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Energetically favorable configurations of hematite cube chains
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Hematite at room temperature is a weak ferromagnetic material. Its permanent magnetization is three orders
smaller than for magnetite. Thus, hematite colloids allow us to explore a different physical range of particle
interaction parameters compared to ordinary ferromagnetic particle colloids. In this paper we investigate a colloid
consisting of hematite particles with cubic shape. We search for energetically favorable structures in an external
magnetic field with analytical and numerical methods and molecular dynamics simulations and analyze whether
it is possible to observe them in experiments. We find that energetically favorable configurations are observable
only for short chains. Longer chains usually contain kinks which are formed in the process of chain formation
due to the interplay of energy and thermal fluctuations as an individual cube can be in one of two alignments
with an equal probability.
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I. INTRODUCTION

Hematite colloids represent a unique system to study in-
teractions between two particles. They can be synthesized in
different shapes (cubes, disks, ellipsoids, peanuts, and others)
[1–4] and maintain a permanent dipole moment even at large
sizes (up to 15 μm) [5,6]. Apart from a new physical regime
where steric forces compete with magnetic forces, compared
to ordinary ferromagnetic colloids, they provide also an op-
portunity to directly observe the different structures in colloids
with an optical microscope [1,5,7,8]. As hematite is a weak
ferromagnetic at room temperature, thermal fluctuations play
an important role. Hematite particles can form chains and
rings, in which fluctuations are clearly visible [7–9].

In this work we concentrate our study to colloids made
of hematite particles with cubic shape. In scientific literature
several experiments can be found with such colloids. It was
demonstrated in Ref. [10] that a two-dimensional chiral fluid.
can be created using hematite colloids. The hematite cubes
in rotating magnetic field behave like two-dimensional fluid
showing characteristic instabilities. In Ref. [11] swarming of
micron-sized hematite cubes in a rotating magnetic field was
examined. It was shown that in an external rotating magnetic
field particles form swarms which start to rotate. Experimen-
tal results for rotational speed were in a good agreement
with the proposed theoretical model. Targeted assembly and
synchronization of self-spinning microgears or rotors made
of hematite cubes and chemically inert polymer beads were
demonstrated in Ref. [12]. Micron-sized polymer colloids
with embedded hematite cubes were used to demonstrate un-
stable fronts and motile structures formed by microrollers in
Ref. [13]. Potential application of hematite colloidal cubes for
the enhanced degradation of organic dyes was investigated
in Ref. [14]. The sedimentation of hematite cubes and their
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crystal structure were investigated in Refs. [15–17]. Forma-
tions of light activated two-dimensional “living crystals” were
examined in Ref. [18].

Particularly interesting are experiments about structures of
magnetic particles at low particle concentration in external
magnetic field [1,5] as they provide building blocks for under-
standing behavior at higher concentrations [10]. The magnetic
particles in a colloid tend to align and form straight chains
along the direction of the applied field. An increase in the
strength of the applied magnetic field causes an additional
rearrangement of the chains. Chains reorganize in the kinked
structures (see Fig. 1 for illustration). The Langevin molecular
dynamics simulation was carried out in Ref. [5] for several
orientation angles of the magnetic moment. From the statis-
tics of chains with kinks it is concluded that the amount of
kinks is less pronounced at the magnetic moment orientation
perpendicularly to the main diagonal in comparison with the
case when the magnetic moment makes an empirical angle
12◦ with the main diagonal. However, direct calculations of
the energy of kinked configurations for these two orientations
of magnetic moment were not carried out. In the literature,
the orientation of the magnetic moment μ in a hematite cube
is under debate. Some say that there is an empirical angle
12◦ with the diagonal in the plane defined by two diagonals
[5] [Fig. 2 (left)]. Others claim that the magnetic moment is
perpendicular to a diagonal of a cube stating that the moment
is in the plane defined by the light blue hexagon in Fig. 2
(right) [19–21]. We try to solve this dispute and investigate
the broader range of magnetic moment orientations to search
for energetically favorable configurations. We find that there is
a range of orientation angles where the kinked configurations
are energetically favorable.

In this paper we are trying to understand how big of a role
the energetically favorable structures play in the explanation
of the observed kinked structures. We do this by searching
and analyzing the energetically favorable configurations for
different magnetic moment orientations. We speculate that
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FIG. 1. Chain with kinks (top) vs. straight chain (bottom). The
top chain has four kinks.

the energetically favorable configurations should play a larger
role in the explanation of kink formation in hematite chains.

For our investigation we choose to examine configurations
for every orientation of magnetic moment mentioned in liter-
ature. As the first case we use the situation when the moment
is in the plane defined by two diagonals and makes an angle
φ with the diagonal [see Fig. 2 (left)]. Due to symmetries
one actually has to examine a range φ ∈ [− arctan(

√
2

2 ), 90◦ −
arctan(

√
2

2 )]. The angles φ = − arctan(
√

2
2 ) ≈ −35◦ and φ =

90◦ − arctan(
√

2
2 ) ≈ 55◦ correspond to the case when the

magnetic moment is pointing to the midpoint of an edge or
aligned perpendicular to the face of the cube, respectively.
As the second case we use the situation where the magnetic
moment is perpendicular to the cube’s diagonal and makes
an angle � with a vector pointing from the center of the
cube to the midpoint of an edge [see Fig. 2 (right)]. Due to
symmetries it is only necessary to explore the region where
� ∈ [0◦, 30◦]. Note that in the given interval of angles there
are exactly two situations (φ = arcsin( 1

3 ) ≈ 19◦ or � = 30◦

and φ = − arctan(
√

2
2 ) or � = 0◦) when the orientations of

the magnetic moment are the same.
The content of this paper is divided into four sections. The

Sec. I is introduction followed by a Sec. II where theoretical
methods are described. The results are given in Sec. III and
conclusions and discussion in Sec. IV. This article contains
also two Appendices. Appendix A demonstrates approxima-
tions used to construct superball out of spherical particles. In
Appendix B it is shown how analytically energy is minimized

FIG. 2. Orientation of the magnetic moment μ. The left figure
corresponds to the first case and the right to the second case of
orientation of magnetic moment. In the first case we choose the angle
φ to be positive if μ points to the face and negative if it points to the
edge

in the case of two-cube chains and in Appendix C error intro-
duced by the dipole approximation is estimated.

II. THEORETICAL METHODS

To find energetically favorable structures we use two dif-
ferent methods. One is direct analytical or numerical energy
minimization and the other is molecular dynamics (MD) sim-
ulations with simulated annealing.

To find energetically favorable structures of hematite cubes
in an external magnetic field using energy minimization one
has to minimize the total energy of the system with constraints
that cubes do not overlap. Hematite has a larger density ρh =
5.25 g/cm3 than the solvent (water in [5] and our experiments,
ρs = 1.00 g/cm3), and thus the gravity effect is larger than
buoyancy. Therefore, hematite particles may sediment. Grav-
itational length has to be calculated to check whether this
happens [22]

lg = kBT

(ρh − ρs)ga3
, (1)

where kB is Boltzmann constant, T is temperature, g is grav-
itational acceleration, and a is the edge length of a hematite
cube. For the case of a > 1 μm and T = 300 K one ob-
tains lg < 0.1a. This means that all particles sediment and
form two-dimensional (2D) structures unless they are formed
during sedimentation process and do not disassemble during
collision with the bottom surface of a capillary.

