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Many microorganisms take a chiral path while swimming in an ambient fluid. In this paper we study the
combined behavior of two chiral swimmers using the well-known squirmer model taking into account chiral
asymmetries. In contrast to the simple squirmer model, which has an axisymmetric distribution of slip velocity,
the chiral squirmer has additional asymmetries in the surface slip, which contribute to both translations and
rotations of the motion. As a result, swimming trajectories can become helical and chiral asymmetries arise in
the flow patterns. We study the swimming trajectories of a pair of chiral squirmers that interact hydrodynamically.
This interaction can lead to attraction and repulsion, and in some cases even to bounded states where the
swimmers continue to periodically orbit around a common average trajectory. Such bound states are a signature
of the chiral nature of the swimmers. Our study could be relevant to the collective movements of ciliated
microorganisms.
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I. INTRODUCTION

Understanding the locomotion and the swimming be-
havior of biological microswimmers has drawn substantial
attention from scientists [1–7]. There exists a rich litera-
ture exploring the novel phenomena emerging from cellular
motility at the submillimeter scale [8–10]; nutrient trans-
port [11,12], stochastic dancing of Volvox algae [13–15],
formation of biofilm [16–19], stochastic swimming [20–22],
swimming of sperm cells [5,23,24] are a few examples. These
studies have inspired the design of artificial microswimmers
for microsurgery and targeted drug delivery [25]. Differ-
ent microswimmers employ different motility mechanisms to
swim in a fluid. We are motivated by motion based on ciliary
propulsion of many microorganisms.

Many ciliated microorganisms can actively swim due to
the periodic motion of hair-like appendages such as motile
cilia attached on their surface [26]. Swimming corresponds
to a net motion, relative to the background fluid, resulting
from nonreciprocal shape changes of the swimmer [27–29].
The beating of cilia on the surface of organisms such as
Paramecium or Opalina generates intricate wave patterns,
called metachronal waves, which enable the body to swim
in a fluid [30]. In addition to biological swimmers, artifi-
cial microswimmers have recently attracted much interest.
Several artificial microswimmers use different self-propulsion
mechanisms that involve the generation of surface flows
[21,31–38].

The hydrodynamics of the resulting propulsion was stud-
ied with a simple model called squirmer, introduced by
Lighthill [1] and further developed by Blake and others [2,39].
A squirmer is a spherical object moving in a fluid, driven by a
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pattern of slip velocity on its surface. Such a squirmer is force
free, but is associated with a force dipole. As a result, the
squirmer can swim in the fluid and generate a characteristic
hydrodynamic flow pattern. Though the squirmer was first de-
veloped as a model to understand ciliary propulsion, it is now
widely used to study other types of microswimmers broadly
classified as pullers and pushers [6,40]. While pullers have an
extensile force dipole, resulting, e.g., from the front part of the
body, pushers have a contractile force dipole stemming, e.g.,
from the rear part of the body [7].

In simple versions of the squirmer model, the surface
slip of the squirmer is axisymmetric [1,2] which leads
to swimming in a direction along the axis of symmetry.
Many microswimmers, for example, marine zooplankton,
propel along a chirally asymmetric path and generate flow
field nonaxisymmetric in nature. Such chiral swimmers ex-
hibit rotational motion and often move along helical paths
[23,24,41–44]. A recent experimental study shows that ar-
tificially designed swimmers which are generating chiral
flow, propel along a helical path in a surfactant solu-
tion [45]. Understanding the role of chirality in the motility
of microswimmers has therefore drawn significant atten-
tion [46–52]. Many biological phenomena, e.g., plankton
bloom in ocean [53], nutrient uptake by swimming organisms,
bioconvection [54,55], transient clustering [56], cancer and
tissue development [57], amoebae aggregation due to starva-
tion [58] result from the collective motion of microorganisms
and motile cells. For example, hydrodynamic bound states
have been discussed when a pair of bottom-heavy Volvox
swimming near a substrate [13–15]. Therefore, it is important
to understand the results of interactions between swimmers
for example via the generalized flows.

In this paper, we briefly discuss the general chiral squirmer
model and derive the solution of the hydrodynamic flow field
around the body. We then study the motion of a pair of chiral
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FIG. 1. Examples of surface slip velocity patterns of a sim-
ple squirmer (a) and a chiral squirmer (b) in the body-fixed
reference frame n, b, and t. Parameter values are V = v(0, 0, 1),
� = v(1/

√
2, 0, 1/

√
2)/a, and βr

20 = v/3. For the simple squirmer
(axisymmetric), γ r

20 = 0 and for the chiral squirmer γ r
20 = v/3. All

other coefficients are set to zero.

squirmers that exhibit complex swimming trajectories as they
interact via the hydrodynamic flow field. The rest of this
article is organized as follows. In Sec. II we introduce the
chiral squirmer model and the governing equations. Hydro-
dynamics of a single chiral squirmer is discussed in Sec. III.
The combined behavior of two chiral squirmers is presented
in Sec. IV. The main conclusions are provided in Sec. VI.

