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Enhanced diffusion is an emergent property of many experimental microswimmer systems that usually arises
from a combination of ballistic motion with random reorientations. A subset of these systems, autophoretic
droplet swimmers that move as a result of Marangoni stresses, have additionally been shown to respond to
local, self-produced chemical gradients that can mediate self-avoidance or self-attraction. Via this mechanism,
we present a mathematical model constructed to encode experimentally observed self-avoidant memory and
numerically study the effect of this particular memory on the enhanced diffusion of such swimming droplets.
To disentangle the enhanced diffusion due to the random reorientations from the enhanced diffusion due to the
self-avoidant memory, we compare to the widely used active Brownian model. Paradoxically, we find that the
enhanced diffusion is substantially suppressed by the self-avoidant memory relative to that predicted by only an
equivalent reorientation persistence timescale in the active Brownian model. We attribute this to transient self-
caging that we propose is novel for self-avoidant systems. Additionally, we further explore the model parameter
space by computing emergent parameters that capture the velocity and reorientation persistence, thus finding a
finite parameter domain in which enhanced diffusion is observable.
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I. INTRODUCTION

Active particles are a class of nonliving nonequilibrium
systems that derive their motility from environmental en-
ergy consumption that is transformed into self-propulsion.
There is great variety among motility-inducing forces, in-
cluding chemical forces [1-4], photoelectric forces [5-8],
and autophoresis [9-13]. Such active systems are designed
to mimic self-propulsion seen in microscale living systems,
including the run-and-tumble behavior exhibited by bacte-
ria [14,15], chemotactic responses to environmental stimuli
[16-18], gravitactic responses [19,20], and photoelectric
responses [21-23]. For a comprehensive review of micro-
scale active systems and current research developments, see
Refs. [24-26].

A hallmark feature of active systems is a ballistic move-
ment, or “swimming” that when interrupted by random and
frequent directional changes gives rise to enhanced diffusion
[6,8,15,27]. The biological advantage of enhanced diffusion is
greater exploration of an area in a shorter period of time when
compared to passive diffusion. Consequently, biological ef-
fective diffusion and other single-particle emergent behaviors
such as microscale transport, bacterial motion, and cell migra-
tion patterns and their biomimetic applications are research
areas of great interest [24].

In parallel, complete understanding of these phenomena
via mathematical modeling provides design inspiration and
permits cost-effective testing of novel systems; the most
common model for active particles is the active Brownian
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particle (ABP) model. ABP combines directed motion
resulting from a velocity dependent on the amount of available
energy or “fuel” with a rotational diffusion dependent on a
defined persistence timescale, resulting in enhanced diffusion
at timescales longer than the correlation time of the rotational
diffusion [27]. This model of competing ballistic and diffusive
motion accurately predicts the enhanced diffusion of many
experimental systems, such as those found in Refs. [2-4,6,26—
28].

We are interested in the additional effect of spatiotemporal
memory observed in slowly dissolving autophoretic droplets
[10-13], in addition to the persistence memory seen in ABP.
As these autophoretic droplets interact with the surfactant
suspension, the particular physics induces a self-avoidant
memory response. Above a critical surfactant concentration,
the leaking oily solute from the droplets is taken up into
empty micelles. This creates local heterogeneities in the sur-
factant concentration, which induce Marangoni stresses that
cause the droplets to spontaneously swim in the direction of
highest surfactant concentration. This process continues as the
droplets move, leaving behind a diffusing wake of solute-filled
micelles and thereby a trail of depleted surfactant concentra-
tion. It is precisely the fact that the diffusion of the micelles
and surfactant is slow relative to the velocity of the droplets
that causes self-avoidant motion as the droplets encounter
gradients of solute concentration at the droplets’ past locations
that have not yet diffused away. These past-history gradients
induce Marangoni stresses that cause the droplets to move
towards higher surfactant concentrations and therefore away
from their past locations.

Despite being too large for the effects of thermal noise
to be visible, the ballistic motion of the autophoretic exper-
imental droplets is still punctuated by randomized directional
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changes, producing random-walk-like behavior. Such changes
in direction reflect a transition between a dipolar (swimming)
and a quadrupolar (stopped) hydrodynamic mode and the av-
erage frequency of these re-orientation events increases with
Péclet number, droplet size, and the viscosity of the surround-
ing suspension [13]. While this run-and-tumble-like behavior
produces an enhanced diffusion that is consistent with the
ABP model for the experimental parameters considered in
Ref. [12], we seek an understanding of the additional self-
avoidant memory effect at play, particularly on the enhanced
diffusion.

Motivated by the experimental system, we employ a model
with a tunable memory response (which we distinguish from
directional persistence) that qualitatively captures the es-
sential features of the droplets and ignores the details of
Marangoni stresses and hydrodynamic effects. In this model,
the particle is a mobile source of diffusing surfactant that
descends its self-produced concentration gradient, resulting in
a sustained “swimming” state and self-avoidant memory tied
to the diffusion timescale. To reproduce the coarse-grained
effect of the random reorientations after each switch from
the quadrupolar hydrodynamic mode of the experimental
particles, we introduce thermal-like noise into the droplet’s
equation of motion. This results in enhanced diffusion that
intuitively one might expect the encoded self-avoidant mem-
ory to amplify as the particle evades its own past locations.
However, we find the opposite: a suppression of enhanced dif-
fusion over that predicted by an ABP with the same velocity
and orientational persistence. We find evidence of transient
self-caging as a possible explanation for this behavior. To date,
this effect has only been seen in self attracting model systems
[29-33].

In this paper, we begin in Sec. II by presenting the math-
ematical details of this model for self-avoidant swimming
droplets. We investigate the memory effects of these model
swimmers at long timescales by comparing the mean-square
displacement (MSD) to that of ABPs with the same veloc-
ity and orientational persistence in Sec. III. To make these
comparisons, we analytically derived an expression for the ve-
locity in our model and numerically compute its orientational
persistence timescale. We find that the equivalent ABP over-
estimates the enhanced diffusion of the model self-avoidant
droplets, which we attribute to an unexpected side-effect of
self-avoidant memory: transient self-caging. In Sec. IV we
further investigate the parameter space of the model, finding
that with fixed noise strength, there is a limited regime of self-
avoidant-memory strength within which enhanced diffusion is
observable; the zero-memory limit of our model is not ABP.
We conclude the paper in Sec. V.

