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We use the replica method to study the dynamical glass transition of the Gaussian core model, a system of ul-
trasoft repulsive spheres interacting via a Gaussian potential, focusing on low temperatures and low-to-moderate
densities. At constant temperature, an amorphous glassy state is entered upon a first compression but this glass
melts as the density is further increased. In addition to this reentrant transition, a second, smooth transition is
discovered between a continuous and a discretized glass. The properties of the former are continuous functions
of temperatures, whereas the latter exhibits a succession of stripes, characterized by discontinuous jumps of the
glassiness parameters. The glass physics of ultrasoft particles is hence richer than that of impenetrable particles
for reasons that can be attributed to the ability of the former to create and break out-of-equilibrium clusters of
overlapping particles.
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I. INTRODUCTION

Interactions between particles of simple atomic liquids are
usually modeled by pair potentials with a strongly repulsive
component, diverging at short range. An emblematic model in
statistical physics for the study of hard colloids [1] is the hard
sphere system whose density-driven fluid-solid and fluid-glass
transitions have been extensively studied. Contrasting with
such hard-core systems, there has been much recent interest in
studying experimentally colloidal systems composed of ultra-
soft particles [2,3]. In particular, soft colloids can overlap and
deform and may thus be compressed up to packing fractions
that cannot be reached with hard particles. As a result, the
physics of ultrasoft particles is richer than that of hard ones
[4,5], exhibiting striking anomalies, such as nonmonotonic
density dependence of the freezing transition [6] or complex
cascades of cluster crystalline states [7–9].

A widely examined ultrasoft system is the Gaussian core
model (GCM), introduced by Stillinger [10–12], for which the
pair-interaction reads

v(r) = ε exp[−(r/σ )2], (1)

where ε and σ are energy and length scales. From these
two variables, a reduced density ρ∗ = ρσ 3 and a reduced
temperature T ∗ = kBT/ε can be defined, where ρ = N/V is
the number density, kB is Boltzmann’s constant, and T the
absolute temperature. The GCM was originally proposed as
an effective potential of interaction between self-avoiding
polymer coils by Flory and Krigbaum [13]. Subsequent work
by Grosberg et al. [14] established, on the basis of scal-
ing arguments arising from polymer connectivity, that the
correct scaling of the amplitude ε with the degree of poly-
merization M is ε ∼ M0, i.e., the amplitude is independent
of the molecular weight. Louis et al. [15–17] derived ac-

curate effective potentials between polymer coils at various
concentrations, confirming both the Gaussian form of the in-
teraction and the independence of its amplitude on M in the
limit M � 1. Furthermore, Götze et al. [18] showed that the
GCM is also materialized as an effective interaction between
flexible dendrimers, the amplitude being tunable through the
number of generations of the latter. Stillinger et al. [10–12]
carried out a wealth of detailed theoretical investigations on
the phase behavior of the GCM, focusing in particular in the
low-temperature regime. Since their pioneering work, which
has been later confirmed and elaborated by complementary
numerical investigations, it is known that the GCM exhibits, at
equilibrium, a reentrant fluid-solid-fluid phase diagram under
compression below a threshold upper freezing temperature
T ∗

u = 8.74 × 10−3, above which it remains fluid at all den-
sities [6,19,20].

In previous work, Ikeda and Miyazaki [21,22] investi-
gated numerically the dynamical properties of the supercooled
states of the GCM, finding that nucleation is suppressed and
that mode-coupling theory provides an accurate description
of the slow dynamics at high densities. In the present paper,
we investigate the ways in which the complex equilibrium
phase diagram of the ultrasoft GCM also impacts its tran-
sition to glassy states. Our main finding is an unexpected
density dependence of the glassy behavior of ultrasoft GCM
particles. On one hand, a reentrant glass formation follows
the behavior observed for equilibrium crystallization, arising
from the mean-field character of the GCM at high densities
[6,16,23,24]; on the other hand, at moderate densities, a quan-
tized glass emerges, where the characteristic order parameters
at constant density undergo sudden jumps upon varying the
temperature, and thus organize in stripes. Within each stripe
glassiness is “frozen,” a property resulting from the forma-
tion of out-of-equilibrium clusters, which require sufficient
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FIG. 1. Glass and equilibrium phase diagrams of the Gaussian
core model. The full red line signals a dynamical transition between
a (supercooled) fluid above and a glass below. The turquoise line
shows the dependence of Kauzmann temperature T ∗

K on density ρ∗.
The blue broken lines pinpoint three characteristic pairs of state
points discussed in the text. The yellow-filled circles denote equi-
librium phase boundaries between the labeled phases, as calculated
by computer simulations in Ref. [19] (courtesy of S. Prestipino). The
broken red lines connecting these points are guides to the eye.

thermal agitation to break up. Moving along the density axis
in each stripe results in a smooth dependence of glassiness
on concentration. Overall, upon compressing the system at
constant temperature, the GCM undergoes a second-order
transition from a continuous to a quantized glass.

