limit where the edge
length l → 0, associating finite differences with gradients,
identifying �1 = s as the splay and �2 = b as the signed
bend, and expanding the values of s and b around their values
at the central facet yields, to first order in l , the known com-
patibility condition s2 + b2 + n̂ · ∇s − n̂⊥ · ∇b = 0 [20]. For
more details, see Appendix C. Similarly to the case of bent-
core liquid crystals, this compatibility condition precludes the
formation of a configuration of vanishing �1 and constant
nonvanishing �2, thus preventing setting the energy in (5) to
vanish globally.

As was recently suggested in Ref. [11], the structure of
the compatibility conditions encodes information about the
ground-state solutions for isotropic small enough domains
compared to the length scale associated with the frustration.
For such small domains, the energy, which is approximately
quadratic in the generalized strains, � − �̄, can be expanded
in orders of the spatial coordinates. Each successive order
includes higher spatial derivatives of the generalized strains
and contributes less to the total energy. As a result one may
follow a naive approach to construct explicit solutions by set-
ting the energy to vanish order by order (for more details, see
Ref. [11]). In the present case, the resulting compatibility con-
dition in the continuum limit yields a first-order differential
relation in the generalized stains. Thus one may set the zero
order of the generalized strains to zero, yet must incorporate
a combination of a gradient of splay in the direction of the
director and/or a gradient of bend in the perpendicular direc-
tion, resulting in a superextensive energy scaling of E ∝ A2.
See Appendix D.

III. RESULTS

The model was studied numerically by minimizing the
Hamiltonian to find the zero-temperature ground state at dif-
ferent values of k̄ = K1/K3. The resulting lowest-energy states
display nonuniform deviations of the variables � from their
locally desired values. The parameters chosen for the first
part (Figs. 2–4) are (�̄1, �̄2) = (0, 0.015) and for the second
part (Fig. 5) (�̄1, �̄2) = (0, 0.03). In all case l = 2, and for
the isotropic domains (Figs. 2 and 5) domains with an equal
number of spins along the two edges are chosen, i.e., Nx =
Ny = N . The resulting side lengths thus measure Lx = 2N and
Ly = √

3N . Free boundary conditions are used throughout this
work.

It is straightforward to show that the locally favored values
of the auxiliary functions cannot be globally obtained and
thus lead to geometric frustration. The numerically obtained
ground-state configurations are of a highly cooperative nature
and assume very distinct formations for the three studied
values of k̄, as can be seen for domains of 60 × 60 sites that
are shown in Fig. 2 [for additional results, see Supplemental
Material (SM) [26]].

For small enough domains for the case of k̄ = 1 the de-
viations of the splay and bend each show a single hourglass
form, displaying maximal deviations at the centers of oppo-
site edges, yet oriented along perpendicular directions. The
energy distribution naturally exhibits a crossed hourglasses
form with peaks at the centers of each of the domain’s four
edges (see SM [26]). As the domain size is increased the
symmetry axis of the streamlines of the spin field drifts away
from the midline of the domain and points more toward its
corners, as can be seen in Fig. 2(a). Subsequently, the splay
and bend variations lose their hourglass form. Yet, the energy
distribution keeps the crossed hourglass form even for large
domains.

Figures 2(b) and 2(c) show the results of the splay-
dominated and bend-dominated ground states resulting from
k̄ = 103 and k̄ = 10−3, respectively. The energy as well as the
splay and bend deviations in these two cases differ substan-
tially compared to the former results. In particular, the splay
deviations for k̄ = 103 and the bend deviations for k̄ = 10−3
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FIG. 3. Lattices with spin values sampled from the continuous
solutions of vanishing splay (a) and constant bend (b) for b0 = 0.015.
The lattice sizes are 100 × 100 sites with the origin of the circles
located at (0,−10) in (a) and 70 × 80 sites with the symmetry line
along the x axis in (b). For every quartet, color maps of energy (top
left), bend b0 (top right), and splay (bottom left) are shown together
with an interpolated plot of the streamlines (bottom right). Note that
the panels employ different color-bar scales.

display staggered textures with upright and upside down tri-
angles displaying deviations of opposite signs. This manifests
in the purplelike regions in the respective plots, as can also be
seen in the magnified region in Fig. 2(c). Despite the violent
oscillations, the energy distribution in both cases appears to
be smooth at least to leading order.