The total energy Etot of the hematite cube system is the
sum of magnetic energy Emag and gravitational energy Eg. If
we assume that hematite cubes have a permanent magnetic
dipole moment μi and cubes are in a homogeneous external
magnetic field B, then magnetic energy of this system can be
written as

Emag =
∑

i

∑
j>i

Wi j −
∑

i

μi · B, (2)

where Wi j is the magnetic interaction energy between two
hematite cubes. For interaction energy we use the dipole
approximation as it significantly accelerates computations,
makes it feasible to do analytical calculations, and typically
introduces an error which qualitatively does not change any
conclusions:

Wi j = μ0

4π

[
μi · μ j

r3
i j

− 3(μi · ri j )(μ j · ri j )

r5
i j

]
, (3)

where ri j is the radius vector between centers of the ith and
jth cubes. Details of error estimation introduced by the dipole
approximation are given in Appendix C.

Gravitational potential energy depends on the orientation
of cubes. Hematite has a permanent magnetization M = 2.2 ×
103 A/m (μ = Ma3), and thus for a two-cube chain Eg �
(ρh − ρs)ga4, it is an order smaller quantity as compared to
the dipole magnetic energy (3). Therefore, gravitation is not
explicitly included in analytical calculations of energy. We
assume that all cubes have sedimented, calculate energetically
favorable structures, and reorient the calculated configuration
so that the gravitational potential energy is minimal. We as-
sume that every hematite cube touches the bottom surface of
a capillary. If all cubes in the chain touch with faces, then
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this is equivalent to a statement that all centers of cubes in
the chain are at the same height above the bottom surface of
a capillary. This statement is checked by comparing results of
MD simulations with gravity effects included and quasi-two-
dimensional MD simulations with only magnetic and steric
forces enabled. In quasi-two-dimensional simulation all cubes
are allowed to move only in the plane (can move in x, y
directions, but z coordinate is fixed) but all rotations are al-
lowed. For comparison we include also the three-dimensional
MD calculations without explicit gravity treatment. Here only
steric and magnetic forces are explicitly taken into account,
but the final configuration is rotated around axis parallel to
the magnetic field in a way that the potential gravitational
energy is minimal. In MD calculations this is equivalent to
a case where particles can move and rotate in all directions
(no constraints apart from overlapping).

1. Energy minimization

In our investigations we assume that all cubes are identi-
cal. All of them have the same edge length a and the same
orientation and magnitude of the magnetic moment μi. Thus,
it is beneficial to introduce dimensionless quantities: r̃i j = ri j

a ,

μ̃i = μi

μm
, Ẽtot = 4πEtota3

μ0μ2
m

, B̃ = 4πBa3

μ0μm
.

The equation for the total energy, which has to minimized,
in dimensionless units reads:

Ẽtot =
∑

i

∑
j>i

[
μ̃i · μ̃ j

r̃3
i j

− 3(μ̃i · r̃i j )(μ̃ j · r̃i j )

r̃5
i j

]

−
∑

i

μ̃i · B̃. (4)

The direct approach to minimize energy (4) for a given
φ or � and B̃ with a condition that no particles overlap
requires a nonlinear optimization with nonlinear constrains.
This is computationally too demanding for systems with more
than five particles. Fortunately, the computational costs can be
reduced significantly by a simple consideration. If two cubes
touch, then they touch with faces (touching faces are parallel).
This fact is confirmed by MD simulations described in the
next subsection. Such constraints lead to aggregates arranged
in a simple cubic lattice or formation of chains (can be with
kinks). However, this is not the case for other structures which
are not energetically favorable. Further in this paper we give
examples were cubes touch with edges or with a face and a
vertex (see, e.g., top figure of Fig. 1).

To compare results with experiments it has to be taken
into account that in experiment the shape of cubic particles
in colloid is not a perfect cube but rather a cube with rounded
corners also know as a superball (see Fig. 3). Shape parameter
q describes how much the corners are rounded. For hematite
cubes it typically is q ∈ [1.5, 2] [16,17]. Note that in the
literature often a shape parameter m = 2q is used to describe
a superball instead of the shape parameter q. The superball
with an edge length a in a particle centered coordinate frame
is defined by:

∣∣∣∣2x

a

∣∣∣∣
2q

+
∣∣∣∣2y

a

∣∣∣∣
2q

+
∣∣∣∣2z

a

∣∣∣∣
2q

� 1. (5)

FIG. 3. Visualization of superballs with different shape parame-
ters q. On the left q = 1.5 and on the right q = 2.

The value of a shape parameter q = 1 corresponds to a sphere
and the limit q → ∞ corresponds to a cube, thus values in
between are cubes with more or less rounded corners as can
be seen from Fig. 3. Visually looking at a superball with q = 2
we see that it is already a good approximation to a cube and
vice versa. However, it is not clear how large differences this
approximation introduces, e.g., for the energetically favorable
configurations. Thus, parallel to an energy minimization of
cubic particles also calculations with superball shaped parti-
cles with different parameter q are performed.

2. Molecular dynamics simulations

Every physical model has to be benchmarked; however,
in real experiments the orientation of the dipole moment is
unknown and it is thus hard to benchmark the results. Nu-
merical computer experiments, on the other hand, do not have
this ambiguity and thus are preferred over real experiments.
Probably the most suitable method for this task is molecu-
lar dynamics (MD) simulations. For this purpose we chose
to use the computer program ESPResSo 4.1.2 [24–26] as it
is well optimized; calculations are easily parallelizable and
magnetic interactions are included. The only difficulty is that
in ESPResSo 4.1.2 the steric repulsions are implemented only
for spherical or elliptical particles but not for cubes and su-
perballs with q ∈ [1.5, 2]. To overcome this limitation those
shapes have to be constructed out of spherical particles. To
construct a cube out of spheres one can use an approach pro-
posed in Ref. [27]; however, for a decent approximation one
needs about 100 spheres. It is easier to construct cubes with
rounded corners (superballs), especially with small values of
shape parameter q. A particularly elegant solution for this
problem is demonstrated in Ref. [23] where for q � 1.5 it was
proposed to do this with only 21 spheres (one real particle
and 20 virtual particles). Virtual particles in this case have no
mass, charge, and magnetic moment but interact with all other
particles with steric interaction (do not allow overlapping). To
calculate the motion of real particles in ESPResSo, the total
force and torque acting on the real and all virtual particles
belonging to that real particle are calculated and summed and
then trajectory is determined. Virtual particles on the other
hand are moved according to the motion of the corresponding
real particle.

As it can be seen by comparing Fig. 3 and Fig. 4, this
approximation is rather good for q = 1.5 but becomes worse
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FIG. 4. Superball with q = 1.5 (left) and q = 2.0 (right) approx-
imated with 21 spheres, as proposed in Ref. [23].

with increasing q. To overcome this, extra spheres have to
be added in the approximation as the curvatures at vertices
and edge midpoints become larger and radii of spheres thus
smaller. To simulate superballs with q = 2.0 we proceeded
the idea proposed in Ref. [5] and added two extra spheres
per edge. This then gives 45 spheres in total (for details see
Appendix A). To check whether a 45-sphere approximation is
sufficient we compare it to an approximation with 93 spheres.

