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Reentrant melting of lanes of rough circular disks
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We consider binary suspension of rough, circular particles in two dimensions under athermal conditions.
The suspension is subject to a time-independent external drive in response to which half of the particles are
pulled along the field direction, whereas the other half is pushed in the opposite direction. Simulating the
system with different magnitude of external drive in steady state, we obtain oppositely moving macroscopic
lanes only for a moderate range of external drive. Below as well as above the range we obtain states with no
lane. Hence we find that the no-lane state reenters along the axis of the external drive in the nonequilibrium
phase diagram corresponding to the laning transition, with varying roughness of individual particles and external
drive. Interparticle friction (contact dissipation) due to the roughness of the individual particle is the main player
behind the reentrance of the no-lane state at high external drives.
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I. INTRODUCTION

The relation between the microscopic processes and the
macroscopic behavior of a system is pertinent to many
scientific discourses. Lane formation is a nonequilibrium self-
organization process observed in various binary mixtures of
two oppositely moving species. Under certain conditions, the
microscopic elements of these two species segregate from
a homogeneously mixed state to form oppositely moving
macroscopic lanes composed of different species. This dy-
namical transition occurs at widely varying time and length
scales starting from pedestrian dynamics [1,2] and army ants
[3] all the way to collective cell dynamics [4–6], driven bi-
nary plasma [7,8], granular flows [9–11], and driven colloids
[12–14].

Colloids, when driven far from thermal equilibrium, ex-
hibit diverse spatiotemporal patterns and novel transport
properties due to intricate self-organization processes [15,16].
One such prototype of nonequilibrium phenomenon in driven
binary colloids is lane formation. It has been studied exten-
sively in theory [17–23] and in experiments [12–14]. In this
particular problem a homogeneously mixed binary colloid is
considered where the constituent colloidal particles of dif-
ferent species move in opposite directions in response to an
external drive. It has been shown that depending on various
parameters of the system (e.g., average density, the strength
of external drive, and temperature), oppositely moving lanes,
composed of the particles of different species present in the
suspension, can emerge from a homogeneously mixed state
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both by constant (i.e., time-independent) [12,13] as well as
time-periodic (e.g., ac drive) external drive [14]. The colloidal
lanes can appear perpendicular [14] as well as parallel [13] to
the external drive. In the case of the lane formation parallel
to the external drive, the transition occurs when the magni-
tude of the external driving force exceeds a finite threshold
value [17]. As the lane forms, it has been shown that the
correlation decays algebraically parallel to the drive and ex-
ponentially perpendicular to the drive [24]. The transition is
first order [17] and has considerable finite-size effects [25].
For example, in a finite system, the transition is quite sharp.
In the thermodynamic limit when the system size diverges,
the correlation along the external drive does not. It signifies
a smooth crossover in this limit [25]. Another major finding
is the reentrance of a no-lane state with increasing density
and keeping other parameters (e.g., external force) fixed. For
a fixed driving force (high enough to form lanes) with increas-
ing particle density, first there occurs a transition from the
no-lane state toward the laned state which is followed by a
second transition which brings the no-lane state back as the
particles get jammed at high densities [26].

Recently it has been realized that microscopic frictional
contacts among the colloidal particles induced by surface
roughness of the particles can produce novel macroscopic
effects (e.g., Ref. [27]). An important example of such tribo-
logical effect is discontinuous shear thickening (DST) [28–35]
where effective viscosity of the suspension increases abruptly
by several orders of magnitude (i.e., much stronger depen-
dence than Bagnold scaling [36]) with increasing shear rate
close to its critical value. DST is exhibited in a variety of
suspensions with Brownian [37–48] as well as non-Brownian
[33,44,49–57] characters suggesting DST as a universal be-
havior of dense suspensions where thermal motion of the
particles does not seem to contribute significantly (e.g.,
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Ref. [56]). Indeed, DST occurs in experiments with rigid
non-Brownian neutrally buoyant particles suspended in a
Newtonian fluid in the Stokes regime [33,53]. Here we also
note that depending on the density and surface roughness of
the particles, the interparticle friction can also be pivotal in
the collective dynamics of active granular systems [58,59].
Few examples of such systems are sedimenting starch-rich
grains—statoliths—in gravisenzing plant cells [58] or syn-
thetically prepared micromachined polar disks subjected to
vertical vibration [60], where thermal fluctuations are sub-
servient in comparison to the other forces including the active
force present in the system. The underlying physics of such
systems can also be applied to explore active systems in daily
life, such as pedestrian dynamics or the dynamics of army
ants.

