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Skyrmion tubes in achiral nematic liquid crystals
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We analyze the interaction with uniform external fields of nematic liquid crystals within a recent generalized
free energy posited by Virga and falling in the class of quartic functionals in the spatial gradients of the nematic
director. We review some known interesting solutions, i.e., uniform heliconical structures, which correspond to
the so-called twist-bend nematic phase and we also study the transition between this phase and the standard uni-
form nematic one. The twist-bend phase is further reproduced by three-dimensional simulations. Moreover, we
find liquid crystal configurations, which closely resemble some novel, experimentally detected, structures called
Skyrmion tubes. Skyrmion tubes are characterized by a localized cylindrically symmetric pattern surrounded by
either twist-bend or uniform nematic phase. We study the equilibrium differential equations and find numerical
solutions and analytical approximations.
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I. INTRODUCTION

The achiral nematic N phase is surely the most common
state for thermotropic liquid crystals. Due to the uniaxial sym-
metry of the constituent molecules, it is possible to describe
this liquid crystalline phase by means of a director field n ∈
RP2, prescribing point by point the average orientation of the
molecular axes. In particular, in the N phase the ground-state
alignment of these axes is parallel to a fixed direction n ≡ n0.
On the other hand, in the chiral nematic N∗ phase, formed by
enantiomorphic molecules, the minimum energy configura-
tion n = nc(r) is spontaneously twisted in a right-angle helix,
whose pitch P usually lies in the range of μm.

However, new classes of nematics are expected when
molecules are less symmetric, as for example, the biaxial
nematic phase [1–3]. Moreover, for strongly bent mesogenic
molecules, a new modulated nematic phase, now recognized
as the twist-bend nematic NTB phase, has been recently
observed and reported in several works, starting from the
breakthroughs in [4–6]. It turned out that this phase is stabi-
lized below the usual N phase and, although formed by achiral
molecules, it exhibits doubly degenerate chirality, consisting
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of right and left Meyer’s heliconical domains [7]. Thus, the
appearance of the NTB phase represents a particularly inter-
esting case of spontaneous breaking of the chiral symmetry.
Since in these structures the director n is tilted by a fixed
angle 0 < θ0 < π/2, they may look similar to the smectic
SmC∗ phases. However, at variance with them, the heliconical
textures do not possess any layer periodicity. Moreover, the
helical pitch is much smaller than the cholesteric one, i.e., of
the order of 10 nm [4,5].

Several papers addressed the theoretical analysis of the
NTB phase, both from the phenomenological and the static
continuum theory points of view [8–11]. More specifically, in
Ref. [9] a N-NTB phase transition was described by means of a
generalized Maier-Saupe molecular field theory. In Ref. [10],
a generalized Landau-de Gennes theory was applied to in-
vestigate the modulated nematic phases, possibly generated
by achiral and intrinsically chiral bent mesogenic molecules.
In Ref. [11], the NTB phase was studied as a mixture of
two different ordinary N phases, both presenting heliconical
structures with opposite helicities. A quadratic elastic theory,
still featuring four Frank elastic moduli, was used for both he-
lical phases. Similar models were proposed in Refs. [12–14],
where also the effects of an external magnetic or electric bulk
field were investigated. Moreover, authors in Refs. [15,16]
presented coarse-grained elastic models, which, similarly to
the model for SmA∗ [17], make use of an extra scalar order
parameter.

The prediction of the NTB phase dates back to the sem-
inal paper [18] by Dozov, in which an elastic instability
model was proposed with a bend constant K33 turning neg-
ative. Higher derivative terms were added to the standard
Frank-Oseen elastic energy in order to bound the energy from
below. According to Dozov’s model, depending on the ratio
of K11 and K22 in the high-temperature nonmodulated nematic
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regime, the low-temperature nematic phase can show either
the twist-bend modulation when K11 > 2K22 or the splay-
bend modulation otherwise. The same model predicted the
existence of a nematic phase with spontaneous bend distor-
tions [7,18]. However, unlike a twist, a pure bend distortion
cannot fill the space without introducing frustration, possibly
relieved by defects. This is certainly not the case for the mixed
twist-bend distortion. Indeed, in Ref. [19] it was shown that
in three space dimensions there exist only two families of
director configurations, which have uniform nonzero distor-
tion characteristics at any point in space. It turned out that
these latter configurations correspond to the right and left
Meyer’s heliconical domains, which form the NTB phase. Any
other director field, apart from the constant nematic director,
would be geometrically frustrated and become nonuniform if
requested to fill the whole space.

The natural successive step was to see whether it is possible
to build an elastic free energy that penalizes the departures
from one of these uniform director fields. Since in the uniform
heliconical phases only one of the distortion characteristics
vanishes, namely the splay one, Frank’s quadratic theory is no
longer sufficient. Thus, a higher-order elastic theory, in which
the bend elastic constant may turn negative, was proposed in
Ref. [19], allowing for fourth-order powers of ∇n in the free
energy. The author focused on an achiral scenario where the
NTB phase has been experimentally identified and deliberately
built his generalized elastic free energy with the symmetry
of the intended heliconical ground state, i.e., its double de-
generation for right and left helicities. This choice makes
the free energy depend on only six elastic constants: three
for the quadratic part and three for the quartic one. Then, for
suitable choices of the elastic constants, it was shown how
either the standard nematic or the heliconical phases minimize
the proposed higher-order free energy. More specifically, the
theory predicts the NTB phase arising from the standard ne-
matic one for sufficiently negative values of the bend constant,
passing through an intermediate pure bend state.

In Ref. [20] we reviewed the theory presented in Ref. [19]
and found that, in the same region where NTB is preferred,
localized excitations of the heliconical ground state are pos-
sible. In particular, we showed how axisymmetric structures,
with a radial dependence of the conical angle and an addi-
tional twist around the heliconical axis, are admissible states
of the generalized elastic theory, with energies falling in be-
tween those of the heliconical ground state and the nematic
alignment. We found that our soliton configurations resemble
interesting axisymmetric structures recently observed in chiral
nematics and chiral ferromagnets [21–24], namely Skyrmion
tubes. In contrast with these latter configurations, ours can be
generated in an achiral framework without the need of external
frustration.

Emergent topological defects in condensed matter systems
are drawing much attention, particularly due to its potential
technological applications, and Skyrmion tubes are not an
exception. For instance, they have been recently proposed
as magnonic waveguides channeling spin waves, based on
the propagation of their breathing and rotational modes [25].
However, theoretical studies such as Refs. [23,24] have been
focused on its realization in ferromagnets, although its experi-
mental attainment seems to be easier in liquid crystals [23]. In

this context, Ref. [20] paved the way for a better theoretical
understanding of Skyrmion tubes in liquid crystals, where
other localized configurations such as helicoids or Skyrmions
are well known [26–34].