To find the energetically favorable configurations with
ESPResSo 4.1.2 we are using simulated annealing. In other
words this means that the real particles are propagated by
solving Langevin equations and the temperature is slowly
decreased. Note that for a full model the gravity and the flat
bottom surface of a capillary are explicitly taken into account.
The Langevin equation for transnational components in our
case reads:

m
dv

dt
= −∇(Etot + VLJ) − γ v +

√
2γ kBT ξ (t ), (6)

where m is mass, γ is viscosity, kB is is Boltzmann’s constant,
T is the temperature, ξ (t ) is a white noise, and VLJ is a
repelling potential making sure that no two cubes overlap.
For steric repulsion we are using Weeks-Chandler-Anderson
potential [28].

III. RESULTS

We used two methods (energy minimization and MD
simulations) to determine the energetically favorable con-
figurations. To compare these two methods we performed
experiments with our experimental system, similarly to
Ref. [5], where the external magnetic filed is applied in the
plane perpendicular to the free fall acceleration direction.
From the result comparison we conclude that qualitatively the
same configurations are obtained with both methods. Quan-
titatively, there are small differences due to approximations
used. These differences will be discussed later in this section.
The MD calculations for high fields give the same results with
and without explicit gravity treatment. In the case without
explicit gravity treatment it is assumed that particles sediment
on a flat surface. This confirms that no extra error is introduced
using this assumption.

Also for most angles at strong magnetic fields the theoreti-
cally calculated configurations using quasi-two-dimensional
and three-dimensional calculations without explicit gravity

FIG. 5. Energetically favorable configurations for chains of four
and three cubes in the case of small magnetic fields and absent
gravity. The chains are straight and the shifts (how much the centers
of neighboring cubes are shifted as compared to the case where cubes
are on top of each other) are increased 100 times to make them
visible. The orientation of the magnetic moment is φ = 12◦.

treatment are identical. For three-dimensional calculation
there are no restriction apart form no overlapping of particles.
In quasi-two-dimensional calculation apart from no overlap-
ping it is also required that particles touch the bottom surface
of a capillary. In fact, the obtained configurations are the same
whenever energetically favorable configuration is a straight
chain without kinks in the no gravity case. For small magnetic
fields in this case there are some differences; however, they are
so small that it is not possible to measure them experimentally
or resolve in MD simulations. In MD calculations for high
fields there are small differences, but they arise due to the
superball approximation.

One has to note that simulated annealing simulations have
to be repeated many times to find the global minimum as the
system may get stuck in a local minimum if cooled too fast.
In general, for longer chains it is harder to find the global
minimum as there are more local minima. In all cases of
the moment orientation, when gravity is taken into account,
the energetically favorable configurations are chains of cubes.
This, however, is not the case when there is no gravity. When
φ ≈ 0◦, i.e., magnetic moment is along a diagonal of a cube
([111] direction), we confirm the findings of Refs. [27,29–31].
In this case without gravity cubes should form regions with
closely packed 2D cubic structures.

At small values of external field (or no external field)
we observe straight chains where each next cube is almost
exactly on top of the previous cube (see Fig. 5) similarly as in
experiment [1,5]. Note that the phrase “on top” is applicable

024605-4



ENERGETICALLY FAVORABLE CONFIGURATIONS OF … PHYSICAL REVIEW E 105, 024605 (2022)

only to Fig. 5. In the case of gravity, which is the case in
experiments, one has to rotate the chain such that the total
energy is minimal. In practice, all cubes then touch the bottom
surface with an edge or a face. For larger external magnetic
field values the chains rearrange (see Fig. 6) and magnetic
moments of each cube now are oriented parallel to the external
magnetic field.

Note that also values for � close to zero, i.e., in this case
� ∈ [0◦, 2◦) and φ ∈ (−35◦,−32◦) (rounded to the nearest
integer) the situation is slightly different. The energetically fa-
vorable chains for larger field values contain kinks [see Fig. 1
(top)]. Thus, those cases are analyzed separately. Overall three
different configurations are observed and are summarized in
the table below:

Energetically favorable
configuration When observed

Straight chain without shifts B < Bcrit and ∀φ, ∀�; ∀B and
φ ≈ 55◦

Straight chain with shifts B > Bcrit and φ ∈ (−32◦, 55◦);
B > Bcrit and � ∈ [2◦, 30◦]

Kinked chain B > Bcrit and φ ∈ [−35◦, −32◦);
B > Bcrit and � ∈ [0◦, 2◦)

A. Chains without kinks

From MD simulations and analytical or numerical cal-
culations we obtain that in the case of φ ∈ (−32◦, 55◦) or
� ∈ [2◦, 30◦] the energetically most favorable configuration
is a straight chain and it does not depend on the magnitude
of external magnetic field. If there is no gravity, then for
φ ∈ (−32◦, 2◦) actually other configurations are energetically
more favorable. As already mentioned, two different chain
configurations are observed. In one magnetic moments form
zigzag structure at low fields (below a critical value of the
external magnetic field Bcrit) as shown in Fig. 5 and in the
other magnetic moments are parallel to the external magnetic
field at high field values (above critical value of the external
magnetic field Bcrit) as shown in Fig. 6. The critical magnetic
field Bcrit , as can be seen from Fig. 7, depends on the orien-
tation of the magnetic moment and the length of the chain. In
dimensionless units it is in the range B̃crit ∈ (0.44; 0.7). For
hematite Bcrit ∈ (97; 150) μT. This is larger, but comparable
with the Earth’s magnetic field. The critical value Bcrit itself
only slightly varies with the angle of moment orientation. The
dependence on the number of particles in chain is more pro-
nounced. With an increased number of particles in the chain
it converges to some value, although not monotonically. The
critical value decreases by adding two particles to a chain with
an odd number of particles, but the critical value increases by
adding two particles to a chain with even number particles.

For small field values without gravity the energetically
favorable configurations are straight chains in both cases of
moment orientation. Two touching cubes are almost on top of
each other, but nevertheless the centers are slightly shifted.
This difference we call shifts (also b and c parameters in
Appendix B). Visually (not considering the orientation of
magnetic moment) the chains consisting of even number of

FIG. 6. Energetically favorable straight chains of four cubes in
the case of strong magnetic fields and without gravity. Case 1 on the
left (φ = 12◦). Case 2 on the right (� = 0◦).

cubes are symmetrical against the midpoint of a chain and
the chains containing odd number of cubes are antisymmetric
as one can see from Fig. 5. But these theoretically calculated
shifts are tiny and cannot be measured due to thermal fluc-
tuation nor the resolution of a microscope. If one now adds
gravity, then these tiny shifts almost completely disappear.
The total magnetic moment of a chain is parallel to the exter-
nal magnetic field

∑N
i=1 mi × B = 0. The chains consisting of

even number of particles are oriented along the magnetic field,
but chains consisting of odd number of particles make some
angle θ with the magnetic field (visually shown in Fig. 8).
This angle tends to zero with an increased number of particles.
The individual magnetic moments form the so called zigzag
structures. Every next cube is rotated by 180◦ around the axis
perpendicular to the face where cubes touche. This axis is
parallel to the external magnetic field for chains with an even
number of cubes.

