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Memory effects in spiral diffusion of rotary self-propellers
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The coupling of deterministic rotary motion and stochastic orientational diffusion of a self-propeller
leads to a spiral trajectory of the expected displacement. We extend our former analysis of spiral diffusion
[Phys. Rev. E 94, 030601(R) (2016)] in the white-noise limit to a more realistic scenario of stochastic noise
with Gaussian memory and orientational fluctuations driven by an Ornstein-Uhlenbeck process. A variety of
dynamical regimes including crossovers from ballistic to diffusive to ballistic in the angular dynamics are
determined by the inertial timescale, orientational diffusivity, and angular speed.
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I. INTRODUCTION

Self-propellers range from microorganisms [1–7] and
artificial microswimmers [8–12] at the microscale to ani-
mals [13–17], insects [18,19], and humans [20,21] at the
macroscale. From a statistical perspective, trajectories of
self-propellers result from coupling deterministic motion and
stochastic dynamics. The former is usually a powered motion
in a rectilinear or rotary motion, while the latter originates
from thermal noise at microscale and decision-making by
the self-propeller to change direction of motion or speed.
The resulting trajectories are diverse and can be used to
distinguish and classify self-propellers. For example, the ex-
pected displacement of a rotary microswimmer follows a
spiral path [22–24], whereas run-and-tumble microorganisms
like Escherichia coli [25,26] perform random walks.

Stochastic forces usually are the main factor in modifying
the orientation of self-propellers. Such orientational changes
are unavoidable in small scales and may originate from ther-
mal fluctuations, motility mechanism, and food supplies or
other complexities in the surroundings [3,4,27–29]. While
thermal noises at microscale are usually approximated to be
memoryless in Newtonian fluids [1,2,30–32], the memory
effects emerge in polymeric and more complex fluids, partly
due to the elastic component of dynamics. A self-propeller
exhibits ballistic motion at short timescales, whereas its per-
sistent motion is strongly affected by the random changes in
its orientation at long times. Consequently, for a microscale
self-propeller, coupling of deterministic and stochastic mo-
tions results in an enhanced translational diffusion, in addition
to passive thermal diffusion [12,33–36].

Recent experiments [17,37,38] show that some mi-
croswimmers can resist orientation fluctuations through some
internal dynamics. This provides an effective inertia so that
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their orientation may persist with time, and the stochastic
dynamics is better described as driven by correlated (colored)
noise rather than memoryless white noise. In other words,
the internal dynamics induce memory effects on the orien-
tational motion of active particles [36,39–41]. Moreover, in
complex environments memory effects are common features
of the interactions of small-scale self-propellers with their
surroundings, leading to unexpected phenomena including
spontaneous rotational motion of rectilinear symmetric parti-
cles in non-Newtonian fluids [42], uniform spreading of active
particles instead of condensation at the borders of harmonic
confinements [43], and inertia-induced phase separations in
motile particles [44].

In addition to rectilinear self-propellers whose powered
motion is along a straight trajectory [45–53], microscopic
rotary self-propellers [3,4,22,25,27–29,54] moving through
curved paths are of particular importance [11,54–57]. This
type of micromotor is found among both biological and ar-
tificial examples [58–63]. In addition, it has been shown
that some linear micromotors swim in curved trajectories in
complex environments or when they are confined [17,64–69].
Asymmetric geometry of active particles leads to a driving
force misaligned with the drag force, leading to change in
particle orientation over time. Typical examples in artificial
microswimmers are nominally geometries with a fabrication-
induced asymmetry, such as a tilted sphere [10,30], Janus
tadpoles [70], and dimers [71]. Such particles travel in a cir-
cular trajectories intrinsically. Combining orientational white
noise and the deterministic rotation leads to an effective chiral
translational diffusion such that the self-propeller tends, on
average, to move toward its right or left depending on the
chirality of the deterministic rotation [23,41,55,56,72].