Being motivated by above findings, we will explore here
how the lane formation appears in the presence of interparti-
cle friction under athermal conditions. In order to introduce
dissipative interparticle force we will adapt a simple route
introduced to model mechanics of foam [61]. Later it be-
came useful to explore other related problems: shear thinning
in adhesive dispersions [62]; dissipation and rheology of
soft-core disks under shear [63]; plasticity in sheared glass
[64]; avalanche-size distribution in a sheared amorphous solid
under athermal condition [56,65]; influence of attractive inter-
action in granular suspensions [66]; jamming in confined, soft
particles under gravity [67]; effective temperature in driven
systems [68], etc. Essentially it assumes that the interparticle
dissipative force that drags a particle is proportional to the
velocity of the particle relative to the velocities of its nearest
neighbors which are in contact to the particle. In the presence
of such interparticle friction, here we will show that for a
fixed density, in two dimensions, under athermal conditions,
the lanes, which are formed as the external drive exceeds
a threshold value (as also shown by the earlier studies on
colloidal lane formation [17]), will become unstable if the
external drive is increased further. In other words, with fi-
nite interparticle friction, at fixed average density but with
increasing strength of external drive, there will be a reentrance
of a no-lane state. Here we emphasize that the reentrance of
the no-lane state obtained here differs fundamentally from
the colloidal reentrance obtained earlier in Ref. [26] as it
was obtained at fixed external drive and with increasing av-
erage density of the system where jamming played a crucial
role.

We find that density plays an important role in laning of the
particles with frictional contacts. Frictional contact between
the particles increases with increasing density. Therefore, the
interparticle friction induced by the contacts will be effective
at higher densities. The average interparticle frictional force
indeed decreases as the density of the system is reduced
(see later). Hence it is enticing to conclude that lowering the
density from a state with high external drive and high-enough
density (at which the laned state is unstable due to the particle-
scale roughness) may help to stabilize the laned state. Though
it is important to note that for a laned state with fixed external
drive, irrespective of the particle-scale roughness, lowering
the density of the system causes the drop of the quality of the
lanes and below a threshold value of the density, lanes disap-
pear [26]. Therefore, if density is reduced, then interparticle

friction decreases but the quality of lanes also drops. Later in
this paper we will discuss this in greater detail.

Next we will systematically detail our findings, starting
from model description and then by describing and analyzing
the results obtained by simulating the model. We investigate
the laning transition by varying the external drive and interpar-
ticle friction keeping the average density of the system fixed
(at a value suitable for laning) as well as by varying the density
keeping the interparticle friction fixed. We also present an
intuitive phenomenological toy model which produces results
qualitatively similar to the simulation results.

II. MODEL

We consider a binary suspension of “a”- and “b”-type
particles in two dimensions where each of the components has
Na and Nb particles within area A. The average density of the
system ρ = (Na + Nb)/A. The average densities of each of the
components are ρa = Na/A and ρb = Nb/A. Here we consider
the 1:1 mixture where Na = Nb = N .

The particles are interacting with each other via a conser-
vative force derived from an effective pair potential U that
depends on the distance between the particles of the concerned
pair. For simplicity we consider the symmetric case where
Uaa = Ubb = Uab = U . The interparticle interaction that we
consider here is screened Coulomb interaction [17],

U (ri j ) = V0
exp[−κ (ri j − σ )]

(ri j/σ )
. (1)

Here ri j is the distance between a pair of the particles denoted
by the indices i and j, V0 is the energy scale, and σ is the
particle diameter that sets a length scale. The inverse screen-
ing length κ = 4σ governs the range of the interaction. This
interaction is used to model charge-stabilized suspensions
where κ is the range of the interaction which can be tuned,
for example, chemically [69].

Apart from the conservative interparticle forces, the parti-
cles are also going through dissipative forces. One of them
is originated from the frictional drag force Fp

i due to the
surrounding fluid. It is proportional to velocity vi of the ith
particle, i.e., Fp

i = −γ vi where γ is the friction coefficient
between the particle and the fluid that depends on the viscosity
η of the surrounding fluid [70]. Here we assume that the effect
of hydrodynamic interaction among the suspended particles
are negligibly small which can be due to screening [71].

Another source of dissipative force that an individual parti-
cle can face, is from interparticle friction. It is a short-ranged
dissipative force that depends on the average relative velocity
between a particle and its nearest neighbors which are in con-
tact [56,63,65,68], i.e., Fq

i = − μ

Ni

∑
j H (ui j )(vi − v j ) where

H (ui j ) = 1 if ui j = σ − ri j � 0 and H (ui j ) = 0 otherwise.
Here Ni is the number of nearest neighbors of ith particle for
which H = 1. If Ni = 0, as there is no neighboring particle,
Fq

i = 0.
Finally, the particles are also experiencing constant exter-

nal field along a particular direction (here without loosing any
generality we choose the direction to be x̂). Type “a” parti-
cles are driven along +x̂ and “b”-type particles are driven in
the opposite direction due to the external force Fext = Fextx̂i.
Clearly, the two types of particles (“a” and “b”) are solely
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distinguished by their response to the external field. Therefore
the equation of motion of the particles with unit mass is given
by d2ri

dt2 = Fp
i + Fq

i − ∑
j ∇iU ± Fext where the positive sign

is used for “a”-type particles and negative sign is used for
“b”-type particles. We consider that the thermal fluctuations
are negligibly small in comparison to the other forces present
in the system.