0.44

0.46

0.48

0.50

−30−15  0  15  30  45

B
cr

it

�, �  [deg]

1. case
2. case

0.45

0.50

0.55

0.60

 2  4  6  8 10 12 14 16 18

number of particles

�=12�

FIG. 7. The critical value of magnetic field B̃crit for switching
from the first to the second chain configuration dependence on the
orientation of the magnetic moment and the length of the chain.
On the right only results for φ = 12◦ are presented as all other
orientations of moment show a similar behavior.
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1

2

1=| 2|=19.8°

B

B

B

=19.1°

FIG. 8. Configurations obtained in the MD simulation with sim-
ulated annealing for � = 0◦ and fields above Bcrit . As we decrease
the temperature with finite steps the global minimum not always is
found. Sometimes only a local minimum is found as shown on the
right.

For high values of magnetic field the configuration is
slightly different. In this case all individual moments are
oriented along the external magnetic field. The shape (not
considering the orientation of magnetic moment) of the con-
figuration is antisymmetric against the center of chain. In this
case unlike at low magnetic fields it is independent of even
or odd number of cubes in a chain. Unlike in the low field
case the shifts for most cases are experimentally determinable.
The shifts are also independent on the number of cubes in a
chain, thus the angle θ which makes orientation of a chain
with the external magnetic field is independent of the chain
length. In the absence of gravity the energetically favorable
configurations are shown in Fig. 6.

The obtained configurations in the case without gravity can
be rotated around any axis parallel to the external magnetic
field and the total energy does not change. In the case if
magnetic field is in the plane perpendicular to the gravity it
turns out that no additional calculations are necessary in both
cases of magnetic moment orientation. The most energetically
favorable configuration of the straight chain if there is no
gravity has to be found and the obtained configuration has to
be rotated around this axis such that gravitational potential
energy is minimal. The obtained configuration for φ = 12◦ is
shown in Fig. 9. One has to note that energy does not change if
one rotates the obtained configuration around the axis which
goes through the center of mass of the chain and is parallel
to the magnetic field by 180◦ angle. Therefore, unless θ 	= 0
(this is in all cases except for φ = 90◦ − arctan(

√
2

2 ) ≈ 55◦
as visible from Fig. 10), we have two energetically favorable
alignments of chains with the same energy. Those configu-
rations are mirror image of each other. Therefore, if for one

FIG. 9. Energetically favorable straight chain configurations of
four cubes with gravity and φ = 12◦ in the case of strong magnetic
fields. The chain can be aligned in two ways having the same energy.

configuration then angle between the magnetic field and chain
orientation is θ = θ̃ , then for the other θ = −θ̃ .

To compare with different methods (theory and experi-
ment) the obtained straight chain configurations, the angle
θ is probably the best quantity for this task. The angle θ

does not depend on chain length but only on the shape of
hematite particles and the orientation of magnetic moment.
For examined configurations we see that cube is a good ap-
proximation to a superball with q = 2.0 or vice versa, but
nevertheless this approximation may lead to an error of up
to 4◦ for some orientations of magnetic moment as visible
from Fig. 10 and Table I. Thus, it is important to know the
exact shape factor of particles and it should not differ too
much in the experiment to obtain good statics. In the case for
q = 1.5 already qualitatively different results may be obtained
for some orientations of magnetic moment.

B. Chains with kinks

We already mentioned that in the case if � ∈ [0◦, 2◦)
and φ ∈ [−35◦,−32◦) the energetically favorable solutions
in strong external fields and gravity are chains with kinks
[see Fig. 1 (top)]. Note that these are the structures which are
observed in experiments [1,5]. Therefore, we examine this in

 0
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FIG. 10. Dependence of positive angle θ on different orientations
of magnetic moment for superball particles with different shape
factor q. The cube corresponds to the limit when q → ∞.
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TABLE I. Calculated angles for three particle chains.

Angle straight chain Value Angle kinked chain Value

θ c ±21.7◦ θ c
1 = −θ c

2 ±23.5◦

θ sb ±18.4◦ θ sb
1 = −θ sb

2 ±20.9◦

θ 45 ±19.1◦ θ 45
1 = −θ45

2 ±19.8◦

higher detail. By performing simulated annealing simulations
in Espresso 4.1.2 for three particle chains we qualitatively find
only two configurations, as shown in Fig. 8. The large majority
are configurations with a kink [Fig. 8 (left)], but there are
some cases where also straight chains [Fig. 8 (right) and its
mirror image] are observed. This is because the configuration
with the kink has a lower energy and the simulated annealing
when cooled too fast does not always find a global energy
minimum. Angles θ in our analytical calculations, however,
slightly differ from MD simulation results. As for chains with
kinks this angle θ is not constant along the chain, it is better
to measure angles θi between each two neighboring particles,
as shown in Fig. 8. For larger chains one can also define the
most probable angle θ̄ . As there is quite a big variety of meth-
ods used, we introduce different superscripts to differentiate
them:

Superscript Meaning

c analytical calculation with cubes
sb analytical calculation with superballs

(q = 2.0)
exp experiment with superballs (q = 2.0)
45 MD sim. with superballs (q = 2.0, 45 spheres)
93 MD sim. with superballs (q = 2.0, 93 spheres)

In three particle case two angles θ1 and θ2, as indicated in
Fig. 8 (left), are measured. Calculated results for this three-
cube system are summarized in Table I.

In this particular case from Table I follows that the approx-
imation of superball in MD calculations introduces an error of
less than 2◦. This error is larger for the first case of moment
orientation. In some cases it can lead to a difference of up to
4◦. The value of θi for longer chains converges to a straight
chain orientation θ for cubes sufficiently far from the kink.
Thus, the most probable value measured in experiment should
be in the range |θ̄ | ∈ (18.4◦; 20.9◦). This in the error range
of dipole approximation match the experimental results [5].
However, in our experiments we observe that there are much
more straight three-cube chains than kinked ones. Also the
x-ray scattering experiment [5] suggests that these configu-
rations are not possible as hematite cubes in magnetic field
should be tilted close to 45◦ with respect to the horizontal
plane and touch the bottom surface with an edge. But for those
structures the tilt is close to 0◦ and the cube touches the bottom
surface with a face. Therefore, it is most plausible that energy
minimization cannot explain kink formation. From this we
have to conclude that in an experiment at room temperature
we do not observe energetically favorable configurations and
in our assumptions some effect is not included.
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FIG. 11. Histograms of the angle θ for straight cube chains with
φ = 12◦ at different strength of magnetic fields at room temperature
calculated from MD simulations. The graphs in the top row are for
the chain length of two (left) and four (right) at B = 0.064 mT,
which is the magnetic field of the Earth at the equator. The graphs
in the bottom row are for four-cube chains at different values of the
magnetic field. On the left the value of magnetic filed is slightly
below Bcrit , and on the right it is significantly higher than Bcrit

(B = 0.9Bcrit ≈ 0.10 mT and B = 6Bcrit ≈ 0.7 mT, respectively).