II. AMODEL FOR SELF-AVOIDANT MEMORY

Motivated by the experimental system described previ-
ously, we propose a coupled model of a diffusion partial
differential equation (PDE) for the surfactant concentration
c(x,t) and a stochastic differential equation (SDE) for the
particle’s location X(¢). These equations are

dc(x,1) = DAc(x, 1) + aDR*8z[x — X(1)], (1a)

forx e Q CR?,t >0, and
dX(1) = —ﬂR{ / S[x — X(D)]Vye(x, 1)dx Vi
Q

+ o dW(t), (1b)

with prescribed initial conditions (c(x,0) = 0 and X(¢) =0
unless otherwise noted) and boundary conditions (reflecting
boundary conditions on 92 unless otherwise noted).

Equation (1a) is a diffusion equation with diffusivity D and
a source term at the particle’s current location. The time evo-
lution of the concentration field holds the temporally decaying
memory of the particle’s spatial history. We note that the
inclusion of diffusion on the source term differs from similar
models for chemoatractive forces [32—34]. Motivation for this
decision and the resulting effects are discussed later in this
section.

In the source term with rate oD, we introduce a “size” R

to the particle using the radially symmetric mollified delta
x—X(1)|?
function, Sg[x — X(¢)] = ﬁf‘ i . (For the treatment of

the particle as a point source with the Dirac delta function,
see Appendix B; interestingly the particle does not swim.) As
the droplet releases oily solute from its membrane located at
|x — X(#)] = R, this Gaussian emission pattern with standard
deviation R approximates the physical boundary of the par-
ticle while being more numerically and analytically tractable
and does not require imposing a moving boundary condition
on the concentration field to exclude the particle’s interior.
Since the particle’s boundary does not physically exist in this
model, Eq. (1a) also ignores the subtle effects the induced
advection along the particle’s surface has on the concentration
gradient, as detailed in Ref. [10]. We also keep R fixed in time,
thus we ignore depletion effects.

Equation (1b) is a modified Langevin equation for a Brow-
nian particle in a force field in the strong friction limit. We
again mimic the size of the particle by convolving the gradient
of the concentration field with the mollified § function. We
define the particle’s response strength to the concentration
gradient to be SR.

As is conventional for an overdamped Langevin equation,
W is a two-dimensional Weiner process scaled by the noise
strength /0. Recall, the experimental particles are athermal;
this noise is to reproduce the stochasticity introduced by local
fluctuations in the surfactant gradient that lead to reorienta-
tions of the experimental droplet’s swimming direction after
each switch from a quadrupolar to bipolar mode. As the
frequency of these reorientation events depends on Péclet
number, droplet size, and the viscosity of the surrounding
suspension [13], the parameter o would likely be linked to
other model parameters like diffusion D, droplet “size” R, and
response to the concentration gradient 8. As we wish to keep
noise effects constant to isolate the effects of self-avoidant
memory in the present study, we ignore these possible depen-
dencies in this study.

The stated model in Eq. (1) articulates the explicit re-
lationship between the evolving concentration field and the
particle trajectories. As the particle moves, its emissions in-
duce changes in the local concentration field and it leaves
behind diffusing physical evidence of its trajectory. Thus,
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the historical information or memory of the particle’s past
locations is contained within the current state of the evolving
concentration field. The memory encoded in the concentra-
tion field allows each particle to “remember” where it has
been (hotspots in the concentration field) and avoid its past
trajectory with response strength decreasing as the time lag
increases. Via integration of the whole gradient field at each
time point, the particle becomes spatially omniscient as it
moves with dependence on the affecting forces from every
spatial point on the domain. In time, the particles are pseudo-
omniscient as their ability to “see” into the past through
interaction with the concentration gradient diminishes expo-
nentially in time. This unique behavior abolishes time-reversal
symmetry although the coupled configuration in Eq. (1) is
Markovian since there is no explicit dependence on the tra-
jectory’s past steps.

To limit the number of parameters under investigation, we
nondimensionalize Eq. (1). We choose R as a natural length
scale and nondimensionalize ¢ without any scaling for sim-
plicity. Temporarily, we leave timescale T arbitrary. Under the

scalings y = %, Y = %, T = %, and B = %, we arrive at
—Y(®))?
0rc(y, 1) = nAc(y, t) + pug exp [ - W] (2a)
forye Q, t>0,and
—Y®)]?
dY (@) = —v{ fﬂexp [ — W}Vyc(y,t)dy]dt
+ /€dB(1), (2b)

where ¢, t, and Q2 are reused for their nondimensional versions
for convenience. We have mapped the dimensional parameters
as follows: D — u =21 o — ¢ = 012_’:”3—> v:%,and
o —> €= %.

We note that a typical timescale for the diffusion equa-
tion is T = %2. Although traditional, this choice would
prevent us from seeing directly the effects of changing D,
which encodes the memory timescale. Increasing diffusivity
would contract time such that the past-history wake of the par-
ticle would adjust to decay at the same rate. Thus, to observe
the effects of this memory-encoding diffusivity, we choose
to fix the stochastic diffusivity e = 0.752, thereby choosing
T =0.75° %2. Keeping the value of /e fixed at % was a conve-
nient choice made to maintain balance between the stochastic
effects, controlled by /€, and the deterministic effects of
swimming as well as self-avoidant memory, controlled by v
and u.