We consider σ to be the unit for length and 1/γ to be
the unit for time. With these units the left-hand side of the
equation of motion mentioned before becomes γ 2σ d2 r̃i

dt̃2 where
r̃i is dimensionless position vector of the particle at dimen-
sionless time t̃ . With these units the frictional drag from
fluid becomes γ 2σ F̃p

i where F̃p
i is the dimensionless velocity

of the ith particle. Similarly, interparticle friction becomes
μγσ F̃q

i = αγ 2σ F̃q
i where μ/γ = α and F̃q

i is the dimen-
sionless relative velocity between a particle and its nearest
neighbors which are in contact. By dividing the both sides
of the equation of motion (mentioned earlier) with γ 2σ and
introducing dimensionless gradient operator as 1

σ
∇̃i we obtain

a dimensionless interparticle energy scale as U0 = V0/γ
2σ 2.

Similarly, we obtain a nondimensionalized magnitude of the
externally applied driving force as F̃ext = Fext/γ

2σ . Therefore
the equation of motion with dimensionless quantities reads

d2r̃i

dt̃2
= F̃p

i + αF̃q
i −

∑

j

∇̃iŨ ± F̃ext, (2)

where Ũ = U0
exp(−κσ (r̃i j−1))

r̃i j
, r̃i j = ri j/σ . The average dimen-

sionless density is given by ρ̃ = ρσ 2. For brevity of notation,
from now on we will omit tilde from the dimensionless
variables.

III. SIMULATION METHOD

We have carried out simulation by numerically integrating
the equation of motion given in Eq. (2). For the simulations,
unless stated otherwise, the initial state is a homogeneously
mixed, nonlaned state on which ±Fext is applied. After driving
the system with the external drive for long, the system reaches
at a nonequilibrium steady state where we collect the data
(position and velocities of the particles) to analyze. Depending
on the values of the relevant parameters (e.g., ρ, Fext, and α),
lanes may or may not emerge in the steady state.

Initially, the positions and velocities of the particles are
distributed randomly. Once Fext is switched on, the initial
positions of Na and Nb particles are chosen randomly from
2N particles such that the initial configurations represent a
well-mixed binary mixture of “a”- and “b”-type particles. To
update the positions and velocities of the particles we use
the velocity verlet algorithm [72] with time discretization
δt = 0.0001 for a total simulation run of 6 × 107 time steps.
Positions and velocities of the particles are recorded when the
system reaches a nonequilibrium steady state after 50 × 104

steps, when the average lane order parameter of the system
does not alter significantly over time. The results presented
here are averaged over time in nonequilibrium steady states
and also over five different realizations. For all our simulations
we have kept the values of N , γ , V0, and σ constant. We vary

Fext, ρ, and α to explore their effect on laning. We keep ρ fixed
while varying (Fext, α) and α fixed while varying (Fext, ρ).

The data presented here are obtained by simulating 2000
particles confined within a square box with periodic boundary
condition in both the x and y directions. When we explore
the effect of varying Fext and α, the area is fixed at A =
44σ × 44σ to keep the average density fixed around 1 which
is suitable for the lane formation provided the external driv-
ing force exceeds a threshold value [17,26]. While exploring
the effect of average density on laning, we vary the average
density by varying the area of the simulation box, keeping the
number of the particles fixed.

IV. RESULTS

A. Lane order parameter and nonuniformity
of the density profile

We begin by analyzing the nonequilibrium steady states of
the system obtained by varying Fext and α at fixed ρ. Later,
under Discussion, we will detail the effect of varying average
density on laning. The states are characterized by the spatial
organization as well as the dynamical properties of the system.
Below we will develop the tools to characterize the steady
states.

In a similar setup with colloidal binary suspensions, it is
known that the system phase separates at finite temperature
and the components move in opposite directions, forming
oppositely moving parallel lanes [17]. The transition from
no-lane state to laned state in colloidal binary suspension
starts to occur after a finite threshold of external driving force.
The transition is reversible and exhibits significant hysteresis.
It is classified as a first-order nonequilibrium phase transition
[17]. Note that there are fundamental differences between the
system that we are concerned here and the system discussed
in Ref. [17]: the present model includes interparticle contact
dissipation and it does not involve thermal fluctuations which
are relevant for non-Brownian suspensions (e.g., Ref. [68]).
Our aim here is to explore the consequence of interparticle
friction on lane formation in two dimensions when the ther-
mal fluctuation is negligibly small. To characterize the spatial
organization of the particle in the context of lane formation,
we borrow the lane order parameter from Ref. [17]. We define
the lane order parameter by assigning every particle a quantity
φi as

φi = 1 when |y j − yi| > ρ−1/2/2

= 0 elsewhere, (3)

where i and j indicate “a”-type and “b”-type particles, respec-
tively. This can be termed as local (i.e., defined for individual
particle at time t) lane order parameter. We define the global
(i.e., defined for the whole system at a given configuration at
time t) lane order parameter as