In the present paper, we generalize our previous work [20]
with the addition of an external uniform magnetic field. We
find Skyrmion-tube-like nematic textures that form when a
uniform magnetic field is applied along the axis of a heli-
conical state. These Skyrmion tubes are surrounded by either
a nematic uniform phase or by a uniform twist-bend phase.
The paper is organized as follows. In Sec. II, we briefly re-
vise previous material and set the model. Then, we study the
interaction of an external magnetic field and find a uniform
heliconical state. We also investigate the transition to the stan-
dard uniform nematic phase as the magnitude of the external
field is increased from zero to a critical value. In Sec. III,
we study nonuniform localized states under the action of the
external field by imposing boundary conditions at the center
of the heliconical state and at infinity. We find Skyrmion-tube
configurations where the nematic texture is nonuniform in a
localized radial region immersed in a uniform, either nematic
or heliconical, state. Finally, in Sec. IV we draw our conclu-
sions and outline future investigations.

II. TWIST-BEND PHASE UNDER EXTERNAL FIELDS

Nematic liquid crystals are usually modeled by Frank’s
elastic free-energy density. This is a general positive-definite
quadratic form in the spatial gradients ∇n of a unit vector, the
nematic director n, and it is written as

FF = 1
2 K11(divn)2 + 1

2 K22(n · curln)2 + 1
2 K33|n × curln|2

+ K24[tr(∇n)2 − (divn)2], (1)

where K11, K22, K33, and K24 are the Frank elastic constants
and they are such that

K11 − K24 > 0, K22 − K24 > 0, K33 > 0, K24 > 0,

(2)
known as Ericksen’s inequalities [35]. The term K24 is a null
Lagrangian, it can be integrated over the domain B occupied
by the nematic medium without producing any contribution
to the total free energy, provided that n is assigned over the
boundary ∂B.

In Ref. [36] it was shown that Frank’s elastic free-energy
density can be written as a quadratic form in four quantities
(S, T, b, D) as follows:

FF = 1
2 (K11 − K24)S2 + 1

2 (K22 − K24)T 2

+ 1
2 K33B2 + K24tr(D2), (3)

where S = divn is a scalar called splay, T = n · curln is a
pseudoscalar named twist, and B2 = b · b, with the vector
b = n × curln being the so-called bend. D is a symmetric
traceless tensor such that Dn = 0. Accordingly, it can be given
the form

D = q(n1 ⊗ n1 − n2 ⊗ n2), (4)

where q is the positive eigenvalue of D, named by Selinger
[36] as biaxial splay, and n1 and n2 are the eigenvectors
orthogonal to n. The tensor D can also be given the following
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FIG. 1. Three-dimensional representation of the uniform heliconical distortion. Left: Different (x, y)-plane cross sections showing the
change of orientation along the z direction. Right: Helix line along the z axis for a fixed distance from it

form in terms of ∇n

Di j = 1
2 [∂in j + ∂ jni − nink∂kn j − n jnk∂kni

− δi jdivn + nin jdivn]. (5)

The quantities (S, T, b, D) are independent from one another
and are called measures of distortion. Frank’s energy (3) ad-
mits as global minimizer the state

S = T = B = q = 0, (6)

which corresponds to any constant field n ≡ n0.
In Ref. [19] it was put forward a new energy functional

with quartic powers of measures of distortion (S, T, b, D) as
follows:

FT B(S, T, b, D)

= 1
2 k1S2 + 1

2 k2T 2 + k2trD2 + 1
2 k3B2

+ 1
4 k4T 4 + k4(trD2)2 + 1

4 k5B4 + k6T b · D(n × b).
(7)

This represents the lowest-order free-energy density that, for
a suitable choice of the elastic constants, admits as global
minimizer the so-called heliconical uniform distortion state
[19,20], as opposed to the uniform state (6). By directly com-
paring (7) with (3) we get the following formal identification:

k1 = K11 − K24, k2 = K22 − K24 = K24, k3 = K33, (8)

but as shown below k3 can also assume negative values. From
(8), it is clear that the number of independent Frank elastic
constants is reduced from four to three as K22 − K24 = K24.
This assumption is due to the choice of the same elastic
constant in front of T 2 and 2trD2 in the quadratic part of (7),
and T 4 and 4(trD2)2 in the quartic part. This latter condition is
related to the heliconical global minimizer of (7) (see below),
which is such that T 2 = 2q2 [19,20]. Hence, the free-energy
density must be invariant under the transformation T 2 ↔ 2q2,
implying that only the combinations T 2 + 2q2 and T 4 + 4q4

appear in the free-energy density.

The above energy density turns out to be coercive provided
that

k4 > 0, k5 > 0, k6 > 0, k2
6 < 2k4k5, (9)

which is the condition of positive definiteness of the quartic
part of (7). In terms of n and its gradients ∇n, (7) can be
written as follows [20]:

FT B = 1
2 (k1 − k2)(divn)2 + k2(n · curln)2 + k2tr(∇n)2

+ 1
2 k3|n × curln|2 + 1

4 k4(n · curln)4

+ k4
[
tr(∇n)2 + 1

2 (n · curln)2 − 1
2 (divn)2

]2

+ 1
4 k5|n × curln|4

− k6
[
(n · curln)curln · (∇n)(n × curln)

+ 1
2 (n · curln)2|n × curln|2]. (10)

Correspondingly, the free energy stored in a region B occupied
by the liquid crystal is given by the volume integral

F =
∫
B

FT BdB. (11)

As mentioned above, (10) admits, as global minimizer, the
uniform heliconical state [19,20]. This latter can be written as
follows:

nh = sin θ0 cos βzex + sin θ0 sin βzey + cos θ0ez, (12)

where ex, ey, ez are the Cartesian unit basis vectors in R3,
θ0 is the conical angle and β a parameter that provides the
pitch P = 2π/|β| of the twist. Here, we assume that β is a
characteristic parameter that depends on the elastic constants
ki only and needs to be optimized. The three-dimensional (3D)
representation of such configurations is displayed in Fig. 1,
where a set of (x, y)-plane cross sections showing how the
configuration changes along z and a specific helix line are
depicted. The nematic director nh rotates around ez making
a fixed cone angle θ0 with the rotation axis ez, which is called
the helix axis. The structure (12) describes therefore the heli-
conical distortion predicted by Meyer [7] and it corresponds
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to the twist-bend liquid crystal phase NTB, experimentally
detected in 2011 [37]. It is worth noticing that formula (12)
also describes the nematic phase N when θ0 = 0 and the
chiral nematics when θ0 = π

2 , implying that the twist-bend
phase represents a structural link between these two extreme
phases. Of course, as also observed in Ref. [19], the heliconi-
cal configurations cannot be minimizers of the standard Frank
elastic energy, and a new elastic theory as (7) was needed to
accommodate the heliconical phase as a ground state.

The corresponding free-energy density reads

FT B(nh)

= fT B(θ0, β )

= 1
8

(−4k6 cos2 θ0 sin6 θ0+4k4 sin8 θ0+ 1
8 k5 sin4 2θ0

)
β4

+ 1
8 (8k2 sin4 θ0 + k3 sin2 2θ0)β2, (13)

which depends on the pitch-related parameter β and the coni-
cal angle θ0, and is minimized by the values

β = ± (2k2k5 + k3k6) + 2(k3k4 + k2k6)√
−(2k2k5 + k3k6)(2k4k5 − k2

6 )
, (14)

where ± signs label a counterclockwise or a clockwise heli-
conical configuration, and

θ0 = arcsin

(√
2k2k5 + k3k6

(2k2k5 + k3k6) + 2(k3k4 + k2k6)

)
. (15)

In Refs. [19,20] it was shown that, in order to have the he-
liconical states (12), the following constraints on the elastic
constants must hold:

2k4k5 − k2
6 > 0, k3k6 + 2k5k2 < 0, k2k6 + k3k4 < 0.