The noise effects on chiral swimmers have been studied
for white Gaussian noise [23], telegraph process [62],
Ornstein-Uhlenbeck (OU) process [73], and time-dependent
inertia [63]. Usually, a modeling approach using
Fokker-Planck formalism [61,73] or Langevin dynamics
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simulations [59,62,63] has been applied. However, these
differential-equation-based approaches require complicated
calculations or obtain probability distribution functions. The
complexity of Fokker-Planck formalism requires cumbersome
mathematical calculations to investigate effective diffusion
of a chiral swimmer [61]. Moreover, with increase in the
number of degrees of freedom in a system, such analysis
gets more complicated. Here we take advantage of kinematic
matrix (kinematrix) theory which circumvent the need for
calculation of probability distribution functions and facilitates
studying dynamics of self-propellers.

We have previously studied orientational OU memory ef-
fects on the dynamics of a rectilinear self-propellers [74], and
spiral diffusion of rotary self-propellers in the white-noise
limit [23], using kinematrix theory. In this paper, we study the
effect of OU Gaussian memory and orientational inertia on
spiral diffusion of rotary self-propellers. Comparing with the
white-noise limit, we investigate how an orientational inertia,
modeled by correlated OU process, modifies the dynamics of
the self-propeller. While our discussion of effective diffusion
may overlap with an earlier study [73], our analysis of spi-
ral dynamics and mean-squared displacement complements
that study. Moreover, that study required full knowledge of
probability distribution functions while our work circumvents
this need and within a simpler framework using a kinematrix
formalism directly obtains the quantities of interest. In doing
so, we provide a reformulation of kinematrix theory in which
we translate the matrix manipulations into the machinery of
complex numbers. Our results provides a ground for further
analysis of the interplay between different timescales and
further analysis of experimental observations.

In our analysis we need the autocorrelations embedded in a
time-evolution multiplier to obtain the necessary information,
including ensemble average trajectories, effective diffusivity,
and mean-squared displacement. We discuss in detail the
effects of all relevant timescales on spiral diffusion of the self-
propellers and how the inertial timescale modifies the effect of
other timescales. The structure of the paper is as follows: First,
in Sec. II, we describe the model of circle swimmers subjected
to an OU process which implies a memory in particle orienta-
tion. We discuss the effect of memory on angular dynamics
(Sec. III) and build a time-evolution multiplier (Sec. IV)
which is central to the kinematic matrix formalism. Then
we study spiral diffusion (Sec. V) by analyzing the expected
displacement of the rotary self-propeller. Finally, we discuss
how the self-propellers spread by investigating their effective
translational diffusivity and, more generally, time-dependent
mean-squared displacement (Sec. VI). This analysis gives us
information about expected behavior in the presence of the
orientational memory in the system, which is summarized in
Sec. VII.

II. PROBLEM FORMULATION

The self-propeller moves with time-dependent velocity
vt ≡ v(t ) of constant magnitude v0 = |vt | in the xy plane
while rotating with angular velocity ω. We define chirality
S = ω/|ω| which is +1 for counterclockwise (CCW) rotation
and −1 for clockwise (CW). In the absence of noise the self-
propeller follows a circular trajectory of radius R = v0/|ω|. In

the presence of noise the self-propeller’s orientation changes
according to

dθ

dt
= ω + λ, (1)

in which λ is a zero-mean stationary Ornstein-Uhlenbeck pro-
cess (OUP) and η is Gaussian white noise of intensity τ−2

λ
Do:

dλ/dt = −τ−1
λ

λ(t ) + η(t ), (2a)

〈η(t )η(t ′)〉 = 2τ−2
λ

Doδ(t − t ′), (2b)

〈λ(t )λ(0)〉 = τ−1
λ

Doe−|t |/τ
λ , (2c)

where τ
λ

is the correlation that quantifies the inertia or memory
of the stochastic orientation change and Do is the orientational
diffusivity such that D−1

o describes the timescale that the rotor
changes its orientation due to pure Brownian rotation. This
model takes into account rotational inertia of the self-propeller
which may be caused by internal or external stochastic pro-
cesses. The coupling of the orientational stochastic dynamics
and active translation leads to an effective translational dif-
fusion superposed to the passive translational diffusion in
an additive manner. However, while in viscoelastic fluid the
strength of the stochastic processes may be influenced by the
active motion [42], within our model in a Newtonian fluid pas-
sive translational diffusion is not coupled to the rotational and
active translational dynamics, and it does not enter the discus-
sion about the interplay between deterministic and stochastic
dynamics.