The rest of the paper is organized as follows. In Sec. II,
we briefly review the essentials of the replica theory approach
to dynamical arrest. In Sec. III we present our main result on
the glassy states of the GCM and in Sec. IV we analyze in
detail the interparticle correlations in the quantized glass state.
Finally, in Sec. V, we summarize and draw our conclusions.

II. REPLICA THEORY APPROACH TO THE GLASS
TRANSITION

We follow an idea borrowed from spin glass theory
[25–28], by considering two copies (replicas) of our system,
coupled by a weak, short-range inter-replica attraction, chosen
to be of the form

βv′(r, c) = −ε12

[
c2

r2 + c2

]6

= −ε12w(r, c), (2)

with a coupling constant ε12 � 0. The range parameter c,
which must be of the order of or smaller than the typical
interparticle distance a ∼ ρ−1/3, is fixed at the value 0.3σ to
ensure that an atom of one replica can interact at most with
one atom of another replica. The exact form of the chosen
w(r, c) is irrelevant, since we shall be interested in the limit
ε12 → 0. The order parameter of the liquid-glass transition is
the mean overlap between copies,

Q = 4πρ

∫ ∞

0
g12(r)w(r, c)r2dr, (3)
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FIG. 2. Reentrant behavior of the glass RDF g(r) at reduced
temperature T ∗ = 2.024 × 10−3 for three densities ρ∗ listed above.

where g12(r) is the radial distribution function (RDF) between
the two copies. The pair structure of such a symmetric binary
mixture is characterized by the intrareplica RDF g11(r) =
g22(r) ≡ g(r) and its aforementioned inter-replica counterpart
g12(r). In the liquid phase, g12(r) is equal to 1 and Q reduces
to its “random overlap value” QR. In the glass phase, g12(r)
has a nontrivial structure, reminiscent of the radial distribution
function of a liquid, but with an additional peak at r = 0, such
that strong intercopy correlations imply that Q � QR in the
glass phase.

We have solved the coupled hypernetted chain (HNC) inte-
gral equations [29] for g(r) and g12(r) along several isochores
ranging from ρ∗ ∼= 0.1 up to ρ∗ ∼= 0.53. The HNC closure
has been shown to be very accurate for the GCM [6,16],
and more generally for bounded potentials [30], in particular
by detailed comparisons with numerical simulations [6,16].
The HNC closure becomes exact in the high density limit,
despite a lack of full thermodynamic consistency [31]. For
each ρ∗, on gradually lowering the temperature, if ε12 is
initially set to zero, the two copies are completely decoupled
and trivially g12(r) = 1 and Q = QR. The system reduces to
two independent, identical supercooled liquids. At variance,
on lowering the temperature for an initial nonzero value of the
coupling, long-range correlations develop with an emerging
peak close to r = 0 in g12(r), whose amplitude grows as T
decreases, indicating that copies gradually correlate. At some
sufficiently low temperature, both order parameters undergo
a discontinuous jump to much higher nontrivial values, which
persist even when ε12 is progressively switched off. This jump
signals a broken replica symmetry of the system, a feature that
constitutes the very foundation of the replica method [28]. On
the contrary, if ε12 is switched off too hastily, initially paired
atoms drift away from each other in the supercooled liquid
phase. In the present scenario, ε12 was progressively lowered
from its initial value, namely ε0

12 = 0.01ε with c = 0.3σ , until
extinction and the corresponding nontrivial g12(r) was used
to calculate the corresponding overlap Q. In order to map
out the glass phase diagram within this range of densities,
we searched for the highest temperature, T ∗

D (ρ∗), at which
a nontrivial Q value survives for a given density. To achieve
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FIG. 3. (a) Overlap parameter Q as a function of density, along various isotherms specified on the right. The numbers label the eight
detected stripes, starting from the lowest temperature explored. (b) The overlap parameter Q as a function of temperature along the labeled
isochores. (c) A zoom on the Q-vs-T ∗ curves of panel (b) for the three lowest densities in that panel; a straight line bT ∗ + c has been added to
Q, to render the tiny jumps between stripes visible for the two highest densities. The arbitrary parameters b and c depend on ρ∗ and have been
determined to enhance visibility.

this, each state, described by the triplet (ρ∗, T ∗, Q), was an-
nealed. It is worth noting that, in a purely static framework,
T ∗

D (ρ∗) is equivalent to the ideal mode coupling dynamical
transition [32].