We can simplify the system by taking the Fourier transform
and solving the PDE (2a) on an infinite domain, Q = R2?,
explicitly. Incorporating this solution into the SDE (2b) we
arrive at the mathematically equivalent system for the particle

in an infinite domain
I ’ Y () — Y(5)]2
= 5“”% exp{ T A+ —s)]}
x [14 pu(t — )12 [Y(®) — Y(s)ldsdt + /€dB; (3)

see Appendix A for details. This non-Markovian SDE ex-
plicitly reveals the dependence on all the particle’s previous

locations via integration in time; the exponential kernel decays
in both time and space, revealing 1~ to be the self-avoidant
memory timescale. In this way the model contains a self-
avoidant memory, one of the key features of the experimental
droplets, with controllable timescale 1 ~'. In addition to pro-
ducing a self-sustained swimming state, the form of this force
also allows the droplets to hover above a bottom plate with the
addition of gravity to the model (see Appendix C for details)
in much the same way that the experimental droplets do [10].

The formulation of the model in Eq. (3) is convenient for
simulation since it does not require solving the PDE on a
large domain to capture long-time dynamics. It additionally
removes the integral in the SDE over R? and replaced it with
an integral over . We integrate Eq. (3) in time with the Euler-
Maruyama method while using Simpson’s rule to integrate the
memory kernel at each step. This algorithm is a first-order
method.

The limiting behavior of these two equivalent systems,
Egs. (2) and (3), foreshadows their distinction from the active
Brownian model since it reveals that removing the distin-
guishing feature of memory by taking D — oo will not reduce
our model to ABP. The parameter D was added to the source
term in Eq. (1a) to achieve balance between the rate at which
the oil diffuses and the rate at which the oil is expelled in this
limit. (If instead the source term remained constant relative to
D, then it would effectively vanish in the limit of D — 00.)
The nondimensional parameter p therefore appears on the
source term in Eq. (2a), and 9,c(y,t) — oo as u — oo. To
leading order, the concentration field satisfies the Poisson
equation

Iy = YO)P

Ac(y) = —¢exp [ - >

] L —> 0. 4)

The concentration field is now memory-less since it instan-
taneously equilibrates as the particle moves. On an infinite
domain, the solution to Eq. (4) will be radially symmetric
around the particle’s location, and therefore the integral in
Eq. (2b) will always be zero. As a result, particles experi-
ence motility solely from thermal fluctuations, namely, simple
Brownian motion.

Also noteworthy is the “full memory” limit of Eq. (2a)
which is d,c — 0 as u — 0. The concentration field remains
fixed at its initial conditions as the source term and the diffu-
sion term vanish in this limit. The particle experiences thermal
fluctuations while responding to the concentration gradient of
the fixed concentration landscape, thereby statistically prefer-
ring concentration minima. The steady state (if one exists)
would be almost solely determined by the initial topography
of c¢(y) and the relative size of €. In fact, the entire coupled
system in Eq. (2) reduces to simple memoryless Brownian
motion,

dY = /edB, u — 0, (5)

in this limit, as the source term which encodes the memory
vanishes. This is consistent with Eq. (3) which also reduces
to simple Brownian motion in the same limit & — O when
it is assumed that the initial concentration field is constant.
Therefore, we focus our study on intermediate range of u
where the effects of the noise, the swimming, and the memory
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are all observable. The limiting behaviors of our model as
described above can all be traced back to the addition of a sec-
ond p on the source term. As stated previously, inclusion of
a diffusive scaling on the source term was required to ensure
that the source term remained in the limit as D — o0, in the
hope that the model would revert to active Brownian motion
with no self-avoidant memory. In our results, we discuss the
role of this diffusive scaling in generating previously unseen
behaviors in this class of models.

III. COMPARATIVE ANALYSIS

Numerically simulated trajectories of the coupled model
given by Eq. (2) are shown in Fig. 1. These trajectories illus-
trate the main features of active matter: a swimming velocity
with a slowly diffusing direction. Increasing v, and therefore
the response to the concentration gradient causes the particle
to swim faster, shown in Fig. 1(a), while increasing u, and
therefore shortening the timescale of the diffusion (decreasing
the memory), has a secondary effect on the velocity, but also
causes the particles to turn faster, shown in Fig. 1(b). An
increase in turning frequency was also observed experimen-
tally in Ref. [12] as surfactant concentration was increased,
prompting a transition from ballistic motion to diffusion. (See
Fig. 2 in Ref. [12]. Recall the Marangoni effect which causes
the droplets to “search” for areas of higher surfactant concen-
trations, while the droplets simultaneously modify the local
concentration.)

We seek to look beyond the combined effects of swimming
and random directional changes in producing enhanced dif-
fusion and understand the additional effects of self-avoidant
memory. Specifically, we compare our model to ABP given
by the equations

dX =V cos[0(t)]dt + /edW,, (6a)

dY = V sin[0(1)]d1 + JedW,, (6b)
1

a0 = —dW. (6¢)

where /€ is the strength of the additive noise in each spatial
component (consistent with the model in Eq. (3)), V is the
swimming velocity, and 7 is the persistence timescale of the
rotational diffusion [12,27,35]. These latter two parameters do
not explicitly appear in our model; we will compute them and
compare the MSD of the two models to understand the effects
of self-avoidant memory on enhanced diffusion.

In Sec. I A we present an analytic equation that is nu-
merically solved for the velocity of the swimming solution
to Eq. (3). This velocity is consistent with the intermediate
ballistic regime of the MSD, computed numerically for Eq. (3)
and given by

E[X(t)’] = 4v2r2[2(e—z’r —1)+ ﬂ +2 (D)

for Eq. (6). In Sec. IIIB we determine 7 by numerically
computing the orientation correlation function but find that the
memory induced from modifying the environment causes a
reduced effective diffusion as compared to ABP with identical
angular persistence.