(16)
When an external magnetic field H is applied, the free-energy
density (10) turns into

FH = 1
2 (k1 − k2)(divn)2 + k2(n · curln)2 + k2tr(∇n)2

+ 1
2 k3|n × curln|2 + 1

4 k4(n · curln)4

+ k4
[
tr(∇n)2 + 1

2 (n · curln)2 − 1
2 (divn)2]2

+ 1
4 k5|n × curln|4

− k6
[
(n · curln)curln · (∇n)(n × curln)

+ 1
2 (n · curln)2|n × curln|2] + �H, (17)

where we added the term

�H = −χa

2
(n · H )2, (18)

χa being the magnetic susceptibility of the liquid crystal mate-
rial. Otherwise, the free energy can be also written as follows:

FH = 1

2
k1S2 + 1

2
k2T 2 + k2trD2 + 1

2
k3B2

+ 1

4
k4T 4 + k4(trD2)2 + 1

4
k5B4

+ k6T b · D(n × b) − χa

2
(n · H )2. (19)

Correspondingly, the stored free energy in a region B occupied
by the liquid crystal is given by the volume integral

FH =
∫
B

FH dB. (20)

The Euler-Lagrange equation associated with the above func-
tional is given by

∂FH

∂n
− div

(
∂FH

∂∇n

)
= λn, (21)

where λ is a Lagrange multiplier for the unit director con-
straint. To obtain a pure equation it suffices crossing by n both
sides of (21).

In the following, we will consider an external magnetic
field along the z axis, i.e., H = Hez, and assume a nematic
director field as in (12)

nh = sin θ0 cos βzex + sin θ0 sin βzey + cos θ0ez, (22)

with the helix axis parallel to the magnetic field. As mentioned
above [23], β is to be taken as fixed by the elastic constants
ki only in accordance with (14). Thus, we assume that the
external field just affects the nematic director by a torque

τH = −χa(n · H )H × n (23)

imparted to the liquid crystal molecules. Accordingly, the
conical angle θ0 will change. The interaction with an external
field H = Hez is explicitly given in terms of θ0 by the term

�H = −χa

2
(n · H )2 = −1

2
χaH2 cos2 θ0. (24)

Correspondingly, the reduced free-energy density takes the
form

FH (nh) = fH (t ) = 1
4 [−2k6(1 − t )t + 2k4t2 + k5(1 − t )2]t2β4

+ 1
2 [2k2t + k3(1 − t )]tβ2 − 1

2χaH2(1 − t ). (25)

where t = sin2 θ0. We need now to minimize (25) by solving
the stationary condition

∂t fH (t ) = 0, (26)

which is equivalent to (21) under parametrization (22). The
latter equation becomes

β2(k3 + 4k2t − 2k3t ) + β4t[t (−3k6 + 4k4t + 4k6t )

+ k5(1 − 3t + 2t2)] + H2χa = 0, (27)

and the real solution to (27) is given by

t = 3

√√
� − η

2
− 3

√√
� + η

2
− b

3a
, (28)

where

� =
(γ

3

)3
+

(η

2

)2
, γ = −1

3

(
b

a

)2

+ c

a
,

η = 2

27

(
b

a

)3

− bc

3a2
+ d

a
, (29)

with

a = β4(2k4 + k5 + 2k6), b = −3

2
β4(k5 + k6),

c = β2

(
2k2 − k3 + β2

2
k5

)
, d = β2

2
k3 + 1

2
H2χa. (30)
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FIG. 2. Conical angle as a function of the external field upon
changing elastic constant k3: blue solid line for the standard set
(H 2

cr = 75/χa); red dashed line when k3 = −5 (H2
cr = 605/3χa);

green dotted line for k3 = −10 (H2
cr = 845/χa).

In order to have a unique real solution, the discriminant �

must be positive. This is the case when the external field
vanishes [19,20]. When H 	= 0, it is clear from the definition
of the quantities d and η that � increases with respect to
the zero-field value, thus keeping the positive sign and still
yielding a unique real solution.

Therefore,

θ0 = arcsin

√
3

√√
� − η

2
− 3

√√
� + η

2
− b

3a
, (31)

which generalizes (15) when an external field is present. In
addition, we also study the transition to the standard uniform
nematic phase corresponding to t = 0 where the director field
lines up with the direction of the external field, i.e., along ez.
For this to occur, the external field should solve Eq. (27) when
t = 0, i.e.,

β2k3 + H2χa = 0, (32)

which leads to the critical field

Hcr = ±
√

−β2k3

χa
. (33)

In the following, when dealing with an external field, we will
give it in terms of this critical field, Hcr. Thus, when H � Hcr,
t = 0, that is to say, the phase is standard uniform nematic. In
terms of the elastic constants, the critical field becomes

Hcr = ±
√

1

χa

k3(2k3k4 + 2k2k5 + 2k2k6 + k3k6)2

(2k2k5 + k3k6)(2k4k5 − k2
6 )

, (34)

which has been obtained by choosing for the parameter β the
expression in (14). In Figs. 2 and 3 we represent the conical
angle θ0 as a function of the external field for different choices
of the elastic constants. It is interesting to see in Fig. 2 how
θ0 goes to zero when increasing H . In particular, we have
plotted (blue line) the curves θ0(H ) for the values of the elas-
tic constants k1 = k2 = k4 = k5 = k6 = 1 and k3 = −3 (from
now on we will call this choice of values the standard set)

FIG. 3. Conical angle as a function of the external field upon
changing elastic constant k4: blue solid line for the standard set
(H 2

cr = 75/χa); red dashed line when k4 = 5 (H 2
cr = 841/3χa); green

dotted line for k4 = 10 (H2
cr = 10443/19χa).

together with a decreasing of k3 to −5 (red dashed line), which
corresponds to a critical field H2

cr = 605/3χa, and k3 = −10
(green dotted line) with H2

cr = 845/χa. Interestingly, we see
that in all cases the approach to 0, when we are close to the
critical field, occurs in the same way. However, the behavior
for small values of the external field is quite different. When
decreasing k3, θ0 takes longer to become significantly smaller
and a more abrupt reduction appears. Similarly, we can con-
sider the case of an increasing elastic constant k4. In Fig. 3,
besides the diminution of θ0 for the standard set of parameters,
the cases of only changing k4 from 1 to 5 and 10 (red dashed
line and green dotted line, respectively) are shown. In this
case, the critical field when k4 = 5 is H2

cr = 841/3χa and
H2

cr = 10443/19χa for k4 = 10. Unlike the previous case, for
an increasing k4 the conical angle shrinks in a more regular
way. This might be also favored because, even in the absence
of an external field, θ0 considerably decreases with k4.

For small values of the ratio h = H
Hcr

, t gets the form

t = t0 + β2k3( 3
√

2
√

�0 − η0 + 3
√

2
√

�0 + η0)

12 3
√

2 a
√

�0

h2 + O(h4)

(35)
where all quantities subindexed with 0 refer to the correspond-
ing quantities when H = 0. In terms of the asymptotic angle
one has

θ0 = arcsin

(√
2k2k5 + k3k6

(2k2k5 + k3k6) + 2(k3k4 + k2k6)

)
+ 1√

1 − t0

× β2k3
(

3
√

2
√

�0 − η0 + 3
√

2
√

�0 + η0
)

12 3
√

2 a
√

�0

h2 + O(h3).