III. GLASSY STATES OF THE GAUSSIAN CORE MODEL

The numerical T ∗
D (ρ∗) values obtained by the method out-

lined above are reported in Fig. 1. We notice the existence of a
crossover density ρ∗

× = 0.4184, associated with a temperature
T ∗

× = 1.2624 × 10−3, and an upper dynamical transition tem-
perature T ∗

D,u = 2.115 × 10−3, associated with density ρ∗
D,u =

0.225. For ρ∗ � ρ∗
×, the dynamical transition line features

characteristic steps, whereas for ρ∗ < ρ∗
× it exhibits a reen-

trant shape reminiscent of the form of the equilibrium freezing
line, in agreement with previous findings for Hertzian spheres
[33,34] or star polymers [35]. For temperatures T ∗ � T ∗

D,u,
to be compared to the highest equilibrium freezing temper-
ature T ∗

u = 8.74 × 10−3 [19], the GCM does not vitrify under
any compression. The corresponding density ρ∗

D,u = 0.225 is
very close to the density ρ∗

u = 0.239 where the equilibrium

freezing transition line reaches its maximum. This feature is
reflected in the reentrant dependence of the height of the main
peak of the glass g(r) with density at fixed temperature, in full
analogy with its liquid counterpart [6], as shown in Fig. 2.

Since in the supercooled liquid phase the two copies are
uncorrelated when ε12 = 0, the calculation of thermodynamic
and structural properties can be carried out on the one-
component (single copy) system. The free energy divides
into ideal and excess parts, fid(ρ∗, T ∗) and fex(ρ∗, T ∗), re-
spectively. In the deeply supercooled liquid phase, atoms are
trapped over long periods in nearest neighbor cages, the or-
der of magnitude of the residence time in these cages being
given by the Maxwell relaxation time τM = η/G∞, with the
viscosity η and the shear modulus G∞ of the fluid. It is there-
fore natural to split the free energy into configurational and
vibrational components, fc(ρ∗, T ∗) and fv(ρ∗, T ∗), respec-
tively, where the latter is determined by the mean vibration
frequency ω0 in a disordered medium, set by the mean square
force acting on an atom. Knowledge of fex allows then the
calculation of the configurational free energy via fc(ρ∗, T ∗) =
fex(ρ∗, T ∗) + fid(ρ∗, T ∗) − fv(ρ∗, T ∗). The Kauzmann tem-
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FIG. 4. Glass phase diagram of the Gaussian core model calcu-
lated as explained in the main text. Below the red vitrification line,
two states, namely a continuous glass and a quantized glass, appear,
separated by a continuous transition line along the critical isochore
ρ∗

c = 0.315.

perature TK(ρ∗) is defined as the T value at which the
configurational entropy sc = Sc/(NkB) vanishes, i.e.,

sc = −
(

∂ f ∗
c

∂T ∗

)
ρ∗,T ∗=T ∗

K

= 0, (4)

where f ∗
c = T ∗ fc; at T ∗

K , f ∗
c (ρ∗, T ∗) goes through a maximum

along an isochore. Independently of the replica method, we
have furthermore calculated the Kauzmann temperature [36]
TK(ρ∗) along several isochores, within the Einstein solid ap-
proximation [37]. The TK(ρ∗) line, shown in Fig. 1, also points
to a reentrant glass phase, but with a shift in density compared
to the TD(ρ∗) line.

The crossover point (ρ∗
×, T ∗

× ) in Fig. 1 exhibits a local
minimum of the dynamical transition line. Accordingly, and
for T ∗ � T ∗

× , the overlap parameter Q first decreases with
density along an isotherm up to ρ∗ = ρ∗

× and then it increases
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FIG. 5. (a) Radial distribution function g(r) of the glass (solid lines, vertical axis to the left) and number of neighbors n(r) at a distance r
from a given particle in the glass (broken lines, vertical axis to the right) at various temperatures, specified above, at density ρ∗ = 0.30, where
glassiness is predicted to be continuous. (b) Same as in panel (a) but at density ρ∗ = 0.45, where glassiness is predicted to be quantized. In
both panels, the g(r) and n(r) curves are color matched at each temperature under consideration.