In two dimensions, we represent the position x and velocity
v as complex numbers. For example:

v = vxx̂ + vyŷ :→ vx + ivy, (3)

where i = √−1, and thus we define the dot product between
the vectors in the complex plan as

x · v := Re{x̄v} ≡ Re{xv̄}, (4)

where x̄ is the complex conjugate of x. The velocity is then
identified by constant magnitude v0 and a time-dependent
phases θv (t ) in the complex plane, that is,

vt = v0 exp[i θv (t )]. (5)

We are interested in the conditional expectation of vt+�t given
vt , that is, what is the expected value of velocity at time t + �t
if know the velocity at time t ,

E(vt+�t |vt ) = U (�t )vt . (6)

where U = ei f (t ) is a time-evolution multiplier. Since v0 is
constant, rotational invariance and stationarity (time-shift in-
variance) alone states that U is well defined by Eq. (6) and
nonrandom. Therefore, for the velocity autocorrelation func-
tion we have

E(vt ′+t · vt |vt ) = E(Re{vt ′+t v̄t }|vt )

= Re{E(vt ′+t |vt )v̄t } = v2
0Re{U (t ′ − t )}, (7)

which is proportional to the real part of the time-evolution
multiplier.

By setting the reference point as the initial position of the
self-propeller, that is, x0 = 0, the conditional expectation of
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FIG. 1. Angular dynamics of rotating self-propeller with
Ornstein-Uhlenbeck orientational dynamics. In the regime 	 < 
2

we have two crossovers from ballistic to diffusive to ballistic while
in the regime 	 > 
2 we only have ballistic dynamics.

displacement given initial velocity v0 is

E(xt |v0) =
∫ t

0
E(vt ′ |v0) dt ′ = v0

∫ t

0
U (t ′) dt ′ (8)

and using (7) the conditional expectation of the mean-squared
displacement (MSD) is expressed as

E(|xt |2|v0) = 2
∫ t

0
dt ′

∫ t ′

0
dt ′′ E(vt ′′ · vt ′ |v0)

= 2Re

{∫ t

0
dt ′

∫ t ′

0
dt ′′ U (t ′′)

}
. (9)

Therefore, all we are interested in calculating in this paper
are obtained by simple operations from U (t ),

∫ t
0 dt ′ U (t ′), and∫ t

0 dt ′ ∫ t ′

0 dt ′′ U (t ′′). In the next section we will discuss how to
evaluate these terms for a Gaussian memory.

III. ANGULAR DYNAMICS

The autocorrelation integral for the OUP angular ve-
locity COUP

λ (t ) = ∫ t
0

∫ t
0 〈λ(0)λ(t ′′)〉dt ′′dt ′ is monotonically

increasing:

COUP
λ (t ) = 2Dot + 2Doτλ

(e−t/τ
λ − 1). (10)

The first term is the white-noise contribution and the second
term is the modification due to inertia.

The mean-squared angular displacement is

〈|�θ (t )|2〉 = COUP
λ (t ) + ω2t2

≈
{

(t/τ
λ
)Dot + ω2t2 t 	 τ

λ

2Dot + ω2t2 t 
 τ
λ

. (11)

The indicated regimes of rotor orientation dynamics can be
seen clearly in the plots of Fig. 1. Since �θ (t ) is the sum of a
deterministic part and a zero-mean stochastic part, 〈|�θ (t )|2〉
is also simply the sum of a deterministic and a stochastic
contribution. The instantaneous angular velocity θ̇ (t ) is the
sum of ω and a normally distributed component of variance
Do/τλ

. Furthermore, τ
λ

is the correlation time of the stochastic
component.