(36)

In this formula the dependency on k3 is quite involved, but
algebraic, then analytic. Notice that in this model the response
of the heliconical angle θ0 to the external field is just quadratic
as in a sort of Kerr effect [38].

Despite the complexity of the system under study, even
when only considering the simple twist-bend configuration,
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FIG. 4. Energy per volume of the twist-bend phase as a function
of the external field for the standard set of parameters.

simulations in three dimensions of this ground state have
been successfully undertaken. One should note that within
this theoretical setup, performing 3D simulations to minimize
(20) via (21) is a challenging problem. On the one hand, the
boundary conditions for the vector director are not constant
at infinity, together with a free energy, which does not vanish
asymptotically. In addition, a high accuracy in the numerical
calculation is needed in order to exactly match the values
obtained from the analytical study, not only for the conical
angle θ0 but also for the pitch β. In the case of the twist-bend
ground state, this may be done in a lattice of a reasonable
size. In this way, it has been confirmed, for the standard set
of parameters (with a lattice spacing of 0.02 and a gradient
flow method), the dependence of θ0 on the external field as
in Fig. 2 (solid line), besides validating the assumption of
constant pitch made before. Furthermore, in Fig. 4 one can
see the energy per volume, f , as a function of H/Hcr, where
for H = Hcr we arrive at the nematic phase.

As mentioned in Sec. I, several studies found that the
pitch P of the modulated nematic structure falls in the scale
of a few nanometers [4,5]. The same studies report, under
freeze-fracture transmission electron microscopy (FFTEM),
the presence of stripe-textured fracture planes, which indi-
cates fluid layers periodically arrayed in the bulk with a
spacing of P. On the other hand, the authors in Ref. [4]
found that this periodic structure is achieved with no de-
tectable associated modulation of the electron density, and
so it is not accompanied by a mass density wave, revealing
a nematic rather than smectic molecular ordering. Thus, the
layers in three dimensions found in the FFTEM are not images
of molecular scale interfaces, but rather are 2D surfaces of
constant azimuthal phase of the heliconical precession, some-
times called pseudolayers [39]. Due to the undulation of these
surfaces, the direction of the heliconical axes periodically
changes accordingly. In particular, in Ref. [39] a buckling of
these pseudolayers under the action of an external magnetic
field was observed until they flatten for sufficiently high fields.
There, a Helfrich-Hurault model was proposed to theoretically
describe this phenomenon and infer the value of the associated
elastic constants from the experimental values of the critical

magnetic fields. On the other hand, the NT B configurations
presented here, and derived from the phenomenological elas-
tic theory (17), uniformly fill the space with heliconical axes
parallel to each other, meaning that the surfaces of constant
azimuthal phase are flat independently of the presence of an
external field. In order to allow for displacements from flat
surfaces, one should add extra energy terms to (17) as reported
in Ref. [40] [see Eq. (61) therein] by considering a suitable
parametrization of n in terms of the unit normal to the surface
displacement and the unit orthogonal projection of n onto it.

At this stage, additional comments on the constant pitch
in the presence of external fields are in place. In Ref. [41]
the effects of external fields on the tilt angle and the pitch
of oblique helicoidal configurations in doped CB7CB were
analyzed. The experimental results were in good agreement
with the predictions of a theoretical model, first introduced
in Ref. [42], based on the chiral Frank-Oseen framework. It
turned out that both the pitch and the tilt angle increase as
the field decreases from the critical value for the cholesteric-
isotropic transition, originating a new configuration called
oblique helicoid. Moreover, the CB7CB is known to be one
of the recently discovered materials exhibiting the NT B phase.
However, it is difficult to compare the results presented here
with those obtained in Ref. [41] since quite different situations
are examined. Indeed, the oblique N∗ phase, obtained through
the addition of the chiral dopant, shows a period of some μm,
while, if no chiral molecules are added from outside, the peri-
odic structures typical of the NT B phase have periods of a few
nm. Furthermore, because of the dopant additive, the oblique
helicoidal phase has the same chirality everywhere, while the
NT B phase is formed by both left- and right-handed domains.
Finally, by fitting theoretical predictions to experimental re-
sults, the authors in Ref. [41] found the bend constant to be
significantly smaller than others but still positive. We must
stress that here we investigate an achiral scenario in which
this latter constant turns negative, possibly allowing for the
stabilization of NT B and other nonuniform configurations. In-
deed, in Ref. [41] it is stated that the oblique helicoids appear
in a specific range of intensity of the external field, which
allows for the chiral twist to compete with the torque of the
field. Above this range, the homeotropic alignment is favored;
below this range, the right-angle helix typical of cholesterics is
stabilized. The limiting values for the amplitudes of the exter-
nal field are both determined by the ratio 0 < κ = K33/K22 <

1: a negative value of K33 would imply imaginary values for
all the observables taken into consideration in the theoretical
model proposed in Ref. [41]. Thus, it is not surprising that in
our case the pitch keeps independent of the external field.

III. SKYRMION TUBES UNDER EXTERNAL FIELDS

A. Skyrmion tube parameterization

At variance with the previous section, here we consider
the case of nonuniform distortions leading to localized states.
Bearing in mind that the uniform distortions are heliconi-
cal states, we slightly depart from this case by considering
still heliconical structures, but with a nonuniform conical an-
gle and an additional precession around the heliconical axis.
These structures give rise to localized cylindrically symmetric
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configurations, which can be referred to as Skyrmion tubes
(SkT), of the general form

n(r, z, ϕ; β ) = sin ( f (r)) cos(ϕ + βz)ex

+ sin ( f (r)) sin(ϕ + βz)ey + cos ( f (r))ez.

(37)

The ϕ dependence prescribes a winding performed by the
director around the heliconical axis ez for fixed z, f (r) is
the profile function describing the conical angle and β has the
same meaning as in the previous section.

One might also think about an ansatz without the angular
dependence given by ϕ. However, as we already discussed in
Ref. [20] and also checked from numerical calculations and
within this setup under an external field, stable solutions of
this kind do not exist. Hence, this ansatz with no ϕ dependence
gives us the uniform distortion as the ground state where now,
the conical angle θ0 will also depend on the value of the
external field as showed in the previous section. The winding
around the z axis given by the azimuthal variable is of key
importance to give rise to these localized Skyrmion tubes and
prevent them from directly decaying into the ground state.