(a) v=0.01 (b) p = 0.01

01 5’ 0 ‘X‘é
2 -2
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1 2 0 3 4 i -2 0 2 1
v= 10 =10
4 44
2 24
0 04
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4 14
M 2 0 2 1 AV 0 2 1
v= 20 =20

FIG. 1. Numerical simulations of Eq. (2) were carried out using
a forward-time centered-space finite difference scheme for the PDE
and the Euler-Maruyama method for integrating the SDE where
the trapezoid rule was used to compute the integral therein. We
confine X(#) toabox B = {x € (-5,5),y € (-5, 5)} with insulating
boundary conditions such that % =0 Vx e {0B}. This has the
effect of reflecting the particle back into the domain when it reaches
the boundary. The initial condition is c¢(x, 0) = 0. Note that each
of these four independent trajectories are visually indistinguishable
from active Brownian motion. (a) For ¢ =1, 4 =5 and a noise
level of /e = 0.75, we see the dominant effect of v which is to
increase the velocity. (b) For ¢ =1, v =7, and a noise level of
€ = 0.75, we see the effects of w which primarily increases the
turning frequency and has a secondary effect on velocity.

024609-4



SELF-AVOIDANT MEMORY EFFECTS ON ENHANCED ...

PHYSICAL REVIEW E 105, 024609 (2022)

(a)
104 4
102 4
’L 10° 4
J
Y- V=3
10721 T e v=6
/, —— V=6,v=6.20,u=3
—— V=6,1v=998.5, u=0.011
107417 —— V=3,v=241,u=3
V=3,v=287.33, u=0.01
102 101 100 10!
© At
o}
1.0 T
—— model: 18.612 ABP: 3.09
—— model: 4.29 ABP: 2.1
0.81 Iy model: 2.336 ABP: 1.404
—— model: 1.99 ABP: 1.328
\ N ad \‘_M",_/-\
0.6 g
I !
Q J
O 0.4]
02 AN \/I,\\/‘
0.0
0 2 4 6 8 10
©) At
e
14000
—— V=6,u=3 !
120004 — V=6,u=0.011 ,"
— V=3,u=3 /
10000 V=3,u=0.01 /
8000
o~
~
< 60001
4000
2000 1
0,

100
At

(b)
40
351
30
251
§-20—
151
101
5,
—— model theory
ol ---- fitted MSD
0 100 200 300 400 500
v/u
(d)
v=3
v=6
L 1014
0 1 2 3 4 5
u
(3]
4000{ — V=6,u=3
=) — V=3, u=3
n — V=6,u4=0.011
= V=3, u=0.01
— 30001
()
3
]
=
| 2000
a
n
= 1000
[a W}
m
<
0,
100 10!
At

FIG. 2. (a) Empirically computed MSDs of the model in comparison to benchmark pure ballistic motion. Three distinct regions of the
MSD are visible: classical diffusion, directed motion in alignment with the benchmark ballistic lines, and enhanced diffusion where the MSD
pulls away from the ballistic motion. (b) Collapsed model velocity theory from solving Eq. (9) in comparison to fitted values extracted from the
ballistic regime of the MSD of the form V2¢2. (c) Model OCFs (noisy solid lines) with fitted 7 (solid smooth curves) with comparison to t fitted
from the enhanced diffusion regime of the MSD consistent with ABP Eq. (11) (dashed smooth curves). Values of 7 for each corresponding
color are given in the legend. (d) Both fitted 7 values from the full ABP MSD (dashed) and OCF of our model (solid) as they vary over u. (e)
Model MSD (solid) and ABP MSD Eq. (7) (dashed) under the same T fitted to the model OCF and theoretical V. (f) Signed difference between
model and ABP MSDs in panel (e). In each panel, legend order corresponds to the order of the lines at the far right.

A. Intermediate timescales: Ballistic motion

Unlike active Brownian models, the proposed model has

a nonexplicit intrinsic velocity; directed motion at this veloc-
ity may become observable at intermediate timescales under
appropriate conditions for v and w. To find an analytic form
for the velocity, we seek a deterministic constant-velocity

(“steady-state”) solution to the combined model Eq. (3). With-
out loss of generality, suppose Y(¢) = (V¢, 0); thus, V must

T t
=V= 5“”¢/weXp{ TSy

x [14 p(t — )72Vt — Vs)ds.

solve
dyY

dt

IVt — Vs|? }

®)
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FIG. 3. Visualizations of the four dimensional parameter space of V from solving Eq. (9), t from fitting the model OCF, along with model
parameters v and p. Panels (a) and (b) depict constant velocity V contours, while in panels (c) and (d) constant v contours are shown. Panels
(b) and (d) show sub-regions of panels (a) and (c), respectively, with added individual points depicting values of t given by the color bar. Note

that large 7 values (greater than 15) are colored black.

Under the transformation z = u(t — s), the constant velocity
V therefore satisfies

=TV [T 2 Y2 a
=2 M¢/o (1+27 exp[ <u> 41 +z>] w0

For each value of ﬁ, we solve for the value of ¥ that
makes the above integral equal to 1 numerically in Python
with scipy. Under the change of variables x = % arctan(z),
we map the domain (0, 0o) to (0,1) for ease of numerical inte-
gration. The resulting monotonically increasing dependence
of % on ﬁ is plotted as the solid black line in Fig. 2(b).
Alternately, we can select u and V and compute v to satisfy
Eq. (9).

We can directly compare this theory to ABP on the
timescale at which ballistic motion is dominant. It is evident
from Fig. 2(a) that the ballistic portion of the simulated MSD

aligns with the computed velocity from Eq. (9). At such small
times, the MSD of ABP asymptotically reduces to

E[X(#)*] ~ V212 + 2et, (10)

as t — 0 (see Appendix D for details.) Fitting V from the
ballistic portion of the MSD of our particles is also in good
agreement with the theory, as shown in Fig. 2(b).

We point out that the existence of an observable ballistic
regime in the MSDs from our model requires a sufficient
swimming velocity V to dominate the additive noise. In the
ABP model, this can be guaranteed by changing the stated pa-
rameter V, whereas in our model, there must be consideration
for the parameters u and v due to the explicit functional rela-
tionship V = f(u, v) given by Eq. (9). To see this functional
relationship more clearly, the contours of constant velocity are
plotted in Fig. 3(a) and the contours of constant v are plotted
in Fig. 3(c). These figures agree with the limits from Sec. II in
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that V. = f(u, v) — 0 when taking either © — 0 or © — 00
with fixed v, and the model system Eq. (2) or Eq. (3) reduces
the particle motion to simple Brownian motion. Furthermore,
taking V — 0 in Eq. (8) results in a divergent integral; for
the integral to converge, either i or v in the prefactor must
also go to zero. The result is no transition to swimming at a
small finite value of these parameters. Similarly, the integral
also diverges as pu — oo. Figure 3(c) most clearly shows
the relevant intermediate values of p for which a significant
velocity exists and ABP-like motion with a ballistic regime is
expected for the model system.