C. Finite-temperature MD simulations initialized
with energetically favorable configurations

In search for the missing effect we performed finite-
temperature MD simulations as in experiments at room
temperature cubes and ellipsoids [7,9] significantly fluctuate.
We initialized our calculations with energetically favorable
configurations depending on the chain length and the moment
orientation. To our surprise, these configurations were still
stable (no kinks where formed) at room temperature even
for chains with more then 20 cubes which is an upper limit
in our investigation. At the room temperature, compared to
calculations without thermal effects, the experiment and MD
simulations show that cube chains notably fluctuate and thus
chain orientation changes in time. This is more pronounced
for smaller magnetic fields and shorter chains. The result of
MD simulations for straight chains for φ = 12◦ at different
strengths of magnetic field are shown in Fig. 11. It can be seen
that the distribution of the angle θ is quite close to a normal
distribution. For longer chains and stronger magnetic fields,
which are below Bcrit , deviations from normal distribution can
be observed. In this case clusters are formed consisting of
two cubes with different magnetic moment orientation which
fluctuate stronger than individual cubes in the chain.

D. Experimental measurements of configuration stability

To confirm findings that energetically favorable con-
figurations are stable at room temperature, we perform
corresponding experimental measurements. The description
of the experimental setup was given in Ref. [11] (Riga setup).
In short, we use an inverted microscope (Leica DMI3000B)
equipped with a custom made coil system of three pairs of
coils and a video camera (Basler ac1920-155um). Power sup-
plies (KEPCO) provide a current for field generation, which
is controlled by a signal from DAQ card (NI). We use a self-
made LabView program to define the signal and synchronize
it with the image acquisition.
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FIG. 12. Left to right: Microscope images of a chain in B =
0.70 mT field at furthest deviations from mean position (field aligned
with vertical axis, indicated by blue arrow; chain direction as deter-
mined by algorithm used for field-chain angle calculation indicated
by green arrow). Two rightmost images: shape described by all posi-
tions taken by the chain in a sequence of 400 images under an applied
field B = 0.10 mT (second from right) and B = 0.70 mT (right).

As the magnetic fields of interest are small (on the order
of Earth magnetic field and smaller), we take special care of
field calibration. This includes canceling of unwanted para-
sitic fields sources, including Earth, equipment, and others.
To account for these fields, a magnetic sensor (HMC5883
GY-271 3V-5V Triple Axis Compass Magnetometer Sensor
Module for Arduino) was placed in the position of the sample
before each experiment, and then a current correction was
added in the LabView code for the applied magnetic field to
cancel the parasitic magnetic field. However, due to several
experimental constraints, we were limited to a precision of
	B ∈ (0.01; 0.03) mT. We complement this approach with
a further method of the field compensation, which relies on
the fact that hematite cube chains orient even in very small
external fields. That is, to improve the compensation, we try to
broaden the angle distributions of hematite cube chain orienta-
tions, by slightly altering the current correction. By searching
for the point when the distribution become the broadest we
were able to improve accuracy. Similarly, the direction of ap-
plied magnetic field, when its value is comparable or smaller
than the field of the Earth, can be more precisely determined
using angle θ which cube chains (consist of an even number
of cubes) make with the external field. Therefore, for small
magnetic fields the mean value of θ in the experimental graphs
was set to zero.

For experiments we use hematite cubes, which were pre-
pared and characterized as in Ref. [11], that is, cubes have the
edge length a ≈ 1.5 μm and shape factor q ≈ 2.0. To narrow
the cube size distribution, we apply an extra step of gravi-
tational sedimentation. Before every experiment, the sample
solution is mixed and the pH level of the solution restored.

The experimental procedure is as follows. We introduce
a small volume of cube suspension in a glass capillary (Vit-
rocom, liquid thickness 100 μm), seal it, and place it in
the microscope. To improve the resolution, we use an oil-
immersion 100× objective. Then, a suitable hematite cube
chain is centered in the field of view, selected external field is
applied and an image series of a straight chain, fluctuating due
to Brownian motion, is taken [see examples in Figs. 12(a)–
12(b)]. This is repeated for a repeating staircase magnetic field
(B ≈ 0.00 mT, B = 0.064 mT, B = 0.10 mT, B = 0.70 mT),
with the field being rotated by 45◦ at each field value change.
This pattern was used to minimize the chance of any history
being accumulated either by subjecting the chains to same
orientation of field for prolonged periods of time or magne-
tizing elements of the experimental system. Thus, every full
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FIG. 13. Experimentally measured histograms of angle θ for
straight cube chains at the same external magnetic fields as Fig. 11.
For small external magnetic fields the mean value of angle θ is set to
zero as cube chains allow to determine the direction of the magnetic
field more precisely than the magnetic sensor used in the experiment.

measurement of a sample consists of 24 combinations of field
value and angle, provided that the chain survives without at-
tracting other hematite cubes. Afterwards, the images of cube
chains are processed using MatLab to find their orientation
with respect to the field direction, and data is averaged over
multiple samples to obtain the final histograms.

A view at the cube chains and their experimentally
observed behavior under two magnetic field values is demon-
strated in Fig. 12. The experimentally measured histograms
are shown in Fig. 13. When comparing theoretical and ex-
perimental results we observe similar trends. However, the
experimental distributions are broader, which can be ex-
plained with the fact that we average over multiple different
samples. An increase of chain length or external magnetic
field narrows the distributions and above Bcrit we observe the
rearrangement of chains. Quantitatively, there is a small dis-
crepancy (≈1◦) for the mean angle in theory and experiment
at 0.7 mT. This, however, can be explained with the dipole
approximation error, the approximation to superball in MD
simulations, and the precision of angle determination, as well
as cube shape and size variations in experiments.

E. Randomly initialized finite-temperature MD simulations

The situation, however, is quite different when MD sim-
ulations at room temperature are initialized from random
configurations. Kinks are observed in all cases of the moment
orientation except for φ ≈ 55◦. Some typical chain structures
at high magnetic fields are shown in Fig. 14. This significantly
differs to a situation when simulations are initialized with
energetically favorable configuration, which is a chain without
kinks. When simulations are started from energetically favor-
able configurations no kinks are formed even when B > Bcrit .
Chains remain straight. To obtain a chain with kinks in MD
simulation from this initial condition, the magnetic field has
to be reduced to B 
 Bcrit and then increased to B � Bcrit .
This suggests that kinks are formed during chain formation.
The reduction of magnetic field to B 
 Bcrit from B > Bcrit

as well as an increase to B � Bcrit from B < Bcrit causes the
rearrangement of chains.

024605-8



ENERGETICALLY FAVORABLE CONFIGURATIONS OF … PHYSICAL REVIEW E 105, 024605 (2022)

FIG. 14. Chains with kinks obtained in room temperature
(300 K) in MD simulations for the second case orientations: � =
0◦, � = 20◦, � = 30◦ and for the first case orientations: φ = 12◦,
φ = 6◦ arranged from top to bottom. Note that � = 30◦ and φ =
arcsin( 1

3 ) ≈ 19◦ correspond to the same orientation of the magnetic
moment. A 93 sphere superball approximation is used to obtain these
results.