In order to justify the above ansatz, one way to proceed is to
resort to the so-called reduction by variational point symme-
tries [43], where these latter transform both independent and
dependent variables, leaving unchanged the value of the func-
tional (20) and the associated full Euler-Lagrange equations
(21). A symmetry reduction procedure leads to an exact form
of the solution with a less number of independent variables,
as in (37), and it produces the corresponding equations in the
remaining unknown functions. These latter obey to a restricted
class of boundary conditions. Finding all symmetries admitted
by the equations (21) may be challenging because of their high
complexity. Still, one can exploit the constructive assumptions
of translational and rotational invariance [19]. To this purpose,
it is useful to parametrize the director field n in terms of
two real stereographic variables ρ and � according to the
following correspondence:

w = ρ(x, y, z) exp (ı�(x, y, z)) ∈ C ↔ n = w + w̄

1 + |w|2 ex

+ −ı(w − w̄)

1 + |w|2 ey + 1 − |w|2
1 + |w|2 ez. (38)

By expressing the infinitesimal point symmetries in terms of
vector fields 
v in the space of the independent and dependent
variables, one can prove that any one-dimensional subalgebra
of the class


v = α∂z + y∂x − x∂y − ∂� α ∈ R (39)

(i) leaves invariant the external magnetic field, (ii) is a varia-
tional symmetry, and (iii) admits the following invariants:

I1 = ρ, I2 = � + 1

α
z, (40)

I3 = x2 + y2 = r2, I4 = 1

α
z + arctan

(
y

x

)
= 1

α
z + ϕ.

(41)

Thus, one can claim that the original variational problem
has symmetry invariant solutions of the form

ρ = ρ(r, ζ ), � = F (r, ζ ) − 1

α
z, ζ = I4, (42)

where ρ and F are functions to be determined by a pair of
symmetry-reduced partial differential equations in the inde-
pendent variables r, ζ only. Now, supposing that the function
F is smooth and non trivial in the angle ϕ, then it has to be
independent of r in order to avoid discontinuities. Similarly,
a nontrivial dependence on r of ρ implies independence of
ζ , otherwise it may lead to singularity and multivaluedness
in ϕ. Furthermore, by choosing in particular F = −ζ and
identifying 2/α = β, we get the ansatz (37). Once the ansatz
is justified, one can place it directly in the functional and find
the corresponding reduced Euler-Lagrange equation for f (r),
as detailed in the following.

In order to have localized configurations, we may impose
the boundary conditions f (0) = 0 and f (r → ∞) = θ0, θ0

being a suitable conical angle to be determined. We also
consider the case f (0) = π and f (r → ∞) = θ0. Then, to
study these configurations, we need to reduce the general free
energy in order to translate the ansatz into the equilibrium
equations. The reduced free energy integrated over the unit
cell [0, 2π

β
] × [0, 2π ] and over r ∈ [0,∞] will take the form

FH [ f ; β] =
∫ 2π

β

0
dz

∫ 2π

0
dϕ

∫ ∞

0
FH [n(r, z, ϕ; β )]rdr. (43)

We are interested in the reduced free energy per unit cell
[0, 2π

β
] × [0, 2π ], which can be obtained by dividing by the

factors 2π and 2π
β

F̃H [ f ; β] = β

4π2
FH [ f ; β]. (44)

This latter can be rewritten as follows:

F̃H [ f ; β] = 1

256

∫
(GH + G0 + G1 f ′ + G2 f ′2

+ G3 f ′3 + G4 f ′4)dr, (45)

where Gi are reported in the Appendix A and we have now
defined

GH = −128χaH2r cos2 f . (46)

Hence, we arrive at the following Euler-Lagrange associated
equation:

2 f ′′(G2 + 3 f ′G3 + 6 f ′2G4) + 2 f ′∂rG2 + f ′2∂ f G2

+ 2 f ′3(∂ f G3 + 2∂rG4)

+ 3 f ′4∂ f G4 + ∂rG1 − ∂ f G0 − ∂ f GH = 0. (47)

As stated above, we will look for localized solutions of the
form (37). The radial profile function f (r) solves the ODE
(47). Here, we want to study the asymptotic behavior as r →
∞. The asymptotic state will then be denoted as

n∞ = sin θ0 cos(ϕ+βz)ex+ sin θ0 sin(ϕ + βz)ey + cos θ0ez,

(48)
where θ0 is the asymptotic conical angle, i.e., f (r) → θ0 as
r → ∞.
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In order to determine θ0, as in the case of uniform dis-
tortions, we follow the route of free-energy minimization.
Alternatively, we could study the asymptotic behavior directly
from (47). To find this value, we just need to consider the
stationary condition of the free energy with respect to f . In
this way, we get an asymptotic angle depending only on the
elastic constants, the external field, and the β parameter given
in terms of the elastic constants only (14). The free energy to
be minimized is the asymptotic expression of F̃H as in (45).
As r → ∞, we get

F̃H [ f ; β] =
∫ [

1

256
G∞

0 (r, f ) − χa

2
H2r cos2 f

]
dr + h.o.t.,

(49)
where the function G∞

0 is obtained from the function G0 by
dropping all the terms 1/r and 1/r3 and keeping only linear
terms in r, i.e.,

G∞
0 = g∞

01 + g∞
02 cos 2 f + g∞

03 cos 4 f

+ g∞
04 cos 6 f + g∞

05 cos 8 f , (50)

where

g∞
01 = β2

2
r(192k2 + 32k3 + 70β2k4 + 3β2k5 − 10β2k6),

(51)

g∞
02 = −4β2r(32k2 + 14β2k4 − k6β

2), (52)

g∞
03 = +2β2r(16k2 − 8k3 + 14β2k4 − β2k5 + 2β2k6),

(53)

g∞
04 = −4β4r(2k4 + k6), (54)

g∞
05 = β4

2
(2k4 + k5 + 2k6)r, (55)

entailing that

g∞
01 + g∞

02 + g∞
03 + g∞

04 + g∞
05 = 0. (56)

We then need to minimize the function

fH (θ0) = 1

256
G∞

0 (r, θ0) − χa

2
r cos2 θ0, (57)

where we are now using the asymptotic value of f , i.e., f →
θ0 as r → ∞. Dropping the r in the above expression, the
function to be minimized is

fH (θ0) = 1

256

[
g∞

01 + g∞
02 cos(2θ0) + g∞

03 cos(4θ0)

+ g∞
04 cos(6θ0) + g∞

05 cos(8θ0)
] − χa

2
H2 cos2 θ0.

(58)

Upon setting as above t = sin2 θ0, we arrive at

fH (t ) = 1
4 [−2k6(1 − t )t + 2k4t2 + k5(1 − t )2]t2β4

+ 1
2 [2k2t + k3(1 − t )]tβ2 − 1

2χaH2(1 − t ). (59)

The corresponding stationary condition reads

∂t fH (t ) = 0, (60)

that is,

β2(k3 + 4k2t − 2k3t ) + β4t[t (−3k6 + 4k4t + 4k6t )

+ k5(1 − 3t + 2t2)] + H2χa = 0, (61)

which reproduces the same equation as (27). Accordingly, we
obtain for the asymptotic conical angle the same expression
as in the uniform heliconical configuration (31) together with
its dependence on the uniform external magnetic field. In par-
ticular, it follows that the asymptotic angle θ0 vanishes when
H � Hcr (34) (see also Figs. 2 and 3). In the next section,
we will look for localized solutions to (47) by numerically
minimizing the free energy with a gradient flow method.