We define two dimensionless parameters,

	 := Doτλ, 
 := Do|ω|−1 := Doτω, (12)

that help with analysis of the dynamical regimes. A dis-
cretized version which favors qualitative insight by removing
analytical complication is this: A random angular velocity is
chosen from the distribution indicated above, and it persists
for time τ

λ
, after which a new, independent, value is chosen.

In this version, θ undergoes a biased random walk, with each
step a constant-velocity motion. The mean-squared size of the
random part of the steps is 	, and the random part of the
motion crosses over from ballistic to diffusive character on
the timescale τ

λ
. Thus, the motion is ballistic over short

timescales 	 τ
λ
, as it is over very long timescales since the

constant ω always wins out over diffusion in the long run, as
the second limit in (11) shows.

At this crude level of analysis, the only question is whether
the deterministic motion dominates already at τ

λ
, in which

case the net motion is always ballistic, or whether there is an
intermediate diffusive regime. However, for a purely diffusive
motion, the crossover time t∗ is determined by Dot∗ = (ωt∗)2,
or Dot∗ = 
2. So the diffusive regime is 	 < Dot < 
2 if this
interval is nonempty. Note that since the random component
of the instantaneous angular velocity has standard deviation√

Do/τλ
, the diffusive regime exists if the width of the instan-

taneous angular velocity distribution is large compared to its
center |ω|.

Consideration of the disorientation time τθ gives a better
understanding of the angular dynamics. τθ is the time that
orientation changes significantly, i.e., 〈|�θ (τθ )|2〉 = 1. The
deterministic motion covers an angle 1 in time Doτω. For the
random component, recall that it is roughly composed of steps
of angle

√
Doτλ

at speed
√

Do/τλ
. Hence, if Doτλ

> 1, then
it covers angle 1 while still in the ballistic regime in a time√

τ
λ
/Do. Otherwise, it takes longer than τ

λ
and we calculate

the time as if it were simple diffusion: Dot = 1. Summarizing,
Doτθ ∼ min(Doτω, Doτ

′), where Doτ
′ is 1 if Doτλ

< 1; other-
wise,

√
τ
λ
/Do.

IV. TIME-EVOLUTION MULTIPLIER

Within the kinematic matrix formalism [74,75] the time-
evolution operator takes the form of a multiplier in the
complex plane,

U (t ) = U (t ; 	, Do, ω) = exp
[
ωJzt − 1

2C
OUP
λ (t )P⊥

z

]
:→ exp[−(Do − iω)t − 	(e−Dot/	 − 1)], (13)

where Jz is the generator of rotation about ẑ, P⊥
z is projection

on the xy plane. In the second line we have converted the
matrix formalism to a phase in the complex plane. Note that
in the limit 	 → 0 we obtain the white-noise limit of the
time-evolution multiplier (denoted by “wn”),

Uwn(t ) = U (t ; 0, Do, ω) = exp [−(Do − iω)t], (14)

and in the limit τ
λ
→ ∞ we have pure rotation

U (t ; ∞, Do, ω) = exp(iωt ) and the self-propeller returns
to its initial position after each period of rotation.

Here we show that the evolution multiplier of a self-
propeller with Gaussian memory (13) can be written as a
linear combination of evolution multipliers in the white-noise
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limit (14) by the Taylor expansion of the outer exponential of
exp[−	e−Dot/	]:

U (t ; 	, Do, ω) = e	

∞∑
n=0

(−	)n

n!
e−(Dn−iω)t , (15a)

= e	

∞∑
n=0

(−	)n

n!
U (t ; 0, Dn, ω), (15b)

where

Dn := αnDo with αn := 1 + n
	

(16)

is a sequence of ever-increasing “effective” diffusion coef-
ficients. From Eqs. (8) and (9) we learn that E(xt |v0) and
E(|xt |2|v0) are linear in U , and to calculate them we can
take the integration into the summation when using Eq. (15).
Therefore, the expected displacement and MSD for a rotary
self-propeller undergoing OU process is also a linear combi-
nation of these quantities for white-noise limits with effective
orientational diffusivities Dn.