Figure 3(a) most clearly shows that for any given velocity,
there exists a minimal (u, v) pair. If we interpret this in the
context of the coupled model given by Eq. (2), it suggests
the existence of an optimal response strength and diffusivity
pairing which act on the particle to produce directed motion
at a specific speed. Moving off of this minimum illustrates the
parameter couplings which must balance to keep the particle
moving at a given speed. For example, decreasing memory
(increasing ) allows the particle’s trail to diffuse faster which
weakens local gradients, and thus requires that the response
strength to the weakened gradient be increased (increasing v).

B. Long timescales: Enhanced diffusion

Figure 2(a) shows a departure of the MSD from ballistic
motion at longer timescales. For ABP, this departure happens
at timescales ¢ >> t for which the MSD Eq. (7) is asymptotic
to

E[X()*] ~ (4V>1 + 26)t, (11)

as t — oo. Particle reorientations that decorrelate with
timescale v enhance the diffusion term 2er with the term
4Vt

To estimate t from trajectories given by our model we first
numerically compute the normalized orientation correlation
function (OCF) which measures the relative angle between
consecutive movements. It is given by

v(t) - v(t + At) >

_— (12)
[V(OIIv(E + At)]

C(At) = <
where v(t) = Y(¢) — Y(t — At) is the directional displace-
ment between times ¢t and f — At (see Appendix E for
details). This function computed for the trajectories is shown
in Fig. 2(c) as the noisy solid lines. Note that C(At) — 0
as At — 0 because the motion at such small timescales is
dominated by the uncorrelated additive noise. As Af in-
creases ballistic motion starts to dominate which is reflected
in the OCF that approaches values near unity. The portion
of C(At) displaying exponential decay, due to the transition
to enhanced diffusion at even longer At, is fit by a single
exponential given by C(At) = e~ as is consistent with ABP
[12,35]. These fits are shown by the smooth solid lines in
Fig. 2(c) and the resulting values of t as a function of u in
Fig. 2(d).

While the model OCF is well fit by an exponential decay,
the long time asymptotics of the MSD given by Eq. (11) in
Fig. 2(e) (dashed lines) shows that ABP substantially over-
estimates the enhanced diffusion of our model (solid lines).

80

60 4

40 A

20

—920 4

—40

T T T T T T T
—100 —80 —60 —40 —20 0 20 40

FIG. 4. With u = 0.01 and V = 6, four sample paths are shown
which illustrate the caging of enhanced diffusion experienced due to
high memory.

This overestimation is larger for the two larger values of u
that correspond to weaker self-avoidant memory, as shown in
Fig. 2(f). Alternatively, using V from Eq. (9), t is determined
by fitting the long time MSD to Eq. (11). These values of t,
plotted as the dashed lines in Fig. 2(d), substantially underes-
timate the decorrelation timescale of our model, also shown
by the corresponding dashed lines of exponential decay in
Fig. 2(c). Although the form of exponential decay of the ori-
entational persistence is consistent with ABP and quantifiable
by 7, it alone is not enough to predict the enhanced diffusion
of our model. There are additional effects of self-avoidant
memory beyond the persistence memory, which is the only
memory present in ABP.

At constant velocity, the effect of increasing self-avoidant
memory (decreasing ) is seen in Fig. 2(a). The MSDs with
smaller p in both cases depart from the ballistic regime earlier,
and thus exhibit less enhanced diffusion. This corresponds to
Fig. 2(d) where for smaller . the OCF decays more rapidly
as measured by a smaller value of 7. This is further illustrated
in Fig. 3(b), showing a decrease of t with decreasing u along
contours of constant velocity. For fixed u, t increases with
decreasing v (although velocity decreases). Thus we see that
one effect of self-avoidant memory as it is present in our
model is to decrease orientational persistence: swimmers with
high memory experience weak orientational persistence and
vice versa.

A more exotic effect of self-avoidant memory is shown by
the trajectories in Fig. 4 and provides a plausible explanation
for the surprising fact that ABP overestimates the enhanced
diffusion of the model. To avoid crossing their own self
history, paths turn back on themselves and continue turning
inward, becoming caged for a while before enough diffusion
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has occurred for them to leave this self-created trap. This
transient self-trapping perhaps explains the reduced enhanced
diffusion as compared to ABP with equivalent orientation per-
sistence time. Self-trapping has been studied in autophoretic
systems like that which we model, although it has only been
found in chemoattractant systems [29-33]. It will be inter-
esting to find out whether self-avoidant experimental systems
like that in Ref. [10] show similar self-trapping.

IV. LIMITING BEHAVIOR

Since the relevant experimental systems are well described
by ABP and we can explicitly tune memory in our model,
we anticipated that we could find a parameter regime (low
memory, high 1) in which the enhanced diffusion produced by
our model was well described by ABP. However, as discussed
at the end of Sec. II, the limiting behavior of systems Egs. (2)
and (3) as u — oo is simple Brownian motion, indicating that
enhanced diffusion with low self-avoidant memory may not be
possible. We revisit this limit with further simulations in light
of the emergent parameters V and 7, considering both v — o
with V fixed as well as dynamic V with v fixed. Additionally,
we investigate the high memory limit (w — 0), and find it
consistent with Eq. (5) describing classical Brownian motion
with (unfortunately) no further memory effects to investigate.