φ = 1

N

∑

i

φi, (4)

which can then be averaged over time and realizations in
steady states. Note that for a perfectly mixed, nonlaned state
φ is zero. It increases from zero when the lanes start to appear.
For a perfectly laned state φ is unity.
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We will see later that with increasing Fext, after a certain
threshold value (say, Fc), particles phase separate forming
oppositely moving lanes. This phenomena is similar to the
binary colloidal suspension as in Ref. [17]. If Fext is increased
further, then the laned state continues up to a second threshold
value of Fext (say, F ′

c ). When Fext is increased beyond F ′
c , irre-

spective of their type, particles tend to accumulate randomly
creating high- as well as low-density regions. Hence the den-
sity profile of the system tends to be increasingly nonuniform
with increasing Fext. Eventually the lane structure is broken
at high-enough Fext > F ′

c and we obtain the reentrance of
nonlaned state, which is the central theme of the present work.
Therefore it is important to quantify the nonuniformity of
the density distribution of the system. We will quantify the
nonuniformity by calculating the standard deviation of the
local density profile g(x, y) of the system. Here g(x, y) is
the local probability density of finding a particle (irrespective
of its type) between x to x + dx and y to y + dy. Clearly∫

g(x, y)dxdy = 2N . Computationally g is obtained by divid-
ing the system into a grid of cells and then by counting the
number of particles in each cell. For a given configuration
the standard deviation is given in Eq. (5) where the angular
bracket represents averaging over all the cells. It is noteworthy
that the cell should not be very large as it becomes incapable
to capture the nonuniformity of the density profile (extreme
case: For the cell which is of the same size as the system, 


vanishes). It should not be very small as well, i.e., it should be
larger than the size of a single particle. The cell size we choose
here is 4σ 2. The results obtained by choosing different cell
sizes (considerably far from extreme cases) are qualitatively
the same. We report 
 after taking the averages over time and
realizations in steady states,


 =
√

〈(g(x, y) − ρ)2〉
ρ

. (5)

We emphasize that the types of the particles are not con-
sidered while calculating g(x, y). Hence, for the states with
uniform distribution of particles, irrespective of whether they
contain lanes or not, 
 is very low. In other words, for states
with uniform particle distribution, by measuring 
 one cannot
distinguish between laned and nonlaned states. 
 increases
when particles, disregarding their types, get accumulated in
random places of the system, making the density profile
nonuniform. Thus 
 is a measure of the nonuniformity in the
position distribution of the particles.

The variation of φ and 
 with external force for different α

is plotted in Fig. 1. From the plots it is evident that with α >

0, φ has nonmonotonic dependence on Fext. Initially, when
Fext = 0, the “a”- and “b”-type particles are homogeneously
mixed with each other and therefore it is a no-laned state
with φ = 0. It increases with increasing Fext and reaches at a
plateau when Fext goes beyond the threshold Fc. In this plateau
region, even if Fext increases, φ does not change considerably.
This plateau continues until Fext reaches at a second threshold
value F ′

c . When Fext > F ′
c , φ starts to decrease considerably

with increasing Fext. Hence the nonlaned state reenters. To
distinguish between laned and no-lane state we consider a
threshold φc = 0.75 such that for laned states φ > φc and for
no-lane states φ < φc. We note from the figure that for α = 0,

FIG. 1. Lane order parameter φ and standard deviation 
 of
the density profile are plotted with external drive Fext for α =
0, 0.25, 0.5, 0.75 in (a), (b), (c), and (d), respectively. φ is in red
and 
 is in black. The threshold of the lane order φc is shown by
the horizontal straight line φ = φc = 0.75. The width of the blue
region depicts the window �F = F ′

c − Fc within which φ > φc, i.e.,
quality lanes occur in the system. The yellow region is where φ < φc.
Fext = Fc is the left boundary of the blue region, which is the first
threshold value of Fext beyond which quality lanes form in steady
states and therefore φ becomes larger than φc. With finite interparti-
cle friction (i.e., α > 0), Fext = F ′

c is the right boundary of the blue
region, which is the second threshold value of Fext beyond which,
lane quality drops and φ becomes smaller than φc. Clearly, without
interparticle friction (i.e., for α = 0), once the lanes are formed their
quality does not drop considerably with increasing Fext and therefore
φ is larger than φc for all values of Fext considered here. It is apparent
from panels (b)–(d) that for α > 0, 
 increases with Fext, affecting
the lane-quality. Hence φ drops below φc when Fext > F ′

c . Hence the
no-lane state, which was there for Fext < Fc, reenters when Fext > F ′

c .

φ > φc∀Fext > Fc which is the reminiscent of lane formation
in binary colloidal suspensions as explored in Ref. [17]. For
α > 0, due to the reentrance of the no-lane state, φ > φc

for Fc < Fext < F ′
c . Beyond this window of external drives

�F = F ′
c − Fc, φ < φc. It is evident from the figure that

�F decreases as α increases. Later we will be back to this
point while estimating the threshold forces theoretically. In
contrast to φ, when α = 0, 
 does not change considerably
with Fext. This implies that though the particles of different
species segregate to form lanes, irrespective of their species,
they are uniformly distributed through out the system. On
the other hand, when α > 0, in contrast to φ, 
 increases
monotonically with Fext. This signifies that in presence of
interparticle friction, with increasing Fext, the density profile
becomes increasingly nonuniform. Though for lower external
drives (Fc < Fext < F ′

c ) this nonuniformity is not so detrimen-
tal to the lane structure of the system such that it falls apart but
at higher external forces (Fext > F ′

c ) it is. Hence, with α > 0,
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FIG. 2. Here Fc, i.e., the threshold values of Fext required to form
lanes are plotted for different values of the roughness parameter α. It
shows that as the individual particles become more rough, larger ex-
ternal forces are required for lanes to emerge from a homogeneously
mixed binary suspension.

at high external drives, φ drops below φc and one gets the
no-lane state back.