again. The same quantity displays a gap for T ∗ � T ∗
× , since

the supercooled liquid separates two glassy regions. The de-
pendence of Q on ρ∗ along various isotherms is shown in
Fig. 3(a). On the high-density side, and although the tempera-
ture increases continuously, Q no longer varies continuously,
but one rather observes that the curves Q(ρ∗), drawn in the
same plot for different temperatures, now bundle together to
form well-defined stripes. Within the range of temperatures
we explored, we were able to identify eight such stripes, and
we anticipate that their presence will also persist at lower
temperatures. Each of these stripes, labeled by the index i,
is well defined over a range of temperatures [T ∗

min,i, T ∗
max,i]

and its own range of densities, [ρ∗
min,i, ρ

∗
max,i]. If a state point

(ρ∗, T ∗, Q) within stripe i is gradually annealed within the
temperature range [T ∗

min,i, T ∗
max,i], Q does not vary or it does

so only infinitesimally. In passing from stripe i to stripe i + 1,
for which T ∗

min,i+1 = T ∗
max,i holds, the overlap Q undergoes a

discontinuous jump, indicating that in order to pass from one
stripe to the next, the system requires a finite amount of ther-
mal energy. Note that, as i increases, the amplitude in density,
ρ∗

max,i − ρ∗
min,i, decreases, suggesting a layered structure of

the glass stability domain in the (ρ∗, T ∗) plane for ρ∗ > ρ∗
×.

The highest layer in terms of temperature was identified for
T ∗ = 1.4133 × 10−3.

The dependence of Q on temperature along different iso-
chores is shown in Fig. 3(b), where the existence of stripes
becomes obvious. At the lower densities, the dependence of Q
on T ∗ appears continuous, whereas jumps between stripes of
increasing size are visible as density grows beyond ρ∗ = 0.36.
To localize the onset of such jumps more clearly, we plot
in Fig. 3(c) the quantity Q + bT ∗ + c against T ∗ with suit-
ably chosen, ρ∗-dependent parameters b and c, revealing that,
while the curves are continuous for ρ∗ = 0.30, tiny jumps
show up already for ρ∗ = 0.32. Accordingly, we estimate the
critical density ρ∗

c = 0.315 as the point at which a transition in
the nature of the glass occurs: whereas no stripes are present
for ρ∗ � ρ∗

c , they appear at this threshold, with a gap between
successive stripes whose size grows continuously with ρ∗ for
ρ∗ > ρ∗

c . Consequently, the dynamical phase diagram of the
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FIG. 6. (a) Small-r behavior of the glass phase g(r) at density ρ∗ = 0.45 for various temperatures listed above. Open circles denote the
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GCM features, within the range of explored parameters, two
distinct glassy states separated by a critical isochore, as shown
in Fig. 4.

IV. INTERPARTICLE CORRELATIONS IN THE
QUANTIZED GLASS

We now turn to the structure of the pair correlations of the
continuous and quantized glasses, to gain more insight into the
mechanisms of the discreteness of the glassiness in the latter.
Figure 5(a) shows the evolution of g(r) of the continuous glass
at ρ∗ = 0.30 across a range of temperatures identical to those
shown in Fig. 5(b) for ρ∗ = 0.45, covering five stripes of the
quantized glass in the latter case. The same figure also shows
the average number of neighbors up to a separation r, given
by n(r) = 4πρ

∫ r
0 x2g(x)dx, focusing on the quantity n(rmin),

i.e., at the position of the first minimum of g(r). In Fig. 5(a),
the g(r) of the continuous glass evolves continuously as the
temperature grows and the quantity n(r) remains essentially
unaffected, since all dashed curves in Fig. 5(a) collapse on
each other. Moreover, in that case we find n(rmin) ∼= 13, the
typical coordination number of a dense, amorphous substance.
For the quantized glass, Fig. 5(b), no change is observed for
values of temperature within a given stripe (not shown) but
clear jumps occur upon crossing stripes. Furthermore, n(r)
changes markedly at the crossings of stripes, while the values
n(rmin) are now considerably higher, spanning a range 15.5 �
n(rmin) � 16.5. Within the small range of temperatures span-
ning five stripes, the quantized glass reduces its coordination
by roughly one particle, while being considerably overcoordi-
nated, in contrast to its continuous counterpart.