In order to better understand these results we compare
them to the solutions of vanishing splay and constant bend
of the corresponding limiting continuous field theory [20].
The respective solutions for the limits of k̄ → ∞ and k̄ →
0 are formations of concentric circles (s = 0) and stacked
identical arcs (b = b0). To compare our lattice system with
the known continuous results we consider these two smooth
solutions, and inherit from them the local spin orientation.

That is, the vertex i, j located at [x(i, j), y(i, j)] inherits θi j =
θ [x(i, j), y(i, j)]. For more details regarding the sampling
procedure, see Appendixes A and B. The corresponding fields
resulting from this sampling procedure are shown in Fig. 3. As
can be seen in Fig. 3(a), although the director field the solution
is sampled from is axially symmetric, the resulting splay field
displays a sixfold symmetry (only the top half is shown).
The splay deviations show a staggered texture with sixfold
azimuthal periodicity as well as nontrivial radial dependence.

The resulting values of bend and splay shown here can
be examined by positioning the center of a single upright
(upside down) triangle in the location (r, θ ), where r is the
distance from the origin of the concentric circles and θ is the
relative angle the line connecting the two creates with the x
axis. Sampling the spins from the director and expanding the
resulting bend and splay values to second order in l/r, where
l is the facet edge length, results in

bup,down � 1

r
± l sin θ

2
√

3r2
, (6)

sup,down � ± l cos θ (1 − 2 cos 2θ )

2
√

3r2
. (7)

As can be seen from this expansion, the bend field is smooth
to leading order while the leading order in splay results in
opposite signs of deviations for inverted triangles with mag-
nitude that decays as 1/r2 and has a sixfold symmetry, as
seen in Fig. 3(a). Carrying out the same procedure in the
case of the stacked arcs where the symmetry line of the arcs
consolidate with the x axis, and expanding to leading orders
of the dimensionless parameter lb0 results in

bup,down � b0 ∓ lb3
0y

4
√

3
(
1 − b2

0y2
)2 , (8)

sup,down � b2
0y

−1 + b2
0y

(
y ∓ l

4
√

3

)
(
1 − b2

0y2
)3/2 . (9)

While for the case of k̄ = 103 the results seem to be in
good agreement with the results of the sampling procedure,
up to the discussed discontinuities and some minor deviations,
the results for k̄ = 10−3 show more prominent discrepancies,
mostly localized near the boundaries of the domain. While the
ideal stacked arcs formation is inherently symmetric along the
x axis, the configurations obtained through numerical min-
imization break this symmetry, mainly for lattices of larger
size. The most prominent effects are located at the regions
near the edges oriented perpendicular to the symmetry axis of
the stacked arcs formation [right and left sides in Fig. 2(c)].
The continuous reorientation associated with a constant bend
phase causes the splay of the director field to increase with the
distance from the midline of the domain. On the right-hand
side of the domain the middle region of the stacked arcs is
outside the domain. This allows a rigid reorientation of the arc
portions that fill the corners of the domain. This reorientation,
in turn, significantly reduces the energy associated with the
splay. On the left portion of the domain the stacked arcs also
reorient. This boundary feature is not entirely understood, yet
seems to enlarge the region of low energy in the domain.

The above arguments, that describe the local reorientation
and the structure of the boundary layer perturbation to the
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FIG. 4. Results of ribbonlike lattices for k̄ = 10−3 and b0 = 0.015. (a)–(d) Lattices of sizes 80 × 80, 120 × 80, 140 × 80, and 140 × 66
sites, respectively. From left to right, the plots in each line show the energy, bend b0, splay, and an interpolated plot of the resulting streamlines.
Note that the panels employ different color-bar scales.

stacked arcs phase expected in the k̄ → 0 limit, assume that
such a phase with b = b0 exists everywhere and is associated
with a finite (albeit possibly high) splay energy. This is not
always the case, as is made evident by considering a domain
of width W > 2/b0. Such domains exhibit a divergence of the
splay for the b = b0 solution, as seen in (9). To avoid this
attempted divergence, the bend is reduced below b0 pushing
the splay singularity further away. This behavior can observed
in Fig. 4. The total energy in this case is dominated by the
bend variations introduced to mitigate the attempted splay
singularity. The boundary term variations that locally reduce
the splay energy that we discussed and observed for narrower
domains also occur here, and are localized to the regions near
the right and left boundaries of the domain that do not increase
in size as we consider longer ribbons (see Fig. 4).