It should be mentioned here that the no-lane states obtained
for low external drive (i.e., Fext < Fc) are more uniform than
the no-lane states obtained at large external drives (i.e., Fext >

F ′
c ), which is the fundamental difference between them. It is

reflected in the configurations given in Fig. 3 as well as from
the plot of 
 with increasing Fext in Fig. 1. Another important
observation is that Fc increases as α increases. It is apparent
from Fig. 2 where we have plotted Fc with different values of
roughness parameter α. It implies that as the surface of the
individual particles becomes more rough, stronger external
drive is required to form lanes. Later we discuss this point
again while estimating the threshold forces theoretically. Next
we discuss the phase diagram of the laning transition with
respect to the roughness parameter α and the magnitude of
the external drive Fext, at fixed density.

B. Phase diagram

The reentrant transition between laned and no-lane phases
of the system is represented by the phase diagram in the α-Fext

plane in Fig. 3. With the heat map of φ and the broken lines as
a guide to the eye in the α-Fext plane we represent the phases.

For α = 0 and very low Fext (0 < Fext < 0.2) no significant
laning is observed (φ < φc). As Fext increases and crosses the
threshold Fc, system enters into the laned state (φ > φc) and
it remains in the laned state for all values of Fext. There is no
signature of reentrance of the no-lane state with increasing Fext

when α = 0. This is also true as far as α remains small (α �
0.15). Thus, a minimum external drive is required to segregate
the particles into distinct lanes which can be inferred from the
fact that the external drive has to be larger than the other forces
between any two pair of the particles moving opposite to each
other.

The scenario changes drastically as α increases beyond
0.15 and the change is apparent for high Fext. In this regime of
α, as earlier, we observe that lanes appear into the system only
when Fext > Fc. Fc increases as we increase α. This implies

(a)

(b) (c) (d)

FIG. 3. (a) The heat map of the lane order parameter φ in the
Fext-α plane. It indicates that with finite interparticle friction (α > 0),
for very low and high Fext, the system does not support any lane
structure, whereas it is supported by the optimum values of Fext,
which occurs in between. Broken lines are drawn schematically as
a guide to the eye to indicate the laned and no-lane phases. The
phase diagram is constructed with a total of 22 different values of Fext

and 20 different α. [(b)–(d)] Typical configurations with increasing
magnitude of external drive Fext, shown by the long black arrow at
the bottom. Red and blue colors of the particles indicate particles
moving in the +x̂ and −x̂ directions, respectively.

that as the contact dissipation between the particles increases
we need higher external drive to move them against each
other to form lane. This is manifested in Fig. 2. In the con-
text of lane formation, the qualitative difference between the
particles with and without roughness appears as we increase
Fext further. We observe that when Fext goes beyond a second
threshold F ′

c , the lane quality falls. φ becomes smaller than
φc. No-lane state reenters. Thus, in the α-Fext plane, along the
axis of increasing Fext, first we have a region of no lanes, then
a region of lanes, and finally another region of no-lane. This is
the central result of our paper, which highlights the fact that it
is not possible to have good lanes even if we increase the ex-
ternal drive to very high values in the presence of interparticle
friction. We also observe that though Fc increases slightly but
F ′

c reduces considerably with increasing α. Hence the window
�F , responsible for laning, shrinks with increasing α.

The typical configurations with increasing Fext are shown in
Figs. 3(b)–3(d). They demonstrate that for very low external
drive, in steady state, lanes are not developed within the sys-
tem [Fig. 3(b)]. It is developed only after crossing the finite
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threshold value of the drive Fc. A typical laned configuration
is shown in Fig. 3(c). When the external drive is increased
further and eventually Fext > F ′

c , the lanes are broken due to
interparticle friction and no-lane state reenters. The typical
steady-state configuration in this regime is given in Fig. 3(d).
It has been mentioned in the previous section that the no-lane
state obtained for Fext < Fc is quite different from the no-lane
state obtained Fext > Fc

′ and the difference is manifested by

.