B. Numerical results

As mentioned above, we performed numerical simulations
to minimize (20) via the Euler-Lagrange equation (21) in
order to find the uniform heliconical state. The same approach
might be applied to find general configurations for a given
direction of the external field and the boundary conditions.
However, due to the issues highlighted in the previous section,
the study of localized solutions with 3D simulations is a chal-
lenging project, outside the scope of the present paper. Here,
we find the configurations corresponding to the Skyrmion
tubes by minimizing the free energy (45) within the ansatz
(37). Hence, the profile f (r) can be numerically obtained by
using a gradient flow method. For this purpose, we consider a
one-dimensional lattice L of 1000 points with a lattice spacing
�r = 0.02, with spatial derivatives approximated by a fourth-
order finite difference. Regarding the boundary conditions,
we will consider two different cases concerning the value at
the origin: f (0) = 0 and f (0) = π , where f (r → ∞) = θ0.
Although we know that solutions taking the value π at the
origin have higher energy [20], they are interesting when
placed under an external field since they may survive the
application of a magnetic field bigger than Hcr (34). This
should not be surprising since θ0 is a function not only of
β and the elastic constants but also of the external field H .
Indeed, as an increasing H will decrease the conical angle θ0,
the configuration with f (0) = 0 will converge to the nematic
phase when H = Hcr, whereas the solution with f (0) = π

will remain, interpolating between π at the origin and zero
at infinity. In other words, we can say that when increasing
the external field, the first class of solutions start to dilute in
the ground state, i.e., the difference between the profile values
at the origin and at infinite decreases until vanishing, leading
to the uniform ground state n = ez everywhere.

On the other hand, as for the second class, when H � Hcr

the director assumes the two degenerate ground-state con-
figurations n = −ez and n = ez at r = 0 and as r → ∞,
respectively. Thus, a nonuniform configuration around the
center survives and a cylindrical domain wall connecting the
two different ground states arises.

In Fig. 5, solutions with elastic constants k1 = k2 = k4 =
k5 = k6 = 1 and k3 = −3 (the standard set) for different val-
ues of the external field are shown for these two different
boundary conditions at the origin. For β we have chosen its
value in terms of the elastic constants as in (14), i.e., β = 5
in this case. All this gives us a critical field H2

cr = 75/χa. One
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FIG. 5. Profile solutions of the conical angle for the elastic con-
stants k1 = k2 = k4 = k5 = k6 = 1 and k3 = −3, both when f (0) =
0 (up) and f (0) = π (down). For these values of the elastic constants,
β = 5.0 and H 2

cr = 75/χa.

can easily see the different effect of increasing the external
field in each class of configurations due to the diminution
of the conical angle θ0 with it. Moreover, Fig. 6 depicts the
energy per pitch, P = 2π

|β| , of both classes of solutions,

ESkT =
∫ 2π

β

0
dz

∫ 2π

0
dϕ

∫
L

FH [n(r, z, ϕ; β )]rdr, (62)

once the energy of the ground state, i.e.,

EGS =
∫ 2π

β

0
dz

∫ 2π

0
dϕ

∫
L

FH [nh]rdr, (63)

is subtracted, i.e., �E/P = (ESkT − EGS)/P (we have in-
troduced the notation E for the energy coming from the
numerical calculation to make clearer it is calculated in the
finite lattice L). For the configurations with f (0) = 0, the ex-
citation energy decreases when approaching the critical field,
as expected since for H = Hcr they converge to the nematic
phase. Otherwise, if f (0) = π the excitation energy remains
about the same value for small fields before rapidly increasing.
One can also go further and explore a little bit the parameter
space. For instance, we can decrease the elastic constant k3.
Doing this, the behavior of the profile f (r) is similar to the

FIG. 6. Excitation energy with respect to the ground state as a
function of the external field for the solutions with elastic constants
k1 = k2 = k4 = k5 = k6 = 1 and k3 = −3, both when f (0) = 0 (up)
and f (0) = π (down). For these values of the elastic constants,
β = 5.0 and H 2

cr = 75/χa.

one shown in Fig. 5, since an increasing external field always
implies a diminution of the conical angle θ0 (see Figs. 2
and 3).

Finally, one can consider how the excitation energy
changes both with the external field and the elastic constants
when f (0) = π . This has been depicted in Fig. 7 for different
values of the coupling constants k3 and k4 in a logarithm
scale. In this way, it is manifest how an increasing k4 has an
important effect, raising the excitation energies in a consider-
able way, much more remarkable than when the value of the
elastic constant k3 is varied with respect to the standard set of
values. This may be due to the fact that, even in the absence
of external field, the twist-bend phase is characterized by a
smaller conical angle than in the standard case, making the
central value f (0) = π present a higher deviation from the
ground state.

In order to obtain a better visualization of the nematic
texture, in Figs. 8 and 9 we reported a three-dimensional
representation of a Skyrmion tube with a profile function
taking the value π at the center, i.e., f (0) = π . As it is clear,
a tube is defined as an axially symmetric region where the
conical angle changes from π to the asymptotic value θ0.
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FIG. 7. Excitation energies with respect to the ground state as
a function of the external field for different values of the coupling
constants in logarithmic scale. The excitation energies correspond to
the class of solutions with a profile function taking the value π at the
center, i.e., f (0) = π .

When the external field increases, the tube is surrounded
by a uniform nematic phase as θ0 vanishes when H � Hcr.
Actually, in Fig. 10 we also report the profile function when
H = Hcr, 1.5Hcr, 2Hcr, where the shrinking of the Skyrmion
tube with an increasing field is manifest.

As for stability, we have some numerical evidence of it by
energy considerations, although there is not a complete proof
based on the second variation of the free-energy functional.
Nevertheless, the calculation and analysis of the second vari-
ation are not trivial, even for the quadratic Frank’s functional
[44]. This problem would deserve a separate further treatment
and consideration, which are certainly beyond the scope of the
present paper.

FIG. 8. Three-dimensional representation of a Skyrmion tube
with a profile function taking the value π at the center, i.e., f (0) = π .
The cylinders show the vector director with the coloring indicating
the conical angle.

FIG. 9. A section of the three-dimensional representation of a
Skyrmion tube with a profile function taking the value π at the
center, i.e., f (0) = π . The cylinders show the vector director with
the coloring indicating the conical angle.

As a conclusion, the numerical analysis shows the exis-
tence of two families of solutions to Eq. (47). In Appendix B,
following an approach outlined in Ref. [20], one may find a
global analytical approximation, which can fit these numerical
solutions.

IV. CONCLUSIONS AND PERSPECTIVES

In this paper we studied the interaction of external uni-
form magnetic fields with achiral liquid crystals according
to a generalized fourth-order elasticity theory recently put
forward in Ref. [19]. This theory is encoded in the free-energy
density (10), which is parameterized by six elastic constants:
k1, k2, k3 associated with the quadratic terms in the Frank
free energy and k4, k5, k6 related to fourth-order contributions.
Under appropriate constraints on the six elastic constants,

FIG. 10. Profile solutions of the conical angle for the elastic
constants k1 = k2 = k4 = k5 = k6 = 1 and k3 = −3, when f (0) =
π . For these values of the elastic constants, β = 5.0 and Hcr =
75.0. The applied external magnetic field is higher than the critical
field Hcr.
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the proposed free energy admits heliconical configurations
as global minimizers. They are characterized by a director
forming a constant conical angle θ0 with respect to a fixed
axis, say z, as shown in Fig. 1, continuously precessing when
moving parallel to this axis and turning completely round
over the length of a pitch P = 2π/β (12). These heliconical
configurations have been recently identified experimentally in
the ground state of twist-bend nematic phase NTB.