In order to study the behavior of domains of spatial length
scale Ly larger than the geometrical length scale associated
with the reference curvature b0, we studied the case of b0 =
0.03 as well. This allows us to probe the behavior in this
regime while keeping a moderate number of studied sites. A
representative sample of the resulting minimal configurations
in the three studied limits is displayed in Fig. 5.

In the case of large domains global aspects of the solu-
tions, such as the size of the domain and its aspect ratio,
become prominent. Any nontrivial resolution of frustration
necessitates the introduction of spatial gradients in �1 and �2

defined in (4). In solutions of large domains these gradients
no longer remain uniform and vary in magnitude, orientation,
or both due to global considerations. Such variations include

for example the reorientation of the principal gradient direc-
tion visible in the transition between N = 40 and N = 50 in
Fig. 5(c).

The form that Eq. (3) assumes for b = b0 predicts a di-
vergence of s within a finite distance from the solutions’
symmetry axis. The distance to this singularity scales linearly
with 1/b0. Thus, to circumvent this attempted singularity
in domains whose width is larger than 2/b0, the attempted
uniform bend solution (in which b = b0) will center about
a constant bend value that is smaller than b0 corresponding
to less curved arcs. Such partial straightening is visible be-
tween N = 30 and N = 40 of Fig. 5(c). Similarly, the s = 0
attempted solutions visible in Fig. 5(b) originally display con-
centric arcs distributed symmetrically around the radius 1/b0

(N = 30). However, as the center (focus) of these concentric
circles is associated with divergent bending, as the domains
increase in size the arc distribution no longer remains sym-
metric and we observe an increasing abundance of arcs of radii
larger than 1/b0, as observed for 40 � N .

We recall that the only uniform solution is the nematic tex-
ture of vanishing bend and splay. In all three studied cases of k̄
the solution in the bulk seems to approach this trivial nematic
phase, with the saturation energy per unit area of ε∞ = 1

2 K3b2
0.

Nevertheless, in each case of k̄ the system approaches this
“trivialization” in a different manner, as can be seen in Fig. 5.

While the ground-state solutions for the three values of
k̄ differ substantially from one another it has been recently
shown that the energy associated with such frustrated so-
lutions in small enough domains depends primarily on the
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FIG. 5. Results of isotropic lattices of different sizes stated on the left for different limits: (a) k = 1, (b) k = 103, and (c) k = 10−3 for
b0 = 0.03. For every quartet, color maps for energy (top left), bend b0 (top right), and splay (bottom left) are presented together with an
interpolated plot of the resulting streamlines (bottom right).

associated compatibility conditions [11]. In the present case
the structure of the compatibility condition implies the univer-
sal power law E ∝ M2 where M is the mass of the domain (or
equivalently that the energy per unit area scales linearly with
the area). As the domains grow in size, higher-order effects

lead to deviations from this power law as can be observed in
Figs. 6 and 7. For example, for the case of k̄ = 10−3, in both
figures, as the systems’ dimensions reach the internal length
scale 1/b0, the attempted strain singularity causes a dramatic
increase in the energy growth rate. Figure 7 also shows that
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FIG. 6. The energy per triangle vs the area of the system (number
of triangles in the lattice) for domains of equal number of sites in the
length and in the width. The results are for three limiting values of
k̄ = K1/K3. The results of k̄ = 1, k̄ = 103, and k̄ = 10−3 are marked
as blue circles, green squares, and red triangles, respectively. The
scaled plot to the right shows the region near the origin in log-log
scale. The black line denotes a linear scaling for guidance.

the three studied systems associated with the different limits
of k̄ all approach the trivial nematic solution corresponding to
vanishing splay and bend as their area grows. This mechanism
of frustration saturation is not unique. In particular, one might
expect the formation of defects absorbing the frustration as the
systems grow in size. Within each of the separated defect-free
domains the solution may be associated with smaller gener-
alized strains and thus with lower energy. Such solutions are
favorable when the energy decrease facilitated by the incor-
poration of defects is greater than the cost associated with
the defect formation. In the case presented here the use of
the signed bend strongly penalizes common defected textures
associated with bent-core liquid crystals, such as layered tex-
tures and hexagonal defect formations [23].