C. Dynamical property

The transport along the direction of the external field is
affected due to the interparticle friction. Lanes help transport.
With finite interparticle friction the lane order is reduced at
high external drive. Hence it is intuitive that the transport
along the external drive will be affected as we increase the
field. We quantify the transport along the direction of the
external field by computing the drift velocity along the field
in steady state. The drift velocity is defined as [17]

v2
D = lim

t→∞
〈(xi(t ) − xi(0))2〉

t2
, (6)

where xi(t ) is the x position of ith particle of the system. We
measure vD after the system reaches at a steady state where
φ fluctuates around a constant mean. The angular bracket
indicates averaging over all particles (irrespective of their
type) and then taking the average over time and realizations in
steady states. We observe that as expected, drift velocity along
the direction of the external field is reduced with increasing
interparticle friction (Fig. 4). This has also become apparent
from the inset of Fig. 4 that the rate of change of vD with
respect to Fext (obtained from the slope of the straight line
fitted with vD vs. Fext graph) decreases with α.

V. DISCUSSION

A. Interplay of Fext and α at constant ρ

So far we have shown that with increasing external drive,
not only the transition from a no-lane state to a laned state
occurs in a driven binary suspension of oppositely moving
rough particles under athermal conditions but a transition in
reverse direction (laned to no-lane state) also occurs when the
external drive is large enough. This reentrant transition occurs
when the interparticle friction due to the roughness of the
particles, affects their dynamics significantly. We have also
shown that with increasing external drive, the density profile
of the rough (α > 0) particles become gradually nonuniform.
Hence the well-formed lanes start to break at high external
drives. Here we will discuss how these two transitions (no-
laned state to laned state and the opposite) occurs.

We consider a state of the system of rough particles with
Fext < Fc. The system is in mixed, i.e., no-laned state. As the
external drive is along x̂, 〈vx

i 〉 �= 0, whereas 〈vy
i 〉 = 0. The

average velocity of the neighbours of the ith particle in both
the directions is zero as it is a mixed state. Therefore, from
the equation of motion, at high damping, the predominant
contribution to the average velocity of the ith particle along
x̂, is from the external drive, which is u1 ≡ Fext

γ+μ
, whereas

along ŷ it is u2 ≡ V0
σγ

. The lanes start to form when u1 > u2.

FIG. 4. Average drift velocity is plotted with different external
drive Fext. For every Fext the drift along the drive is maximum when
α = 0. It reduces gradually with increasing α. In the inset it has been
shown that the rate of the change of the drift velocity with respect to
Fext (∼ dvD

dFext
) decreases with the particle roughness α. Here the rate is

estimated by the slope of the straight lines fitted with vD vs. Fext plot.
The color code here represents various values of α.

Equating u1 and u2, we estimate Fc � V0
σ

(1 + α), which shows
Fc increases with α, which qualitatively matches with the
result from simulation, as shown in Fig. 2.

Next, we consider a state of the system with Fext → F ′−
c

and α > 0. In this parameter space, oppositely moving lanes
are well developed and adjacent to each other in the system.
Particles which are within a lane and far from the bound-
aries of the lane are facing less resistance from its neighbors
because all of them are moving along the same direction.
For these particles, the interparticle friction is quite small.
Though for the particles which are at the lane boundaries (i.e.,
at the interface between two oppositely moving lanes) they
are facing resistance from the oppositely moving particles.
Therefore for them the interparticle friction is large. Hence
the effective friction faced by the interfacial particles between
two lanes are more in comparison to the particles which are
well inside a lane. This makes the interfacial particles slower
in comparison to the other particles of a lane. One can estimate
the difference between the velocity of an interfacial particle
and a particle well inside a lane as u3 ≡ αFext

γ (1+α) , which is zero
for smooth (α = 0) particles, as expected. This is the velocity
estimate at which an interface between two oppositely moving
lanes recedes, leaving a gap between them. This gap will
eventually filled up by the particles coming from both the
oppositely moving lanes due to their ŷ directional fluctuating
motion caused by the interparticle repulsive interaction. This
eventually breaks the lanes at high external drive such that the
mixed, nonuniform, no-laned state reenters. One can estimate
F ′

c by equating u3 with u2 as F ′
c � V0

σ
( 1+α

α
). It shows that
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for smooth particles (i.e., α → 0), F ′
c → ∞, which means

we do not have the reentrance of the no-lane state. Thus
one can estimate the difference between these two thresh-
olds as �F = F ′

c − Fc � V0
σ

( 1−α2

α
). Clearly, �F reduces as

α increases which qualitatively agrees with the result from
simulation, as depicted in Fig. 1. Though it is not the most
accurate estimate of �F as it depends also on the choice of φc

which is not considered here. Note that when the interparticle
friction dominates over fluid friction, i.e., α > 1, no lane can
form and thus the aforementioned estimates of Fc and F ′

c are
not valid. In our analysis 0 � α � 1.

From the discussion above, it is evident that the interpar-
ticle friction causes the effective friction faced by a particle
to be space dependent. This makes the density distribution
nonuniform, particularly at high external forces. To test this
computationally, below we consider a toy equation of motion
for the particles where, instead considering the interparticle
friction explicitly, we consider the effective friction G > 0
to be space-dependent. Considering a configuration of the
system with well-developed lanes one may assign properties
like G(x, y) = G(x, y + l ) and G(x, l ) < G(x, l/2) (where l is
the typical lane-width) to the effective friction. The inequality
ensures that the effective friction inside a lane is less than the
friction faced by the particles at the interface between two
oppositely moving lanes.