From Figs. 3(a) and 3(b), we can consider the limit most
likely to produce enhanced diffusion consistent with ABP:
removing the memory via the limit 4 — oo while keeping the
particle at constant velocity by fixing V. Visually we observe
that as 4 — 00, the contours of V become flatter, reproducing
the behavior seen in Fig. 1 which shows that ballistic motion
is sensitive to changes in the gradient response v. Moreover,
remaining on one V contour requires v — oo much slower
than u — oo. To investigate the enhanced diffusion in this
limit, we look at 7 in Fig. 3(b). Following a V contour as
© — oo results in an increase in t corresponding to longer
orientational persistence (or less change in direction).

As a result of decreasing the self-avoidant memory
timescale (4 — oo while maintaining a constant velocity V),
we find that both the past history of the trajectory and the
Brownian noise become less important in influencing the fu-
ture location of the trajectory. Furthermore, with the addition
of an increased gradient response by taking v — oo (as re-
quired to keep the particle at constant V), the deterministic
gradient response force in Eq. (2) dominates the Brownian
noise, and consecutive steps become more correlated. This
increases the persistence time t, and the trajectories approach
purely ballistic motion with no enhanced diffusion at observ-
able finite times.

Figures 3(a) and 3(b) also allow for considering infinite
memory (1 — 0), again with constant velocity. In Fig. 3(a),
we see that the gradient response required (given by the size of
v) to keep the particle moving at constant velocity V rapidly
blows up to co. This is largely unsurprising as the prefactor
on the deterministic term in Eq. (3) contains the product
uv; taking u — 0 while keeping this integral response fac-
tor relatively constant would necessitate v — oo. Figure 3(b)
shows a corresponding decrease in t, limiting towards pure
diffusion. Returning to Eq. (2a), as u — 0 both the diffusion
and the source term go to zero, thus the concentration field

would remain fixed in time. If this initial concentration field
was constant, then the particle would have no gradient to
respond to and therefore only undergo pure Brownian motion
in this infinite memory regime, corresponding to T = 0. This
suggests that rather than trying to start at finite i and witness
the effects of self-avoidant memory fade as u — oo, as this
model was set up to do, future work should perhaps remove u
from the source term in Eq. (2a) and start at # = 0 to witness
the effects of self-avoidant memory fade as p increases away
from zero.

The limiting ballistic motion when taking both u and v
to infinity is in contrast to the limiting Brownian motion
behavior of Eq. (3) as u — oo while keeping v fixed. By
following contours of v in Fig. 3(c), we see that the veloc-
ity first increases with p and then decreases, approaching
zero velocity as u — oo, which is consistent with the trend
shown in Fig. 1(b). It is interesting to observe in Fig. 3(d)
that T appears to be relatively static along the contours of
v. Note that these values of T were mainly computed at
points to the left of the maximum velocity of the fixed v con-
tours. Figure 1(b) indicated that T decreases with increasing
u and fixed v. When we also consider a decrease veloc-
ity, the trajectories can be assumed to approach Brownian
motion.

In summary, increasing u to decrease the effects of mem-
ory either results in increasing t (by fixing V) and therefore
creating straighter trajectories that do not display enhanced
diffusion in the MSD over the timescale of the simulation,
or in decreasing V to zero (by fixing v) which results in a
purely diffusive MSD. The memory is responsible for both the
ballistic motion measured by velocity V and the effective ro-
tational diffusion measured by orientational persistence time
7, so naturally follows that these effects are both lost with
increasing w. If the concentration field diffuses infinitely fast
by taking u — oo with v fixed, we lose deterministic motion
since the gradient of the concentration field is always zero at
the particle’s center and radially isotropic around the particle,
thus the net force acting on the particle is always zero. The
effective angular diffusion is lost when taking © — oo with
V fixed because this requires large v such that the immediate
deterministic forces overwhelm the noise and any past history,
and so reduce the MSD to almost exclusively ballistic motion.
Thus, incorporation of self-avoidant memory is not simply an
addendum to the active Brownian model that can be removed
without consequence; by its complex interactions with the
enhanced diffusion we see that it makes for a categorically
unique model.

V. CONCLUSIONS

We have analyzed the self-avoidant memory effects of a
model coupling an active swimmer and an environmental
chemical field. Like the experimental system it was inspired
by, it can exhibit ABP-like behavior with the MSD having
both a ballistic and a long-time enhanced diffusion regime.
With an analytical formula for the velocity, V, we faithfully
reproduced the ballistic regime. The enhanced diffusion in
our model is a result of both angular persistence and the self-
avoidant memory, whereas ABP only includes orientational
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persistence. We found that numerically computing the orienta-
tion decorrelation (or persistence) time, t, enhanced diffusion
predicted by ABP overestimates the enhanced diffusion in our
model. Thus, our proposed model did not faithfully capture
the dynamics of the experimental system at long timescales
in the same way that ABP did. (Further investigation will
be needed to determine if this difference is due to param-
eter values, modeling choices like using thermal noise and
the diffusive scaling to the source term, or the absence of
hydrodynamic effects.) Instead, we discovered that the self-
avoidant memory in our model led to transient self-trapping
that suppressed the enhanced diffusion. This self-trapping has,
to date, been suggested to occur only in self-attracting systems
[29-33]. Further investigation will be needed to determine if
self-trapping is a unique feature of this model, or can occur in
other self-avoidant systems.