FIG. 7. The energy per triangle vs the area of the system (number
of triangles in the lattice) for domains of equal number of sites along
the length and along the width of the domain, in logarithmic scale for
b0 = 0.03. The results presented are for three limits of k̄ = K1/K3.
The results for k̄ = 1 (K1 = K3 = 2), k̄ = 103 (K1 = 103, K3 = 1),
and k̄ = 10−3 (K1 = 1, K3 = 103), are marked as blue circles, green
squares, and red triangles, respectively. The energy cost of the trivial
nematic solution is K3

2 b0
2. As the different values of k̄ correspond to

different values of K3, the asymptotes of the energy vary accordingly.

Nonetheless, we note that in the shaded region, denoting
domains whose dimensions are smaller than 1/b0, we observe
in all cases the same universal scaling behavior.

IV. DISCUSSION

In this paper we present a spin-lattice model that demon-
strates cumulative geometric frustration which results in
cooperative ground-state configurations that depend on global
attributes of the domain. The model presented here was stud-
ied in three different constitutive parameter regimes, captured
by the parameter k̄. While the energy minimizing configura-
tions for the three cases differ substantially from one another,
in all cases the energy grows as the area squared (for suffi-
ciently small isotropic domains). This universal exponent is
in turn predicted from the structure of the compatibility condi-
tion which determines the form of the optimal compromise of
the frustration. Although systems of different k̄ agree on the
energy scaling for small domains, the energy scaling differs
for larger domains until it plateaus for systems much larger
than the geometric length scale of the system. The values at
which the energy saturates coincide with the energetic cost of
the nematic trivial solution for the different k̄.

In the case of a unit cell smaller than the internal geo-
metric length scale, yet comparable in magnitude, frustration
saturation is reached in small domains of a few unit cells. Cu-
mulative frustration would only be evident within this narrow
region of domain sizes. Stronger frustration corresponds to
smaller geometric length scales, which may become smaller
than the dimensions of a single unit cell. In such cases one
might not detect any signature of the cumulative nature of
the frustration, and the system would display extensive energy
scaling.

In this paper we focused on the properties of the ground
states at T = 0, primarily in isotropically growing domains,
demonstrating the superextensive energy scaling due to ge-
ometric frustration. In more realistic models, additional
thermodynamic considerations, such as accounting for sur-
face tension and entropy, are required to adequately describe
a given system. Such an approach, predicting the structural
fate of an assembly, was recently proposed [25]. Cumulative
geometric frustration was shown to potentially lead to fila-
mentation. In the present setting this would imply that the
length of a domain L becomes much larger than its width W .

The question whether a given system would have the ten-
dency to form filamentous domains and the regime at which
this tendency exists depends on the manner in which its en-
ergy approaches the frustration saturation energy ε∞. In cases
where the approach to ε∞ is slow enough, growth arrest along
the W dimension, leading to ribbons of any desired width, de-
pending on the thermodynamic parameters, can be achieved.
For a faster approach to ε∞, such growth arrest can only be
achieved up to a finite width, after which only bulk confor-
mations are attainable. Assuming a saturation approach of
the form W −ν , 0 < ν < 1 corresponds to the first (slow) type
while 1 < ν corresponds to the latter (fast) [25]. In the present
case we numerically found E

A → A−ν , with 0.5 � ν � 0.65,
implying a slow approach to the frustration saturation.