In all cases of the moment orientation except for φ ≈ 55◦
a cube in external magnetic field can be orientated in two
alignments (see Fig. 15) such that its total energy is minimal.
The second alignment can be obtained by rotating the cube
which is in the first alignment by 180◦ around an axis parallel
to the magnetic field. If in the process of chain formation,
two cubes or two-cube chains with the same alignment attach,
then a straight chain is formed. Similarly, if a cube or a chain
of cubes attaches to another cube with a different alignment
(two cubes which are shown in Fig. 15), then they form the
chain shown in Fig. 16 (right). As this configuration is not
energetically favorable and the thermal energy is sufficient for
one cube to change its alignment, the chain shown in Fig. 16

FIG. 15. Two alignments of cube which have the same minimal
total energy in an external homogeneous magnetic field.

FIG. 16. Two-cube chains. A cube chain with different align-
ments of cubes (left) and with the same alignment (right).

(right) or its mirror image is formed. Thus, in experiments and
room temperature MD simulations (even when simulation is
start from the configuration Fig. 16) only two-cube chains as
shown in Fig. 16 (right) are observed.

The situation, however, is different when two or more
element chains with different alignments attach. Now, in the
case of two two-cube chains, a four-cube chain as shown
in Fig. 17 is formed. In this case the thermal energy is not
sufficient anymore to rotate the whole two- or more- element
chain around the axis of magnetic field and thus such kinked
chains are observed in MD simulations and experiments. At
an increased temperature chains which attach become shorter
and therefore more kinks are formed. This is, in principle, an
entropy effect, as stated in Ref. [5].

For kinked chains the obtained values for the most probable
angles θ̄ at room temperature are close to the results for
angle θ for straight chains (difference is less than 1◦). This,
however, is just a lucky cancellation of errors: The thermal
fluctuations reduce the angle θ̄ but the magnetic interactions
increase. Nevertheless, angle θ at zero temperature can be
used to predict the value of θ̄ at room temperature. From MD
simulations we can confirm the findings theoretical findings
in Ref. [5] for the case of φ = 12◦. But the results of analyti-
cal calculation and MD simulation differ. With the simulated
annealing one finds that for the straight chains θ45 = ±16, 4◦,
however, the analytically calculated value for q = 2 is θ sb =
±19, 0◦. This suggests that with a better approximation used
in MD simulations the actual most probable angle should be
close to ±19, 0◦. Indeed, if we use a 93 sphere approximation
in MD simulations, then we obtain that for straight chains
θ93 = ±19, 3◦. This suggests that reason for good agree-
ment between MD simulations and experiment in Ref. [5]
is the cancellation of the errors—dipole approximation and
approximation to superball. Thus, a 45-sphere approximation
is better choice when dipole approximation is used to describe
experiment.

FIG. 17. Four-cube cube chain with a kink. It is formed by at-
taching two two-cube chains with different alignments.
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IV. CONCLUSION

In current work we examined equilibrium configurations
for both cases of the possible magnetic moment orientation
mentioned in the scientific literature but for all possible an-
gles. Also, unlike in previous works [29–31], we do not insist
that cubes have to touch the bottom surface with a face which
leads to different configurations and allows to explain the
reason for kink formation.

The first case mentioned in the literature is when the mo-
ment is in the plane defined by two diagonals of a cube and
the second is when the magnetic moment is perpendicular to
the cube’s diagonal. In both cases for any magnetic moment
orientation in the presence of gravity the energetically favor-
able configurations are chains of particles. Depending on the
strength of the external magnetic field (except for the case
when magnetic moment is perpendicular to the face of the
cube), two configurations are observed. The first configuration
is observed for the values below the critical magnetic field
value. The critical magnetic field Bcrit ≈ 0.1 mT is typically
larger but comparable with the magnetic field of the Earth.
In this case cubes arrange in straight chains and magnetic
moments form zigzag structures. The second configuration
is obtained for magnetic fields larger than the critical value.
In this case the magnetic moment direction is parallel to the
external magnetic field and the cube centers are shifted (in
2D), as compared to the previous case. In all cases at high
fields the structure reassembles staircases with the same step
width. For the case of � ∈ [0◦, 2◦) and φ ∈ (−35◦,−32◦) the
equilibrium structure is the staircase structure but with kinks.

These kinked staircase structure are actually similar to
structures that are observed in experiments [1,5]. However,
these are not the structures that are observed in experiment, as
in this case there is a different most probable angle between
orientation of the chain and the magnetic field than measured
in Refs. [1,5] and also the x-ray scattering experiment [5]
suggests that such an orientation of the magnetic moment is
not possible. Therefore, in experiments at room temperatures
we plausibly do not observe energetically favorable structures
but rather structures with minimal free energy.

In experiments [1,5] and from room temperature MD
simulations (random initial conditions) typically observed
structures are chains with kinks. Kink formation is not ener-
getically favorable. The formation of kinks is an effect which
arises due to an interplay of energy and thermal fluctuations.
Kinks are formed during assembling process of chains. This
is confirmed with room temperature MD simulations. If MD
simulation is started from an energetically favorable chain
without kinks even at high magnetic fields, no kinks are
formed. Chains fluctuate more if the external field is smaller.
To obtain a chain with kinks, the magnetic field has to be
reduced to B 
 Bcrit and then increased to B � Bcrit . The
reduction of magnetic field to B 
 Bcrit form B > Bcrit as
well as an increase to B � Bcrit from B < Bcrit causes the
rearrangement chains.

For a single cube or a chain of cubes there are two align-
ments in magnetic field with the same minimal total energy.
Therefore, during sedimentation process cubes (and short
chains of cubes that are formed) are aligned in two alignments
with approximately the same population. During the assembly

process when the single cube attaches to an already-formed
short chain of cubes or a single cube with a different alignment
the thermal energy is sufficient for rotation of one cube and a
straight chain is formed. However, when already a small chain
of two or more cubes attaches to a longer chain with different
alignment, the thermal energy is not sufficient for rotation and
a kinked structure is formed. This explains why there are kinks
in the chains and thus the observations in Ref. [5].

In the current paper we also investigated the distribution
of angle θ between the short straight cube chain alignment
direction and the static external magnetic field in experiments
and MD simulations at room temperature. Such chains are
building blocks of swarms in rotating magnetic fields [11].
In the magnetic field of the Earth the thermal fluctuations are
very pronounced and therefore distributions are very broad.
For two-cube chains one observes that displacement can be
more than 50◦. By increasing chain length or external mag-
netic field the distributions become narrower, and above a
critical value of the magnetic field we observe a rearrange-
ment of chains. For 0.7 mT the σ (θ ) for individual four-cube
chains is less than 2◦. The distributions are quite close to the
normal distributions both in the experiment and in the MD
simulations; however, experimental distributions are broader
as averaged over many different chains. There is a small
discrepancy (≈1◦) for the mean angle between theory and
experiment at 0.7 mT; however, this can be explained with
the approximations and the precision of angle measurements
in experiment.
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APPENDIX A: SUPERBALL OUT OF SPHERES

To construct a superball with q = 2.0 out of spheres we are
using approaches suggested in Refs. [5,23]. Although we are
using a 45-sphere approximation instead 46 (it is not clear to
the authors of this paper where this extra sphere is placed in
Ref. [5]).