Through these investigations, we kept the noise parameter
€ fixed, while changing the gradient response parameter v and
the diffusion w to find that both latter parameters control the
implicit parameters V and 7. With only two control parame-
ters, we were unable to independently tune each timescale of
behavior: the velocity V, the memory timescale ', and the
angular persistence timescale 7. Taking u© — oo to remove
memory effects, we either arrived at simple Brownian motion
by fixing v or purely ballistic motion by fixing V and allowing
v — 00; the memory is responsible for both the ballistic mo-
tion and the effective rotational diffusion. Taking u — 0, we
again arrive at simple Brownian motion, having removed all
self-avoidant memory with our choice of scaling the source
term in the concentration field by u. We thereby identified
an intermediate regime of p for which enhanced diffusion is
present on a finite timescale, but at a lower magnitude than
expected for ABP with equivalent angular persistence. This
regime will be used in future work to study self-avoidant
memory effects in many-particle simulations, investigating
motility induced phase separation and associated dynamic
pattern formation, which is commonly observed in active sys-
tems with particles that are repulsive to one another.
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APPENDIX A: SOLVING THE DIFFUSION EQUATION
TO COMBINE AND NONDIMENSIONALIZE
THE COUPLED SYSTEM

Consider the dimensional, 2D system given in Eq. (1).
Taking the Fourier Transform of Eq. (1a) we arrive at the ODE

R? R .
exp{—7|k| +z[k-X(t)]}. (A1)

& + Dk|*e =

We compute the integrating factor of Eq. (A1) which is I =

e/ DIkI*di — oDiIKI*  From this Eq. (A1) can be rewritten as
2
4 ey = PR ik - wprikxon, (a2
dt 2

Integrating both sides of Eq. (A2) gives the solution to
Eq' (Al)’

2 t
»_ DR /e—D(r—s)\kFe{f%\k\2+i[k-x<s)]}ds_ (A3)

C
21 0

Taking the inverse Fourier Transform of Eq. (A3) yields the
solution, c(X, t), to Eq. (1a), which is

aDR2

_ x=X@?
/ [R® +2D(t — 5) e Trmiids.  (Ad)
We can incorporate the solution to Eq. (la), which is
Eq. (A4), into Eq. (1b) by taking the gradient, Ve,

which is

+2D(t — 5)] 72

x-X()2

x [x — X(s)]e” @209 ds. (AS)

The SDE path evolution Eq. (1b) then becomes

_aDBR( (', R / B
__(Zn)2(/0[R +2D(t — )] : Rz[x X(s)]

_ x=XmP?

%’ dx}ds)dt+de (A6)

__x-X?
X e 2ARZ+2D(—s)]

Evaluation of the spatial integral over R? reduces Eq. (A6) to

3 ; 912
ax = 2DPR ( f {[X(t)—X(s)]e ey

237

x [R? + D(t —s)]2}ds)dt+ﬁdw. (A7)

By nondimensionalizing under the scalings Y = %, T=%,
and B = yi, Eq. (A7) becomes
aD,3R3 T IRY(1)=RY(O)[2
RdY = / e “r+reo [RY(t) — RY(¢)]
237T 0
x [R* 4+ DT (v — {)]‘Z}ng)Tdr ++/oTdB.
(A8)

The SDE path evolution given by Eq. (A8) then simplifies to

aDBRT? K IRY(D)=RY(©)>
dyY = 23— e AR2+DT(r—0)] [Y()— Y({ )]
T 0

VJoT
% [R? 4+ DT (1 — g)]—Z]d;)dz + —; dB. (A9)
Incorporating the nondimensional parameters D — p = l,)e—zT,
a—>¢=% 27 :8_>v_2€TTR’ and 0%62% and  ex-

changing s for ¢ and ¢ for t for notational convenience we
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have the nondimensional SDE path evolution equation

dY = %/wqb( / {e SR Y () - Y(6)
0

X [1 4 pu(t — s)]_z}ds>dt + /edB (A10)
in agreement with Eq. (3).
APPENDIX B: COMPUTATION OF THE VELOCITY

INTEGRAL FORMULATION USING A DIRAC § FUNCTION

To assess the case in which the particle is considered a
point source, we substitute the mollified § function, Sg[x —

X()] = e 2"

3l . . .
o Rz e~ 2 in Eq. (2) for a Dirac § function,

d
%€ — DAc+aD8?[x — X(0)],

oy (Bla)

dX(t) = —,BR{ f 82[x — X(t)]Vcdx}dt + VodW.
Q

(B1b)

Here, 82[x — X(7)] is a two-dimensional Dirac § function
centered at X(¢). The R? in the source term of the original
PDE given by Eq. (1a) is no longer necessary. Accordingly,
the units of « are [«¢] = ¢ and the units of 8 remain [B] = LT
Nondimensionalizing Eq. (B1) with the scalingsy = %, Y =

%,‘C = f,and B = ﬁandwhereu— R2T,¢= =V = 1%
and € = % we arrive at the new system

ac )

- = nAc+2mpngdly — Y()], (B2a)

at
dY(t) = —Zm){ / 52[y—Y(z)]Vcdy}dt+¢EdB,
Q

(B2b)

where ¢, t, and Q2 are reused for their nondimensional versions
for convenience.

As in the case with the sized particle, we take the Fourier
Transform of the Eq. (B2a) to arrive at the ODE

& + nlk?é = pgpe™ YO, (B3)

We compute the integrating factor of Eq. (B3) which is I =
e/ nkl’di — outlk From this, Eq. (B3) can be rewritten as

d P 2
E(é . e,uz\k\z) _ M¢ezk»Y(z) T N (B4)
Integrating both sides of Eq. (B4) gives
e =ud /1 e M=K ) g o (BS)
0

We take the inverse Fourier Transform of Eq. (BS5) to find the
solution to Eq. (B2a), which is

! ly=Yi?
c= M¢/ 2u(t — )" e M- ds. (B6)
0

We incorporate the solution to Eq. (B2a) into Eq. (B2b) by
computing the gradient V¢ of Eq. (B6), which is

_ ¢/ Iy - Y)l exp{_
R2u( — )P

Equation (B2b) then becomes

Iy = Yo

ds. (B7
4[u(t—S)]} s (B7)

av@) = vug / [t — )17 / 52y — YOIy — ()]
0 Q

ly = Y@

X exp {—
Evaluation of the spatial integral over R? reduces Eq. (BS) to

dY(1) = v/MP%fO [t = )] [Y (@) = Y(s5)]

X exp{—

Now, suppose that Y(¢) = (V¢, 0). This simplifies Eq. (B9)
to

Y1) = Y(s)I?