When an external magnetic field is applied, an interaction
term �H (17) is added to the free-energy density. We studied
the effect of a uniform field along the symmetry axis of the
uniform heliconical state. The heliconical uniform state pre-
serves its pattern and only the conical angle is affected by
the external field as a consequence of the magnetic torque
imparted to the nematic director. As the magnitude of the
magnetic field is increased, the nematic undergoes a transition
from the NTB phase to the uniform nematic phase N where the
director lines up with the external field. The transition takes
place at a critical value Hcr (34). The twist-bend phase has
been further reproduced by 3D simulations through a min-
imization of the energy functional (20) via Euler-Lagrange
equations (21). According to this, we should stress that the
pitch remains constant, thus consistently confirming our initial
assumption.

Following our previous work [20], now in the presence
of the external field, we generalized the heliconical config-
urations to nonuniform localized axially symmetric structures
with a variable conical angle (37). Actually in Ref. [20],
in the zero-field case, we had shown that there exists an
axially symmetric state where the conical angle depends on
the radial distance from the symmetry axis, the z axis in
our parametrization, going from 0 (or π ) to a θ0 at infinity
in the radial direction, while the director winds uniformly
once around the z axis. The conical angle profile goes from
0 to its asymptotic value θ0 in an exponentially fast way,
thus singling out a central core. These localized structures
are usually referred to as Skyrmion tubes [21–24]. The free
energy corresponding to the configuration starting from 0 at
the origin of the radial axis has lower energy with respect
to the one starting from π , although they both are excited
states with respect to the uniform heliconical distortion. As
shown in the present paper, for sufficiently low applied exter-
nal fields, the Skyrmion tubes still keep their basic structure
as localized configurations with a central core surrounded by
a uniform heliconical distortion and a winding around the
symmetry axis. Once a critical threshold Hcr (the same as in
the uniform heliconical phase) is reached, the Skyrmion tubes
undergo a change in their patterns according to the value of
the conical profile function at the origin of the symmetry axis.
More precisely, when the conical angle is zero at the origin
and H � Hcr, the conical profile function vanishes and the
liquid crystal undergoes the transition to the uniform standard
nematic phase, where the director lines up everywhere with
the external field. Thus, in this case the central core of the
Skyrmion tube tends to disappear. On the other hand, when
the conical angle takes the value π at the origin, at sufficiently
high external fields the central core still survives and it gets

surrounded by a standard uniform nematic pattern where the
nematic director lines up with the external field. Thus, in the
central core the conical angle changes rapidly from the value
at the center to zero.

As stated above, we would like to stress here that the
configurations found in the present paper are of the same
type as the so-called Skyrmion tubes found in Refs. [23,24]
and there described numerically in ferromagnets and exper-
imentally detected for chiral nematic liquid crystals under
an applied external field. In contrast with these results,
we found Skyrmion tube configurations in achiral nemat-
ics either with external fields or in their absence. When a
sufficiently high external field is present, only a type of
Skyrmion tube survives and it gives rise to an axially symmet-
ric localized configuration immersed in the standard nematic
phase.

Thus, we reached a twofold target. On one hand this
work presents a self-contained study about the formation and
control of Skyrmion tubes under external fields and, more
specifically, coaxial external fields. On the other hand it rep-
resents a first stone towards a general 3D study of these
structures also including arbitrary orientations of the external
field.

As a conclusion, the proposal of considering higher-order
free-energy expansions, as opposed to higher derivative ones
[18], leads to interesting new perspectives in the liquid crystal
science with many potential technological applications, where
Skyrmion tubes might play an important role. On the theoret-
ical side, according to our results it is clear that these kinds of
configurations emerge in a natural and straight way from the
proposed energy and can be controlled by external fields.

As for future work, we plan to study the stability of the
found solutions, the mutual interaction of Skyrmion tubes, the
space arrangement of two or more of them, and their lattice
configurations. Furthermore, we aim at studying electro-
optical effects and exploring other types of localized objects.
Moreover, we also aim at exploring the effect of the com-
pression of pseudolayers by using an appropriate compression
energy and a representation of the director in terms of the ge-
ometric objects defining the layer surfaces as discussed at the
end of Sec. II. Finally, we are also interested in studying liquid
crystals confined within specific geometries and modeled by
the quartic free-energy density along with its coupling with
external fields.
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APPENDIX A: MATHEMATICAL DETAILS

In this Appendix we collect the basic main functions and coefficients appearing in the equilibrium equations for Skyrmion
tubes. The quantities Gi, i = 0, 1, 2, 3, 4 appearing in Eq. (47) depend on r, f , β, k1, k2, k3, k4, k5, k6 and are listed below:

G0 = G0(r, f ) = g01 + g02 cos(2 f ) + g03 cos(4 f ) + g04 cos(6 f ) + g05 cos(8 f ), (A1)

where

g01 = 1

16r3
(178k4 + 105k5 − 30k6) + 1

2r
(64k1 + 96k2 + 48k3 + 70β2k4 + 15β2k5 − 18β2k6)

+ β2

2
r(192k2 + 32k3 + 70β2k4 + 3β2k5 − 10β2k6), (A2)

g02 = − 1

2r3
(25k4 + 21k5 − 3k6) − 32

r
(k1 + k2 + k3) − 2β2

r
(21k4 + 3k5 − 10k6) − 4β2r(32k2 + 14β2k4 − k6β

2), (A3)

g03 = 1

4r3
(2k4 + 21k5 + 6k6) − 2

r
(8k2 − 4k3 + 3β2k5 + 10β2k6) + 2β2r(16k2 − 8k3 + 14β2k4 − β2k5 + 2β2k6), (A4)

g04 = − 1

2r3
(−k4 + 3k5 + 3k6) + 2β2

r
(5k4 + 3k5 + 6k6) − 4β4r(2k4 + k6), (A5)

g05 = (2k4 + k5 + 2k6)

(
3

16r3
− 3β2

2r
+ β4

2
r

)
, (A6)

with

g01 + g02 + g03 + g04 + g05 = 0. (A7)

As for G1

G1 = G1(r, f ) = g11 sin (2 f ) + g12 sin(4 f ) + g13 sin(6 f ),

(A8)

where

g11 = 1

r2
(−35k4 + 5k6) + 64(k1 − k2) − 20(k4 + k6)β2,

(A9)

g12 = 4

r2
(4k4 − k6) + 16(k4 + k6)β2, (A10)

g13 = 1

r2
(k4 + k6) − 4(k4 + k6)β2. (A11)

As for G2

G2 = G2(r, f ) = g21 + g22 cos(2 f ) + g23 cos(4 f )

+ g24 cos(6 f ), (A12)

where

g21 = 1

r
(71k4 + 5k5 + 29k6) + 4r[8(k1 + 5k2 + k3)

+β2(37k4 + k5 + 9k6)], (A13)

g22 = − 1

2r
(15k4 + 15k5 + 79k6) + 2r[16(k1 + k2 − k3)

−β2(97k4 + k5 + 17k6)], (A14)

g23 = 1

r
(−63k4 + 3k5 + 11k6) + 4β2r(11k4 − k5 − k6),

(A15)

g24 = (k4 + k5 + k6)

(
2β2r − 1

2r

)
. (A16)

The function G3 is given by

G3 = G3( f ) = g31 sin(2 f ) + g32 sin(4 f ), (A17)

where

g31 = −8(6k4 + k6), (A18)

g32 = −4(4k4 − k6). (A19)

Finally,

G4 = G4(r, f ) = g41 + g42 cos(2 f ) + g43 cos(4 f ), (A20)

where

g41 = r(65k4 + 9k5 − 8k6), (A21)

g42 = 4r(5k4 − 3k5 + 2k6), (A22)

g43 = 3r(k4 + k5). (A23)

Notice that in addition to (A7) other identities exist. This
is due to the fact that there are seven free parameters: six
independent elastic constants ki and a parameter β.