One sphere with radius Rc = a
2 is placed at the center

followed by 8 spheres with radius Rv placed at the vertices
of superball and 12 spheres with radius Re placed at the
midpoints of the edges. These spheres in Figs. 4 and 18 are
depicted with blue, orange, and white, respectively. The radius
and position of the sphere is chosen such that at vertices
and edge midpoints the shape and curvature matches with
superball’s.

The radii Rv (q), Re(q) and corresponding radius vectors
of centers of those spheres Pv (q), Pe(q) can be calculated
analytically. This can be done by parametrizing superball
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FIG. 18. Superball with q = 2.0 approximated with 45 spheres
(left) and with 93 spheres (right).

cross-section borders for x > 0, y > 0, y > 0 (see Fig. 19):

x = a

2
cos(t )

1
q ; w = a

2
2

q−1
2q cos(t )

1
q ; (A1)

y = a

2
sin(t )

1
q ; z = a

2
sin(t )

1
q , (A2)

and calculating curvature at t = π
4 or t = arctan[2−q/4] for

edge midpoint and vertices respectively as in Ref. [23]. The
general expression especially for radius vectors Pv is rather
lengthy and therefore we will not present here. For q =
2 one finds that Re(2) = 4√2

4 a, Rv (2) = 4√3
6 a and Pe(2) =

{ 1
3 4√2

a, 1
3 4√2

a, 0} and Pv (2) = { 1
3 4√3

a, 1
3 4√3

a, 1
3 4√3

a}.
To make this approximation suitable for larger values of

q, we add two extra spheres to every edge (magenta spheres
in Fig. 18) as was done in Ref. [5]. We chose to place those
spheres at t ≈ π

30 in the wz plane. The radius of those spheres
can be obtained from principal curvatures of a superball at
given point, which can be obtained by parametrizing the sur-
face of the superball similarly to (A2) and using expressions
from Ref. [32] for calculations. This then gives 45 spheres
in total and one option is shown in Fig. 18 (left). To explain
the differences with our analytical calculations we repeat MD
simulations also with an approximation of 93 spheres, which
is shown in Fig. 18 (right). There we added symmetrically 8
spheres to each face. The radius of the newly added spheres
has to be smaller than calculated from the curvature at this
point. It turns out that in this case the radius is limited by the
fact that the centers of the spheres should not be too close.

[units of a] [units of a]

FIG. 19. Superballs with q = 2.0 cross-section view in the plane
z = 0 (figure left) and with the plane defined by two diagonals of
superball (figure right). Here w is diagonal in xy plane and formally
can be written w = x(x̂ + ŷ).

Otherwise, the potential energy of the steric repulsion for the
superball becomes so large that the round-off errors start to
play a crucial role.

APPENDIX B: ENERGY MINIMIZATION

In this section we demonstrate how the total energy of a
two-hematite-cube system can be minimized analytically in
the absence of gravity for the first case of moment orientation.
This is the simplest case, but similarly it can be done for all
other cases, although the number of variational parameters
increases and the equations become more complicated for
more particles.

The coordinates of the center for one cube can be chosen
arbitrarily, so we put it at the origin of a coordinate system
and assign index zero to it. The radius vector of the first
cube’s center is r̃0 = {0, 0, 0}. Instead of rotating the first
cube, we fix the orientation of the first cube and rotate the
magnetic field such that the energy is minimal (this cannot
be done in the case of gravity, but it leads to the same
results as stated before). The orientation of the first cube
is chosen such that all edges are parallel to x, y, or z and
the orientation of magnetic moment is μ̃0 = {s, s,

√
1 − 2s2}

with 0 � s �
√

3/3 for non-negative angles φ and μ̃0 =
{s,√1 − 2s2, s} with

√
3/3 < s �

√
2/2 for negative angles

φ. The value of s for given angle φ can be easily determined as
μ̃0 ∼ {1, 1,

√
2 tan(arctan(

√
2/2) + φ)}, which leads to s =√

2/2 cos(arctan(
√

2/2) + φ). If we do so, then the magnetic
field has two free parameters. It is convenient to write the
form B̃ = B̃{sin(η) cos(ζ ), sin(η) sin(ζ ), cos(η)}, where 0 �
η � π and 0 � ζ < 2π . Note that angle ζ in not defined if
sin(η) = 0.

Two cubes which touch with faces can be arranged in
36 different ways (each cube has six faces). The number of
the combination can be reduced by a factor of two as the
ordering (which is the first and which is the second cube) is
not important; however, there are still 18 cases. At this point
one can argue or check numerically that the energy is minimal
if the first cubes top face touches the bottom face of the second
cube and the second cube can be rotated by an arbitrary angle
ξ ∈ [0; 2π ) around the z axis. Thus the magnetic moment and
radius vector of the second cube can be written as

μ̃1 = {
s[cos(ξ ) − sin(ξ )], s[cos(ξ ) + sin(ξ )],

√
1 − 2s2

}
,

(B1)

r̃1 = {b, c, 1}, r̃1 0 = r̃1 − r̃0 = {b, c, 1}, (B2)

with b, c ∈ [−1, 1]. For the positive angle φ due to symmetry
actually c = b. For negative angles φ, the parameter ratio is
c/b = √

1 − 2s2/s, which is the ratio of corresponding com-
ponents of μ̃0.

As positive and negative angles φ require slightly different
treatment, let us look at positive angles φ. Note that expres-
sions for energy below are given also for negative φ. To find
the energetically favorable configuration, we have to find the
global energy minimum for every value of s ∈ [0◦,

√
3/3] by

varying parameters η, ζ , ξ , and b. The total energy in this case
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FIG. 20. Left: Roots of Eq. (B4) and analog equation for nega-
tives values of φ. Right: Functions F (s) and G(s) for first and the
second minima.

reads:

Ẽtot = μ̃0 · μ̃1

r̃3
1 0

− 3(μ̃0 · r̃1 0)(μ̃1 · r̃1 0)

r̃5
1 0

− (μ̃0 + μ̃1) · B̃.

(B3)

Analytically, this is a hard task in general but, however,
doable in this case as the function Ẽtot (η, ζ , ξ , b) for fixed s
and B̃ has only up to 12 extremes in given parameter range. To
find the global minimum one can search extreme points, de-
termine which of them is the local minimum from the Hessian
matrix, and choose the one with the lowest energy. Extremes
P = {η, ζ , ξ , b} can be found by setting partial derivatives of
Ẽtot (η, ζ , ξ , b) equal to zero and solving the resulting equa-
tions simultaneously. In this case it is particularly simple, as
the partial derivative to ζ leads to

s cos(ξ/2) sin(η)[sin(ζ − ξ/2) − cos(ζ − ξ/2)] = 0, (B4)

which means that one have to solve only system of three
coupled equations. Choosing either cos(ξ/2) = 0 or sin(η)
(one implies other) leads to the first local minimum P1

min =
{0,∀ζ , π, 0} and up to five other extremes. Note that as
sin(η) = 0 parameter ζ is arbitrary and thus the term “point”
is used in a broader sense. The energy of this configuration is

Ẽ1
tot (s, B̃) = F1(s) + G1(s)B̃, (B5)

F1(s) =
{−2 + 2s2, for 0 � s �

√
3/3,

−1 − s2, for
√

3/3 � s �
√

2/2,
(B6)

G1(s) =
{−2

√
1 − 2s2, for 0 � s �

√
3/3,

−2s, for
√

3/3 � s �
√

2/2.
(B7)

By choosing sin(ζ − ξ/2) = cos(ζ − ξ/2) one is
able to find the second local minimum P2

min = {arcsin
(
√

(2)s), π/4, 0, b+} and up to five other extremes. Here b+
is a positive solution of

b(2 − 7s2) − s
√

1 − 2s2 + 8b2s
√

1 − 2s2 + b3(−1 + 6s2)

= 0 (B8)

in the range b ∈ [0◦, 1]. As one can see from the left graph of
Fig. 20, for all values of s in a given range there is exactly one
solution.