TS }dsdt + ./€dB. (B9)

ay@) 7 ! 2w _v
o =V = e [M[M(f =) (Vi = Vs)
Vi — V)
X exp{—m}ds (BlO)

By making the change of variables given by z = u(t — s) and
ds = —Iltdz, we see that Eq. (B10) is considerably reduced to

ot [ ]2

After some further simplification we arrive at the following
expression:

0 2
1= £i¢ lexp|:— (K) Ei|ldz.
2uJo z w) 4ip
This integral on the right-hand side is not pointwise
convergent for finite V and thus indicates that when we
consider the particle to be a point source with the self-avoidant
memory that we have defined, the particle does not swim.

(B11)

(B12)

APPENDIX C: COMPUTATION OF THE HOVER HEIGHT
INTEGRAL FORMULATION

To show that the presented model also reproduces the
experimentally observed hovering of the droplets above the
bottom place, we set the second component of the position Y
in the direction perpendicular to the bottom plate and add a
constant nondimensional gravitational force f,. We then seek
a steady-state solution of the form Y = (0, &) for nondimen-
sional hover height & of the droplet’s center with reflecting
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FIG. 5. Solutions to Eq. (C3) for the hover-height & of the
droplet’s center above the bottom plate as a function of f,/mvé¢.
Beyond a critical value of f,/mv¢ (corresponding to h ~ 1) the
droplets no longer hover but sit on the bottom plate.

boundary condition for the concentration field at y = (x;, 0)
with x; € R. Using the model formulation in Eq. (3) we can
account for this boundary condition using the standard trick
of placing an image particle at Y* = (x;, —x;). The resulting
equation for the position Y including the image particle Y*
and the gravitational force is

= —/w¢/ eXp{

x [+ u( —s)]

IY(1) = Y(s)? }
A0+t — 9]

“21Y(t) — Y(5)|dsdt + %/Lvd)

! Y1) — Y*(s)I? s
X /0 exp{ - m}[l + u(t —s)]
x [Y(t) — Y*(s)ldsdt — (0, f,) + «/edB. (C1)

Isolating the second component, and looking for solutions
= (0, h) and Y* = (0, —h) for all time, with no noise (¢ =
0) we arrive at

}[1 + wu(t — s)] %hds.

(C2)
Under the change of variables z = u(f — s), the above is
equivalent to

h? h
fg_rrvq‘)f exp|: 1+Z:|(1+Z)2 (C3)

t 2
fo=mpve /_m *P {_ [I+p(r — )]

1 as one

which is independent of the memory timescale w™
might intuitively expect.

Numerically determined solutions to Eq. (C3) as a function
of f,/mv¢ are shown in Fig. 5. Beyond a critical value of
this parameter grouping, the droplets would no longer hover
and rather fall to the bottom. Note this occurs at about 7 = 1
which is the nondimensional radius R; the unstable solutions
are within the fictitious boundary of the droplets. A qualitative
comparison to the experimental results of Fig. 3 in Ref. [10]
reveals two similar trends. First, increased SDS concentration
yields a higher hover height. In our model, this roughly cor-
responds to a stronger response to the concentration gradient,
or the parameter v. Increasing v similarly increases the hover
height. Second, increased radius of the particles decreased
the hover height. In our model, this roughly corresponds to

increasing the nondimensional gravitational force f, which
too decreases the hover height.

APPENDIX D: COMPUTING THE SMALL TIME
ASYMPTOTICS OF THE ACTIVE BROWNIAN MSD

Recall the MSD given for the active Brownian particle
(ABP) model with translational noise and rotational diffusion
given in Eq. (6):

' t
E[X(t)*] = 4V212|:2(e2r —1)+ —} + 2et. (D1)
T
Starting from the MSD in Eq. (7) for the ABP model, we
rewrite the exponential as an infinite series to arrive at

o0 n
1 t t
E[X()*] = 4V?t%{2 —( == ) = 1|+ -} +2er.
[X()’] T Z&m o + o 2e
(D2)
This is asymptotic to

2
E[X(1)*] ~ 4V2r2{2[<1 _ Ly t—) - 1} + 5} + 2et,
2t 8712 T
(D3)

ast — 0 by just retaining a few leading order terms.

In the small timescale regime where " > "1 we see that

E[X(#)?*] ~ V22 4 2et (D4)

we obtain Eq. (10). This expression is dominated by the
diffusion-generated term 2et at the smallest timescales (where
t > t?) and dominated by the directed motion term V2¢> when
t? becomes sufficiently larger than ¢.

Returning to Eq. (7) in the large timescale regime where
t > 1, we see that

e x> 0,
and therefore
E[X()*] ~ (4V?t + 2¢)t,

as given by Eq. (11). This expression contains the amount of
enhanced diffusion, 4V272.

APPENDIX E: COMPUTING MSD AND OCF FROM
POSITION TIME SERIES GENERATED BY THE MODEL

Absent a closed form expression for the mean-square dis-
placement of our model, we compute the empirical MSD
from the position time series of length N + 1 given by X(¢):
{X(0), ..., X(N)}. To avoid introducing any correlations into
the increment averages, we use nonoverlapping increments.
To achieve statistical accuracy, we then average over many
simulated trajectories. We denote the integer lag time as AL,
indicating the displacement traveled by the particle between
observations j and j + AL and given by X(j + AL) — X(j).
The total number of nonoverlapping increments of length
AL in a time series of length N + 1 is k = L(N+1 )]. (In the
event that the index lag length AL does not evenly divide the
number of increments N + 1, we remove the extra data from
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FIG. 6. Position time series of a sample trajectory with coarse grained lag times of 10 increments. Panel (a) includes entire trajectory and

panel (b) is the inset identified with the dashed square.

the beginning of the time.) Thus, the empirical formula for the
mean-square displacement over the lag time AL of a single
particle is given by

k
AL? = lel Z{X[N —(@(—1)- ALl — XN —i- AL
= (E1)

As shown in Fig. 6, successive increases in AL result in a
sampling process which coarse grains the position time series.

Using the same partitioning process described above and
shown in Fig. 6 we can compute the nonoverlapping dis-
placements and find the cosine between consecutive pairs.
The resulting time average of these computed cosines gives
the orientation correlation function, for which the formula is
given in Eq. (12).
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