APPENDIX B: GLOBAL APPROXIMATION

Following the numerical analysis performed in Sec. III B,
in this Appendix, using an approach outlined in Ref. [20], we
look for a global approximation, which can fit the numeri-
cal solutions found. As a first step, one can observe that a
smooth function, although found numerically, can be locally
approximated by inverse trigonometric functions of an aux-
iliary rational function s(r), but this is not a priori obvious
when such a function comes as a solution to a nonlinear ODE
with singular coefficients and boundary conditions. Thus, in
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FIG. 11. Best fitting results for k1 = k2 = k4 = k5 = k6 = 1, k3 = −3 (the standard set) and H/Hcr = (a) 0, (b) 0.3, (c) 0.6, (d) 0.9 for
the case f (0) = 0. The red dashed line represents the numerical solution to equation (47) and the blue one represents the best fitting curve
(B5). On the bottom of each subfigure, the function f (r) − fa(r) is reported as an estimation of the goodness of the fit.

principle one should analyze the singularities of the general
solution in the complex plane of the independent variable r
by resorting to several appropriate methods (see, for example,
Ref. [45]). We assume here that the general solution to our
equation is a meromorphic function except for an essential
singularity at infinity. Thus, the general solution can be ex-
panded in series of poles, these latter depending on the given
boundary conditions. In this perspective, one may look for
an approximated solution in the spirit of the Padé expansion
[46], which, for the sake of simplicity, we truncated at the

TABLE I. Best fitting parameters for k1 = k2 = k4 = k5 = k6 =
1, k3 = −3 and H/Hcr = 0, 0.3, 0.6, 0.9 for the case f (0) = 0.

H/Hcr a c d

0 2.6359 3.6417 0.6203
0.3 7.5163 8.4638 1.5279
0.6 0.3499 0.4586 0.0623
0.9 1.5183 1.5514 0.6076

fourth order. In principle, all coefficients involved into such an
expansion could be determined, but the complicate structure
of the equation would make this study quite difficult and
not significant to our purposes. Thus, in the following we
adopt a mixed strategy consisting in evaluating the unknown
coefficients [as in Eq. (B5) below] directly from the numerical
solution, mainly in order to verify the consistency of the above
arguments.

a. Case f (0) = 0

In this case we assume that the approximant of f (r) can be
written as

fa(r) = π − arccos

(
−1 + r2

2
s(r)

)
, (B1)

with s(r) a still unknown function supposed to be well defined
and bounded all over the domain r ∈ [0,∞[. It is straight-
forward to verify that, under these hypotheses, fa(0) = 0.
Moreover, in order to fulfill also the boundary condition as
r → ∞, it is required that s(r → ∞) ∝ 1

r2 . Actually, letting
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FIG. 12. Best fitting results for k1 = k2 = k4 = k5 = k6 = 1, k3 = −3 (the standard set) and H/Hcr = (a) 0, (b) 0.3, (c) 0.6, (d) 0.9, (e) 1
for the case f (0) = π . The red dashed line represents the numerical solution to equation (47) and the blue one represents the best fitting
curve (B6). On the bottom of each figure, the function f (r) − fa(r) is reported as an estimation of the goodness of the fit.

r → ∞ and setting fa(r → ∞) = θ0, we get

θ0 = π − arccos
(−1 + 1

2 c0
)
, (B2)

that is,

c0 = 2(− cos θ0 + 1) = 4 sin2 θ0

2
. (B3)

Now, following Ref. [20] we assume s(r) as the rational
function

s(r) = c0
a + r2

r4 + cr2 + d
, (B4)
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where c0, a, c, d are real constants to be determined. Thus,
we can write fa(r) as

fa(r) = π − arccos

(
−1 + 2r2 sin2 θ0

2

a + r2

r4 + cr2 + d

)
.

(B5)

We can now perform a best fitting procedure between (B5)
and the actual numerical solutions analyzed in Sec. III B. The
results of the least-square procedure are represented in Fig. 11,
where the numerical solutions for the set of elastic constants
k1 = k2 = k4 = k5 = k6 = 1, k3 = −3 (the standard set) and
H/Hcr = 0, 0.3, 0.6, 0.9 are interpolated by (B5). On the
bottom of each subfigure, the function f (r) − fa(r) is re-
ported as an estimation of the goodness of the fit. The values
of the optimal a, b, c for the cases taken into consideration
are reported in Table I.

b. Case f (0) = π

In this case, we write the approximant fa(r) as

fa(r) = arccos

(
−1 + r2

2
cπ

a + r2

r4 + cr2 + d

)
. (B6)

Similarly to the previous case, we find that cπ reads

cπ = 4 cos2

(
θ0

2

)
, (B7)

in order to fulfill the correct boundary conditions, i.e., fa(0) =
π and fa(r → ∞) = θ0. Also in this case the best fitting
procedure is successful, although for H = Hcr the least-square
minimization must be performed for both the real and the
imaginary part of fa simultaneously. More specifically, for
every r both quantities Re[ f (r) − fa(r)] and Im[ f (r) − fa(r)]
are taken into account when minimizing the sum of the

TABLE II. Best fitting parameters for k1 = k2 = k4 = k5 =
k6 = 1, k3 = −3 and H/Hcr = 0, 0.3, 0.6, 0.9, 1 for the case
f (0) = π .

H/Hcr a c d

0 0.7987 0.7639 0.0789
0.3 0.7999 0.7782 0.0794
0.6 0.9674 0.9416 0.0959
0.9 0.7903 0.7677 0.0788
1 0.4297 0.4270 0.0448

squared differences. Indeed, the minimization of only the real
part yields values of the best fitting parameters such that
| − 1 + cπ

r2

2 s(r)| > 1. As it can be noted also from the other
cases, the ability of fa to fit f is weaker in the proximity of the
bump through which the profile function reaches its asymp-
totic value. This is particularly true approaching the critical
value of the external field. Thus, the values of a, c, d in this
latter case are the best fitting ones when a reality condition is
imposed to fa. The results are depicted in Fig. 12. The values
of the optimal a, c, d for the cases taken into consideration
are reported in Table II.

In conclusion, our analysis leads to providing a good
(within a few percentage) global approximated analytical ex-
pression of the Skyrmion tubes by using only five constants:
θ0, a, c, d , and β. The physical meaning of θ0 and β is straight-
forward and they can be measured by suitable experiments.
On the other hand, the remaining constants provide informa-
tion about the shape of the Skyrmion tube, which can be also
experimentally observed.
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