Many naturally found self-assembled geometrically frus-
trated structures, such as protein assemblies, can only support
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a discrete conformation space. This in turn leads to dis-
crete values of the gradients, which may change the nature
of the compatibility conditions and the associated optimal
compromises. Within the context of the present model this
corresponds to quantizing the allowed orientations of the
spins, similarly to the n-state Potts model. For the limit of
n → ∞ one expects to recover the behavior of the continuous
case described above. For moderate values of n one can expect
rich and possibly different response properties that depend on
the particular value of n which determines the granularity of
the response.
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APPENDIX A: SAMPLING FROM THE CONCENTRIC
CIRCLES SOLUTION

To sample the solution of concentric circles we employ a
lattice of size 100 × 100 sites with the lower edge aligned
with the x axis and centered compared to it. Next, the spin
values are sampled from the continuous concentric circles tex-
ture by orienting the spins along the tangent to the continuous
director field at the vertex location. By setting the center of
the concentric circles at (0,−10) the direction of the director
at each point reads θ (x, y) = tan−1( y+10

x ) + π/2.

APPENDIX B: SAMPLING FROM THE STACKED ARCS
SOLUTION

The solution of stacked arcs is composed of arcs of radius
r0 = 1/b0 that are perpendicular to a straight line that con-
nects their centers. This line is chosen to coincide with the
x axis. The sampling procedure is done via setting a lattice
of size 70 × 80 sites such that the flat edges of the lattice
are perpendicular to the x axis and the lattice is centered
about the y axis. Next, the spin values are sampled from the
continuous solution by orienting the spins along the tangent
to the continuous director field at the vertex location. The
director is independent of the x coordinate and reads θ (y) =
tan−1( y√

r2
0 −y2

) + π/2.

APPENDIX C: COMPATIBILITY CONDITIONS OF
BENT-CORE SPINS ON A TRIANGULAR LATTICE

A single facet in the lattice has three spin degrees of free-
dom located at its vertices. The splay and bend associated with
the facet can be directly deduced from the vertices’ spin values
using Eqs. (4). The converse is, however, underdetermined;
given prescribed values for the bend and splay of a given facet
there is a one-dimensional space of solutions that corresponds
to different choices of spins, as can be seen in Fig. 8(e), which
displays two such curves that were computed numerically for
certain choices of variables in an up-pointing and a down-
pointing triangle. A pair of adjacent facets, as in Fig. 8(a),
is associated with four distinct spin values and two pairs of
intrinsic fields associated with the splay and bend of each
of the facets. In this system the latter fields fully determine

FIG. 8. (a)–(d) Notations for compatibility conditions. (a)–
(c) Three types of pairs of facets in the lattice sharing an edge. (d) A
quartet of connected facets in the lattice. (e), (f) Graphic solutions
for an upright pair for a choice of b0 = 0.3, s0 = −0.2, b1 = 0.4, and
s1 = 0.15. The blue curve marks allowed spin orientations consider-
ing the down-pointing triangle alone and the orange curve is obtained
by considering the up-pointing triangle alone. The three-dimensional
curves are shown in (e), where the black diagonal dashed line marks
equal orientations in all the spins. (f) The projections onto the {θ2, θ3}
plane; crossing points marked in red.

the spin values. The underdeterminacy present for a single
facet is eliminated in facet pairs by the requirement that the
resulting shared spin values match. This can be considered as
the crossing of the projections of the curves onto the plane of
the shared spins. As can be seen in Fig. 8(f), more than one
such crossing might exist.

The spin values at the vertices of every two adjacent facets
are fully determined by the splay and bend values of both
facets. However, every single facet participates in three dis-
tinct such pairs, as seen in Figs. 8(a)–8(c). The values ascribed
to the spins of a facet obtained from different pairs should
match, leading to a nontrivial relation between the splay and
bend of the three facets. This overdeterminacy settles with
the observation that such triplets have five spin degrees of
freedom that are transformed to six values of bend and splay.
Three such triplets exist for every bulk element as seen in
Fig. 8(d). Only two independent such relations exist per such
element, due to transitive relations.

We next consider a continuum treatment for this bulk ele-
ment. The locations of all the vertices in Fig. 8 when setting
the location of θ0 to the origin of the frame of reference are
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given by

�r1 =
(

0,− l√
3

)
, �r2 =

(
l

2
,

l

2
√

3

)
, �r3 =

(
− l

2

l

2
√

3

)
,

�r4 =
(

0,
2l√

3

)
, �r5 =

(
−l,− l√

3

)
, �r6 =

(
l,− l√

3

)
,

�r7 =
(

0,
l√
3

)
, �r8 =

(
− l

2
,− l

2
√

3

)
, �r9 =

(
l

2
,− l

2
√

3

)
.