Although no difference between the RDFs of the quantized
glass within a given stripe can be resolved at finite r values,
significant changes can be revealed by looking at this quantity
at small values of r, as shown in the main plot of Fig. 6(a).
Here, in addition to the temperatures shown in Fig. 5(b), and
which correspond to the highest T ∗ in the stripe (open circles),
we also show results for the lowest T ∗ of each stripe (solid
lines). The characteristic maximum at r = 0, pointing to the

existence of close pairs of particles or clusters in the glass, un-
dergoes a significant drop as the threshold between two stripes
is crossed: a tiny increase in supply of thermal energy is caus-
ing dissociation of some of these aggregates. At the same time,
significant rearrangements of the (depleted) aggregates take
place within a stripe, their fraction increasing again slightly,
as also shown in Fig. 6(b) (black lines, left vertical axis). The
corresponding inter-replica RDF, g12(r), also shows marked
quantization across stripes as well as small variations within
any given stripe, as can be seen in Fig. 6(b) (red lines, right
vertical axis). The high coordination number of the quantized
glass can thus be understood by the existence of close pairs
of particles or even higher-order aggregates in the system, a
feature possible for bounded potentials but evidently absent in
the case of hard core interactions. Upon increasing the density,
the occurrence of such aggregates increases as well, as can be
seen in Fig. 7.

The effect of the quantization on the structure factors S(q)
of the glass is shown in Fig. 8. Here a striking crossover
can be seen, from a continuous behavior at long wavelengths,
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FIG. 8. (a) Main plot: the glass structure factor S(q) at density ρ∗ = 0.45 for various temperatures listed on the left. Crosses denote the
highest temperature associated with a given stripe and open circles the lowest temperature associated with that stripe. Identical colors signal
that the data belong to the same stripe. Inset: zoom of the main plot at low q values; for the sake of clarity, the quantity 104 S(q) is plotted on
the vertical axis. (b) The structure factor for large values of the wave number q.

qσ � 1, to a quantized behavior at short wavelengths, qσ � 6.
In more detail, we plot in Fig. 8 the structure factors along the
isochore ρ∗ = 0.45, spanning the same range of temperatures
as in Fig. 5(b), which covers three fully quantized stripes
as well as the highest temperature at the end of the stripe
preceding the first full one and a partial stripe after the last
one, at the end of which the glass melts. We adopt the same
color code as in the rest of the paper, using now full circles
of a given color to denote the lowest temperature of a given
stripe and crosses of the same color to denote the highest
temperature of the same stripe. Colors change upon moving
into a new stripe. By construction, the highest temperature of
stripe i is infinitesimally lower than the lowest temperature of
stripe i + 1.

As can be seen in the main plot of Fig. 8(a), the behavior
of the glass structure factor in the vicinity of the main peak
is neither continuous nor quantized. In the former case, the
data from T ∗

max,i and T ∗
min,i+1 would be practically indistin-

guishable whereas, in the latter case, that would hold for all
data corresponding to the same stripe; neither is true near
qσ ≈ 5. As the inset of Fig. 8(a) shows, the continuous sce-
nario materializes at long wavelengths, qσ � 1: the colors
mix, whereas symbols of the same color are separated by a
gap. The compressibility of the glass is a continuous function
of temperature along any isochore, despite the fact that we are
in the quantized glass regime. Exactly the opposite behavior
occurs at short wavelengths, qσ � 6, as shown in Fig. 8(b).
Here, the colors demix and all data for the same stripe fall on
top of each other, the gaps now separating different stripes.
These characteristics support the interpretation of the struc-
tural changes presented above for the quantized glasses, as

local rearrangements and cluster breakups bring about abrupt
changes at short, but not at long wavelengths.

V. CONCLUSIONS

In summary, by combining the HNC integral equation with
the replica method, we predict, in addition to a reentrant
fluid-glass transition observed at low density, the existence of
a transition between a continuous glass at low density and a
discretized glass at higher densities in a system of ultrasoft
particles interacting via a Gaussian pair potential. The sec-
ond glass phase exhibits a nonintuitive quantized behavior.
We emphasize that the occurrence of local aggregates in the
glass phase differs from the recently reported cluster-glass
transitions in different models of ultrasoft particles [38–41].
Indeed, in the latter cases the interactions belong to the
so-called Q± class [7], for which cluster formation is an equi-
librium phenomenon, whereas the GCM interaction at hand
is a Q+ potential for which no clusters form at equilibrium.
Accordingly, the emergence of a quantized glass is an out-of-
equilibrium effect, underlined by the fact that its occurrence
is associated with the existence of a local maximum of the
glass RDF at r = 0. Since a reentrant glass transition has
been detected in recent experiments on metallic glasses [42],
a quantized glass phase in ultrasoft colloids remains yet to be
observed experimentally.
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