It is noteworthy that the properties assigned to G(x, y) is
relevant only when lanes are well developed in the system,
i.e., when Fc < Fext < F ′

c . In general, for all Fext, G can have
complex dependence on position and relative velocity (rela-
tive to the neighbors) of a particle, deriving which is beyond
the scope of the current paper. Instead we assume a functional
form of G that maintains the aforementioned properties for all
values of external drives. Though the strength of the periodic
modulation of G is small enough such that it cannot disturb
the lane formation until Fext � F ′

c . When Fext > F ′
c , we will

see that the periodic modulation in G affects the lane structure
and eventually the lane order decreases. This essentially indi-
cates that in the presence of contact dissipation, the effective
friction faced by a particle within a laned state can be spatially
periodic and it can destabilise the lane structure beyond a
certain threshold value of external drive F ′

c .
We assume the following simple functional form of G(x, y)

as:

G(x, y) = γ [1 + a sin 2(πy/l )], (7)

where a > 0 is the amplitude of the periodic modulation of G
varying in space between its minimum value at the middle of
a lane at y = nl , given by Gmin = γ and its maximum value
at the interface between two oppositely moving lanes, i.e., at
y = (n + 1/2)l , which is given by Gmax = γ (1 + a) (where
n = 0, 1, 2, 3, . . . ). The equation of motion of the ith particle
will be

d2ri

dt2
= Fp

i −
∑

j

∇iU ± Fext, (8)

where the effective friction (both from the fluid and from the
neighboring particles in contact) faced by the particle is given
by F̃p

i = −G(x, y)vi. We simulate the aforementioned model
in the same parameter space as before and evaluate φ with

FIG. 5. Here we have plotted steady state φ with different exter-
nal drive Fext obtained by simulating Eq. (8). The blue horizontal
straight line represents φ = φc. The blue rectangle represents the
optimal values of Fext for which φ > φc. The left boundary (F = Fc)
of the rectangle represents the lower threshold of the external drive
below which φ < φc. The right boundary (F = F ′

c ) of the rectangle
represents the upper threshold of the external drive beyond which
states with φ < φc reenter.

different |Fext| to obtain the Fig. 5. From the figure it is appar-
ent that the model with space-dependent effective friction but
without explicit interparticle friction provides qualitatively
same results as obtained in Fig. 1. Initially, for very small Fext,
no lane was observed and φ < φc. Once Fext > Fc (Fext = Fc

is the left boundary of the blue region in Fig. 5), lanes develop
in steady states and hence φ > φc. As we increase Fext further,
once Fext > F ′

c (Fext = F ′
c is the right boundary of the blue

region in Fig. 5), lanes start to break. Eventually φ becomes
less than the threshold φc and no-lane state reenters. It is
important to mention here that though there is qualitative
similarity between the results from the aforementioned space-
dependent effective friction model [Eq. (8)] and the model
with explicit interparticle friction [Eq. (2)] in the context of
the reentrant transition between laned and no-lane states, the
rigorous relation between these two approaches is not yet
established and it is beyond the scope of the current paper.

B. Effect of varying ρ on laning

All the data and the analysis above are at fixed average
density (ρ) of the system. Here we will discuss what happens
to the lanes when ρ is reduced, while maintaining the system
as a 1:1 binary mixture as before. Note that it has already
been discussed in Ref. [26] that for smooth colloidal particles,
at high-enough ρ, jamming hinders lane formation. One may
expect that the particle-scale roughness has strong impact on
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FIG. 6. Average interparticle friction force per particle F is plot-
ted with average density ρ for two different external forces. Here
α = 0.5.

jamming and thereby on laning in the current context. It needs
a separate study, which is beyond the scope of this article.

Here first we discuss that how the average interparticle
friction per particle (F) varies as we decrease ρ. It can be
defined as F = 〈 1

N

∑
i |Fq

i |〉τ where τ indicates a steady-state
time window within which the per particle interparticle fric-
tional force is time averaged. In Fig. 6 we have shown that
in nonequilibrium steady states, as ρ decreases, F decreases.
This occurs because the number of frictional contacts among
the particles, decreases as ρ is reduced.

Despite the decrease of the interparticle friction, the lane
order drops with decreasing ρ. This is because the mean
distance between any two particles (∼ 1√

ρ
) increases as ρ

decreases. Consequently, between any two “a”-type particles,
now it will be more likely to get a “b”-type particle and
vice versa. Hence, at lower densities, irrespective of surface-
roughness of the particles, the nonlaned mixed state becomes
more favorable than the phase separated laned state. To illus-
trate this, in Fig. 7 we have plotted steady state φ with Fext

for different ρ. The plots are for two cases: [Fig. 7(a)] α = 0
(smooth particles) and [Figs. 7(b) and 7(c)] α > 0 (rough
particles). In Figs. 7(a) and 7(b), initially φ increases with