Indices 1–6 above refer to the vertices and indices 7–9 refer
to the locations of θ1, θ2, and θ3, respectively.

The definitions of bend and splay are invertible and re-
sult in ∂xθ = b cos θ − s sin θ and ∂yθ = b sin θ + s cos θ . The
line integral of the gradient of θ for every closed loop must
vanish. This condition results in

0 = (�r3 − �r1) ·
(

∂xθ3

∂yθ3

)
+ (�r2 − �r3) ·

(
∂xθ2

∂yθ2

)

+ (�r1 − �r2) ·
(

∂xθ1

∂yθ1

)
. (C1)

In the continuum limit where l is small and the change in
the spin directions is also small, one can expand the mean
directions, splays, and bends around their values at the lo-
cation of θ0, by assigning gradients in the bend, splay, and
the mean direction. Substituting these expanded terms into
Eq. (C1) and expanding the expression in orders of l , the edge
length, agrees to first order with the compatibility condition
of planar director fields, shown in Eq. (3).

APPENDIX D: THE NAIVE LOCAL SOLUTIONS

In order to study the naive local solutions in the three
studied limits one should first scrutinize the resulting compat-
ibility condition (for more details, see Ref. [11]). The compat-
ibility condition determines the allowed local conformations.
Such conformation associated with the lowest-energy cost
is the naive local solution. The corresponding compatibility
condition in the continuum limit reads

s2 + b2 + n̂ · ∇s − n̂⊥ · ∇b = 0. (D1)

Expanding the generalized strains, εs = s, and εb = b − b0, in
orders of the spatial coordinates yields

εs = ε0,0
s + ε1,0

s x + ε0,1
s y + · · · , (D2)

εb = ε0,0
b + ε1,0

b x + ε0,1
b y + · · · . (D3)

Substituting the expanded expressions in the compatibility
condition yields to zeroth order

(
ε0,0

s

)2 + (
b0 + ε0,0

b

)2 + εn
s − ε

n⊥
b = 0, (D4)

where εn
s = nxε

1,0
s + nyε

0,1
s denotes the oriented first deriva-

tive of the splay strain along n̂, and ε
n⊥
b = n⊥,xε

1,0
b + n⊥,yε

0,1
b

denotes the oriented first derivative of the bend strain along
n̂⊥. There are many possibilities for the values of ε0,0

s , ε0,0
b ,

εn
s , and ε

n⊥
b that satisfy (D4). Determining which of these

values minimize the total energy depends on the form of the
Hamiltonian of the system and the domain considered. For
small enough isotropic domains the lowest order in the strain
expansion contribute significantly more than the higher or-
ders. For such domains we seek solutions that satisfy ε0,0

s =
ε0,0

b = 0, reducing the compatibility condition to

(b0)2 + εn
s − ε

n⊥
b = 0 → ε

n⊥
b = (b0)2 + εn

s . (D5)

Distributing the gradient values between the splay and bend
depends on the energetic cost of each in the Hamiltonian.
Assuming the integration is performed over a small enough
isotropic domain, of length scale l , where n̂ and n̂⊥ can be
considered to be oriented along a constant direction, one gets

E ∝ K1
(
εn

s

)2
l4 + K3

(
ε

n⊥
b

)2
l4

= A2
[
(K1 + K3)

(
εn

s

)2 + K3
(
b4

0 + 2b2
0ε

n
s

)]
, (D6)

where A is the area of the domain. The gradients minimizing
this energy are

εn
s = −b2

0
K3

K1 + K3
, ε

n⊥
b = b2

0
K1

K1 + K3
, (D7)

yielding the energy

E = 1

6
A2b4

0
K1K3

K1 + K3
. (D8)

For k̄ = 1, values of K1 = K3 = 2 were chosen such that in
all three studied values of parameters the naive local solutions
would have approximately the same energetic cost.
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