The energy of the second minimum can be written formally
in the form

Ẽ2
tot (s, B̃) = F2(s) + G2(s)B̃, G2(s) = −2. (B9)

The function F2(s) is a rather complicated expression and
therefore it is shown in right graph of Fig. 20. From Fig. 20
one can clearly see that F2(s) � F1(s) and G1(s) > G2(s),
therefore for all s except s = 0 at small fields B̃ the first
minimum is the global minimum of the system, but at
stronger fields the second minimum is the global minimum.
One can find the critical value of B̃ by setting E1

tot (s, B̃) =
E2

tot (s, B̃). The determined value matches exactly with the
one determined numerically and shown in Fig. 7. For s = 0
the parameter ξ is not defined and therefore both minima
are the same point and there is only one energetically favor-
able configuration independent of B̃.

For more particles and in the case of gravity the analytical
equation become impractical to solve; therefore we search for
the global minimum numerically using the Simplex algorithm
of Nelder and Mead [33] implemented in the GNU Scientific
Library [34]. For longer chains without kinks one finds that
there are still two configurations—one which is favorable at
low fields and one which is at field strength above critical
value.

APPENDIX C: ESTIMATION OF ERROR CAUSED
BY DIPOLE APPROXIMATION

Hematite is a weak ferromagnetic material and has a
permanent spontaneous magnetization Ms = 2.2 × 103 A/m
[5,6]. Micron-sized hematite particles can be synthesized in
different shapes: cubes, disks, ellipsoids, peanuts, and others
[1–4]. These particles have high coercivity (up to 2 T) [6,35]
and those particles can be single domain up to 15 μm size
[6]. Let us estimate whether our 1.5-μm particles are single-
domain particles or not. From Ref. [35] we estimate that
coercivity of our sample is Bc = 550 mT (we obtain similar
value calculated from measured magnetization curve of a our
samples). Thus, by applying an external magnetic field of
0.7 mT in experiment, the orientation of the magnetic moment
in cubes does not change.

Assuming uniaxial anisotropy we can estimate that the
uniaxial anisotropy constant is

Ku = MsBc

2
= 6.05 × 102 J/m3. (C1)

Now, using the open-source micromagnetic software
OOMMF [36], we can check whether our particles are
really single-domain ones. To do this we assume an exchange
stiffness of A = 10 pJ/m.

From calculations we see that, independent of the orienta-
tion of the easy axis of magnetization, our 1.5-μm cubes are
still single-domain. Assuming the same values for Ku and A,
we can check that particles remain single-domain even up to
15 μm as stated in Ref. [6].

For 1.5-μm and larger hematite particles with cubic shapes
we do not observe that the energetically favorable state is
a pronounced flower state [37,38] as for magnetite. In our
case the magnetization is almost constant. In the case of
the constant magnetization it is convenient to introduce the
magnetostatic potential φi(r) due to the magnetostatic surface
charges σil [39,40]. For hematite it is possible as it has rela-
tively high anisotropy and weak magnetization, and therefore
the volume distributions of magnetostatic charges for hematite

024605-12
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FIG. 21. Two-cube magnetic interaction energy (exact and using
dipole approximation) vs. shift b (see Appendix B for definition) for
magnetic moment orientation φ = −25◦ and φ = 12◦.

are negligible even when magnetization is not perpendicular
to the face of a cube.

The surface charge is constant on each cubes face and can
be calculated using σil = Mi · nil , where nil is ith cube, lth
face outer normal. The analogy to electrostatics allows us to
calculate the exact interaction energy of two cubes,

Wi j =
6∑

l=0

∫∫
σ jlφi dS, (C2)

with

φi(r) =
6∑

l=0

∫∫
σil√

(r − r′)2
d2r′. (C3)

Unfortunately, in the general case it is difficult numerically
to evaluate those integrals, and analytical calculations are very
lengthy and complicated. However, for the case when cube
faces and edges are parallel (this corresponds to the restric-
tion that angle ξ ∈ 0; π/2; π ; 3π/2 in the Appendix B), in
Ref. [39] there is an analytical expression available. The exact
energy expression is quite lengthy (more than hundred terms),
and therefore we refer to Ref. [39] and mention that in Eq. 18
of Ref. [39] there is small typo. The term ln(R − 1) should be
replaced with ln(R − Y ). This allows us to estimate what the
error dipole approximation introduces.

Comparing the exact two-cube magnetic interaction energy
with the results calculated using the dipole approximation, we
confirm the findings in Ref. [39]. The dipole approximation
introduces a relative error which for some cube configurations
is as large as 18%. The error is the biggest in the case when
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FIG. 22. Estimation of error that introduces the dipole approx-
imation for angle θ in the case of cubic hematite particles by
recalculating Fig. 10 using an exact magnetic interaction.

the magnetic moment is along the z axis (φ ≈ 55◦) and the
second cube is on top of the first one. Eighteen percent is
significant, but, concerning configurations, the dipole approx-
imation leads only to quantitative changes but not qualitative
ones. This can be understood from Fig. 21, which shows how
the two-cube magnetic interaction energy changes when one
cube is shifted for two different magnetization orientations.
Qualitatively the potentials are similar. The dipole approxi-
mation for small shifts overestimates the interaction energy
and as a result the interaction potentials in the dipole ap-
proximation are deeper and narrower. Also the position of
the potential minimums shifts. However, the minima count
is the same and therefore the dipole approximation does
not change on account of the local minima in Appendix B
and moreover the shift ration c/b is still exactly the same;
therefore, qualitatively, there are no changes. Quantitatively,
the dipole approximation, when the shift in b is not very
small, overestimates angles θ as can be seen in Fig. 22. The
overestimation can be as large as 5◦ for φ ≈ 35◦ or � ≈ 0◦.
For φ ≈ 12◦, which should be the actual orientation of the
magnetic moment in a hematite cube, the dipole approxima-
tion overestimates the angle θ by ≈3◦. This is not negligible;
however, knowing this, it is possible to account for this error.

It is also clear that the dipole approximation causes distri-
butions for angle θ at finite temperatures to be more narrow,
as potentials (Fig. 21) in the dipole approximation case are
deeper and narrower. However, the dipole approximation error
in this case is an order smaller than the error which is in
experiment due to cube size distribution.
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