V. SPIRAL DIFFUSION

We start with finding the expected displacement for the
white-noise limit using Eq. (14),

E
(
xwn

t

∣∣v0
) = v0

∫ t

0
Uwn(t ′)dt ′ = v0�(t ; Do, ω), (17)

where we have defined the function

�(t ; Do, ω) = 1

Do − iω
[1 − e−(Do−iω)t ]. (18)

We discuss chiral diffusion by studying the limit t → ∞ and
then the spiral diffusion in the next section by analyzing the
intermediate regime. The asymptotic long-time behavior for
the expected displacement of the self-propeller for the white-
noise limit is

E(xwn
∞ |v0) = v0�(∞; Do, ω) ≡ v0

Do + iω

D2
o + ω2

= Reiθv(0) 
 + iS

2 + 1

. (19)

Similarly, the asymptotic value of the expected displacement
for self-propeller with OU process is the linear combination
[see (16) for Dn and αn]

E(x∞|v0) = v0e	

∞∑
n=0

(−	)n

n!

Dn + iω

D2
n + ω2

= Reiθv(0) e	

∞∑
n=0

(−	)n

n!

(
αn
 + iS
α2

n

2 + 1

)
. (20)

We define the chiral angle φ∞ as the angle between v0 and
E(x∞|v0). In the white-noise limit, from Eq. (19) we have

φwn
∞ = tan−1(ω/Do) = S cot−1(
). (21)

Depending on the sign of ω, and thus the self-propeller’s
chirality S , the chiral angle is added to or subtracted from
the phase θv,0 of the initial velocity. As shown in Fig. 2(a)
for CW rotation the expected displacement is toward the right

FIG. 2. (a) Dependence of expected displacement on chiral an-
gle. (b) Absolute value of the chiral angle |φ∞| as a function of Doτω

for different values of correlation time.

of v0 while for CCW it is toward the left [55,56]. Com-
paring Eqs. (19) and (20) reveals that a self-propeller with
OU process behaves qualitatively similarly to the white-noise
limit.

Figure 2(b) shows the absolute value of chiral angle |φ∞|
as a function of dimensionless rotational timescale 
 for
different values of dimensionless correlation time 	. The
white-noise limit, Eq. (21), holds, and in the limit |ω| 
 Do

(
 	 1) the deterministic rotation dominates the orientational
diffusion, the trajectories are nearly circular and |φ∞| ≈ π/2.
In the other extreme, |ω| 	 Do (
 
 1), the orientation is
changed stochastically much faster than deterministic rota-
tion, the chiral diffusion effects are washed out, and the rotors
no longer distinguish right and left. Thus, the chiral angle is
nearly zero. On increasing the correlation time, the asymptotic
value of chiral angel φ∞ increases for a given 
.

Next, we discuss the temporal behavior of the expected
displacement before reaching its asymptotic values. The ex-
pected displacement of the self-propeller with inertia is given
by

E(xt |v0) = v0e	

∞∑
n=0

(−	)n

n!
�(t ; Dn, ω). (22)

In the absence of any noise, i.e., Do = 0, we recover the
circular deterministic trajectory centered at iSReiθv,0 :

E
(
xdet

t |v0
) = iSReiθv,0 [1 − eiωt ]. (23)

By addition of noise (Do �= 0) the trajectory deviates from
circularity. Again, a discrete model helps to portray the physi-
cal pictures: In timescales less than D−1

o the rotor rotates on
a circular trajectory. At D−1

o it changes its orientation and
rotates on the circular trajectory with the new center until
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FIG. 3. (a) Average radius of rotation decrease with time leading
to (b) spiral pattern in the expected displacement and (c) damped
oscillatory behavior for the spiral angle φ(t ).

again it changes its center of rotation. The vector connecting
the instantaneous center of rotation to the location of particle
at time t is p(t ). As shown in Fig. 3(a) the particle may
stochastically reorient to its left or right and move ballisti-
cally for a time �t . Then the two vectors pright(t + �t ) and
pleft(t + �t ) connecting the centers of rotation to the position
of the self-propeller will have an average pavg(t + �t ) shorter
than either of them. Therefore, on average, the radius of ro-
tation decreases with time and the self-propeller’s expected
displacement follows a spiral.