Fext but for higher values of Fext it drops. The drop is much
quicker for the systems with low ρ that favors the mixed state.
The effect of lowering ρ on laning of rough particles becomes
more clear when steady state φ is plotted with different ρ for
three different Fext in Fig. 7(c). As ρ decreases, φ reduces
and vice versa, for all the three external drives. Above
results also indicate that the lane formation in smooth particles
(α = 0) is a result of the interplay between Fext and aver-
age interparticle repulsion per particle (≡ G = 〈 1

N

∑
i |Fsc

i |〉τ
where Fsc

i = −∑
j ∇iU ). The interplay can be quantified by

the ratio R = G
Fext

, the steady-state value of which is plotted in
Fig. 8, together with φ, for different Fext and for two different
densities: ρ = 1 and ρ = 0.1. Initially (i.e., for small values
of Fext), for both the densities, R decreases with increasing
Fext. As Fext increases further, R continues to decrease to
reach a minima and then it increases with increasing Fext.
Finally, it saturates, forming a dip surrounding the minima.
The dip indicates the competition between Fext and G. A
balance between the interparticle screened-Coulombic repul-
sion and the external drive is established by the competition,
leading toward lanes in the system. Therefore, for both the
densities, φ becomes considerably high within the range of
Fext corresponding to the dip. Though, with increasing Fext

beyond the range, it starts to dominate over G and finally wins
the competition. Consequently, R saturates and φ decreases
for higher values of Fext. According to Fig. 8, for ρ = 1, the
competition between G and Fext lasts for a longer range of Fext

than the case with ρ = 0.1. This makes the dip in R shallower
and wider in case of ρ = 1, when plotted with Fext. In the
laned states with ρ = 1, as a result of the competition between
G and Fext, φ decreases slightly with increasing Fext. Though
it never goes below φc. On the other hand, when ρ = 0.1, φ

continues to decrease with increasing Fext and goes below φc.
Similarly, in the case of rough particles (α > 0), it is impor-

tant to understand the formation of lanes from a mixed state
as a result of the interplay among three candidates: G, F , and
Fext, which is an impending task. Work along this direction is
in progress.

VI. CONCLUSION

We consider a binary suspension of two types of particles
in two dimensions, which move in opposite directions when
subjected to a constant external drive. The particles are rough

(a) (b) (c)

FIG. 7. In (a) (smooth particles) and (b) (rough particles), φ is plotted with Fext for three different average densities ρ. In (c) (rough
particles) φ is plotted with ρ for three different external drives. The figures essentially suggest that as ρ decreases, φ decreases, too.
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FIG. 8. The plots of R and φ with external drive Fext in case of smooth particles (α = 0) having average density ρ = 1, 0.1 are shown in
(a) and (b), respectively,

and the density of the system is high enough such that the
interparticle friction plays important role to the dynamics of
the system. The thermal fluctuations are assumed to be in-
significant in comparison to the other forces present in the
system. We have shown that when the external drive goes
beyond a threshold, the particles of different species segregate
from the homogeneously mixed suspension to develop oppo-
sitely moving macroscopic lanes. The lane structure continues
with increasing external drive up to a second threshold after
which interparticle friction starts to dominate. Consequently
the system cannot support the lanes anymore and we obtain a
no-lane state. Note that for very low external drive, the system,
being homogeneously mixed, does not support lanes. There-
fore, with finite interparticle friction, we obtain the reentrance
of no-lane state along the axis of increasing external drive.

There are few important related topics which deserve de-
tailed, separate study. Though we leave them out from the
current paper but we will mention them here briefly.

Transformation from no-lane state to laned state in binary
colloidal systems (without interparticle contact dissipation)
has significant finite-size effect [25]. It is important to study
the finite-size effect here as well particularly for the reentrance
of no-lane state at high external drive.

From the phase diagram in Fig. 3 it is apparent that as α

increases Fc and F ′
c come close to each other. Question is as

follows: If we increase α further (which is not included in the
current phase diagram), will there be a certain α for which Fc

and F ′
c merge to a single point in the phase diagram, beyond

which no lane can be formed? If yes, then what will be the
characteristics of that point in context of the phase transition.

Another important problem is the effect of varying dif-
ferential average density (|ρa − ρb|) of the species on this
reentrant laning transition. We have not discussed it in the
current paper. Work along this direction is in progress.

Here thermal fluctuation associated with the temperature
T of the suspension, is considered to be negligibly small
in comparison to other forces as mentioned before. In other
words, it is the limit where the Pèclet number (Pe) of the
driven suspension is very large (i.e., Pe ≡ Fextσ

KBT → ∞ where
KB is the Boltzmann constant). In the other extreme condition,
where Pe → 0 due to large T or vanishingly small Fext, we do
not expect lanes to be formed. Though we expect qualitatively
similar behavior as detailed here, with sufficiently high Fext

and finite T , below a threshold temperature (≡ T ∗), such
that the thermal forces are order of magnitude smaller than
the other forces present in the system. It is an interesting,
impending task to explore the reentrant laning transition for
the suspension with varying T , particularly across T ∗.

We believe our findings here are amenable to experiments
with dense non-Brownian systems having significant fric-
tional contacts among the particles (e.g., Ref. [34]).
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