Figure 3(b) shows the spiral trajectories in the white-noise
limit. At short values of 
 the deterministic motion dominates
the stochastic noise and the expected displacement follows a
long spiral. With increase of 
, the stochastic component gets
stronger, the average orbital radius decrease faster, and the
spiral converges on shorter timescales. On the other hand, in
the presence of orientational memory, shown in Fig. 3(c), with
an increase in 	 the self-propeller tends to keep its orientation
for longer times, the radius of spiral remains larger, and the
spiral converges slower. As shown in Fig. 3(d) the angle φ(t )

between the initial velocity v0 and the expected displacement
at time t oscillates for high values of 
 enveloped by a decay-
ing behavior while φ(t ) reaches its asymptotic values on short
timescales for small inertial correlation time.

VI. MEAN-SQUARED DISPLACEMENT
AND EFFECTIVE DIFFUSION

Using Eqs. (9), (14), and (15) we obtain the expression for
the mean-squared displacement of the self-propeller,

E(|xt |2|v0) = 2v2
0e	

∞∑
n=0

(−	)n

n!
Re{�(t ; Dn, ω)}, (24)

where we have defined the function

�(t ; Dn, ω) := 1

Dn − iω
t + e−(Dn−iω)t − 1

(Dn − iω)2
, (25)

whose real part is related to the effective diffusion of the self-
propeller in the white-noise limit,

lim
t→∞Re

{
1

t
�(t ; Do, ω)

}
= Re

{
1

Do−iω

}
= Do

D2
o+ω2

. (26)

The coupling of the orientational diffusion with deterministic
rotation leads to a translational diffusion with an effective
diffusivity,

Deff = lim
t→∞ t−1E(|xt |2|v0) = v2

0

2
e	

∞∑
n=0

(−	)n

n!

Dn

D2
n + ω2

= v2
0

2Do
e	

∞∑
n=0

(−	)n

n!


2αn


2α2
n + 1

(27a)

≈
⎧⎨
⎩

v2
0

2Do


2

1+
2 e	, 	 	 1

v2
0

2Do
e−	/2
2

√
π	
2 , 	 
 1

, (27b)

whose behavior is depicted in Fig. 4 for various values of 


and 	.
To explain the observed behavior, we start with the simple

case of a rectilinear self-propeller moving with constant speed
v0 while suffering a white noise of intensity Do. The self-
propeller experiences an effective diffusion of Deff = v2

0/2Do.
If we add a rotation with angular speed |ω| = τ−1

ω , then, using
Eq. (26), the resulting effective diffusivity is

Dwn
eff = v2

0

2Do


2

1 + 
2
, (28)

which immediately implies that a finite angular speed always
decreases the effective diffusivity compared to the rectilinear
scenario.

We understand from Eq. (27) that in the limit 
 	 1,
the effective diffusivity Deff ∝ 
2 	 1 can be negligible for
different values of 	, as shown in Fig. 4(a). On the other hand,
in the limit 
 
 1(Do 
 |ω|) the self-propeller’s trajectory
deviates significantly from circularity, and thus with increase
in the persistent time τ

λ
(and thus 	) the length of steps

increases, leading to the increase in the effective diffusivity
[see Fig. 4(a)]. We can also investigate the effective diffu-
sivity from the perspective of variation in correlation time,
as depicted in Fig. 4(b). In the limit 	 	 1 in the case of
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FIG. 4. Dependence of effective diffusivity on rotational 
 and
inertia 	 parameters.


 
 1(Do 
 |ω|) the self-propeller changes its orientation
fast with small steps such that rotational dynamics becomes ir-
relevant, and in the case of 
 	 1(Do 	 |ω|) the trajectory is
close to circular. In both cases the self-propeller follows small
steps of displacement and thus small effective diffusivity. In
the other limit 	 
 1 the particle’s stochastic orientation
persists over long times and the trajectories are nearly circular,
leading to small effective diffusivities. Between these two
limits we have a maximum effective diffusivity whose value
increases with increase in 	. Because in the intermediary
regime the trajectories are close to neither circular nor random
walk and the length of steps between each orientation change
becomes large. Moreover, as shown in Fig. 4(b), the maximum
value of Deff occurs at 	 = 
2 and on increasing 
, the
maximum value increases, and its location shifts to larger 	.
It is clear from Eq. (27b) that in the regime λ 	 1 with in-
crease in 	, the effective diffusivity increases. The other limit
λ 
 1 has a maximum at 	 = 
2 (at which ∂Deff/∂	 = 0)
and the value of maximum is linearly proportional to 
. As

we discussed in Sec. III in the regime 	 < 
2 we have two
crossovers from ballistic to diffusive to ballistic in the angular
dynamics and with increase in 	, the effective diffusivity
increases. In the other regime 	 > 
2 we only have ballistic
behavior in the angular dynamics and effective diffusivity de-
creases. In other words, Deff originates from coupling between
the stochastic noise and deterministic rotation and 	 = 
2 is
the point at which the coupling has the highest effect on Deff.

Figure 5 shows the temporal behavior of Eq. (24) for var-
ious 	 and 
 values. In all scenarios the dynamics exhibits
crossover from a ballistic motion at short times to pure dif-
fusive motion at long times. At short times, where Dot 	
min(1,	,
), i.e., time is shorter than all the timescales,
the circular ballistic motion governs the dynamics and MSD
≈ v2t2 is independent of all timescales. In the limit of 
 	
1 (Do 	 |ω|), as shown in Fig. 5(a), the deterministic rota-
tional dynamics dominates the orientational diffusivity, and
the MSD shows a damped oscillatory behavior. The amplitude
of the oscillations increases with increase in orientational
memory 	. We observe spiral patterns in the expected dis-
placement. On the other extreme, 
 
 1 (Do 
 |ω|), as
shown in Fig. 5(b), the orientational diffusion dominates the
rotational motion, the propeller changes its direction of mo-
tion by stochastic noises fast, and thus the behavior of MSD is
qualitatively similar to that of a recltilinear self-propeller with
OU processes. In the intermediate regime, 
 ≈ 1 (Do ≈ |ω|),
all three timescales can have considerable contributions on the
dynamics and we can have damped oscillatory dynamics or
nonoscillatory transition from ballistic to diffusive regime, as
shown in Fig. 5(c).

VII. CONCLUSION

The orientational memory or, equivalently the rotational
inertia, affects both the angular and translational dynamics of
an ensemble of rotary self-propellers. In the white-noise limit,
the angular dynamics undergo a transition from diffusive to
ballistic motion. However, under OU memory, the angular
dynamics is either fully ballistic or undergoes two transitions
from ballistic to diffusive to ballistic. We showed that the
expected displacement of a rotary self-propeller is a spiral
in both the white-noise limit and colored-noise scenario. For
self-propellers with higher orientational memory this spiral
converges at lower rate. Furthermore, deterministic rotation
combined with orientational diffusion induces an effective
translational diffusion which depends on the noise inten-
sity, the orientational correlation time, and the deterministic

FIG. 5. (a) Damped oscillatory dynamics of MSD in the regime 
 	 1 (Do 	 |ω|). (b) Nonoscillatory dynamics of MSD in the regime

 
 1 (Do 
 |ω|). (c) Intermediate regime with possibilities of damped oscillatory and nonoscillatory dynamics.
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rotational dynamics. The effective diffusivity vanishes at both
small and large noise intensities, owing to the fact that at these
limits, either deterministic rotation or orientational diffusion
dominates the other one. We observe a maximum for the
effective diffusivity in between the limits.
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