II. HYDRODYNAMIC FLOW OF A SQUIRMER

To discuss the swimming of microorganisms in the low
Reynolds number regime, inertial forces can be neglected. In
an incompressible, Newtonian fluid, the hydrodynamic flow
field obeys the Stokes equation [59],

η∇2u = ∇p, (1)

where η is the viscosity, u is the velocity field, and p is the
pressure field which plays the role of a Lagrange multiplier to
impose the incompressibility constraint ∇ · u = 0.

A squirmer is a rigid spherical body of radius a. On its
surface, we prescribe a surface slip velocity S(θ, φ) which
is tangential to the surface and parameterized by the polar
and azimuthal angle θ and φ, respectively, in a body-fixed
frame. The latter is defined by three orthogonal unit vectors
attached to the sphere center n, b, and t; see Fig. 1. It is
convenient to express this surface slip pattern using gradients
of spherical harmonics that form a basis for tangential vectors
on the surface [59]. The slip velocity can then be expressed in
the form

S(θ, φ) =
∞∑

l=1

l∑
m=−l

{ − βlm ∇s
[
Pm

l (cos θ ) eimφ
]

+ γlm r̂ × ∇s
(
Pm

l (cos θ ) eimφ
)}

, (2)

where ∇s is the gradient operator on the surface of the
sphere defined as ∇s = eθ ∂/∂θ + (1/ sin θ ) eφ∂/∂φ, r̂ is
the unit vector in the radial direction, Pm

l (cos θ ) eimφ are
non-normalized spherical harmonics, where Pm

l (cos θ ) de-
notes Legendre polynomials. The complex coefficients βlm

and γlm are the mode amplitudes of the prescribed surface
slip velocity. We introduce the real and imaginary parts
of these amplitudes as βlm = βr

lm + i m β i
lm and γlm = γ r

lm +
i m γ i

lm with complex conjugates β∗
lm = (−1)mβl,−m and γ ∗

lm =
(−1)mγl,−m, respectively.

The velocity and rotation rate can be calculated di-
rectly from the surface slip profile Eq. (2) [60]. They can
be expressed in the body fixed reference frame as V =
2(βr

11, β i
11, βr

10)/3 and � = (γ r
11, γ i

11, γ r
10)/a, respectively.

Without loss of generality, we can choose the body-fixed
reference frame (n, b, t) such that t points in the direction
of motion. With this choice, we have βr

11 = β i
11 = 0 and

we write βr
10 = 3v/2 such that v = |V| is the speed of the

swimmer. The translation velocity, the rotation rate, and the
rate of energy dissipation Q in the flow field can then be
expressed as [60],

V = v t, (3)

� = γ r
11

a
n + γ i

11

a
b + γ r

10

a
t, (4)

Q = 12πaη

(
v2 + 4a2

9
|�|2

)
. (5)

Equation (5) reveals that a chiral squirmer dissipates more
energy than a nonchiral one due to additional flows associated
with rotations.

In Eq. (2) the modes of surface slip described by γlm (for
m �= 0) break the axial symmetry of the flow profile. For
the case γlm = 0, the swimmer is nonchiral because modes
corresponding to the coefficients βlm do not generate an
azimuthal part of the flow field. Considering only the modes
βl0 in Eq. (2), setting all other modes to zero, one recovers the
axisymmetric squirmer model which generates translational
motion only [1,2]. Figure 1(a) shows an example of such
an axisymmetric surface slip pattern. The former pattern is
axisymmetric concerning the t axis. An example of the asym-
metric surface slip of a chiral squirmer is shown in Fig. 1(b).

III. HYDRODYNAMICS OF A SINGLE CHIRAL
SQUIRMER

A. Hydrodynamic flow field

For the prescribed surface slip of the chiral squirmer, we
can calculate the corresponding flow field. Using a laboratory
reference frame (lf) which is at rest with respect to the fluid
away from the swimmer, the flow field, the pressure field, and
the vorticity are obtained as

ulf (r)= 3v

2

a3

r3

[
P1(t · r̂) r̂− t

3

]
+3 βr

20

(
a4

r4
− a2

r2

)
P2(t · r̂) r̂

+ βr
20

a4

r4
P′

2(t · r̂)[(t · r̂)r̂ − t] − γ r
20

a3

r3
P′

2(t · r̂)t × r̂,

(6)

plf (r) = −2η βr
20

a2

r3
P2(t · r̂), (7)

ωlf (r) = ∇ × ulf (r)

2
, (8)

where t is the swimming direction, r is the distance from the
center of the swimmer where the flow field is determined,
r̂ = r/r is the radial vector, P2(x) denotes a second-order
Legendre polynomial, and P′

2 = dP2/dx with x = t · r̂ =
cos θ . Note that in Eq. (6) we have written terms only up to l =
2 and do not consider higher order contributions, since they
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FIG. 2. Velocity flow fields are generated in the laboratory frame
by a squirmer [top panels, (a) and (b)] and a chiral squirmer
[bottom panels, (c) and (d)]. The velocity profiles are projected on
xy plane for z = a (left panels), and on yz plane for x = a (right
panels). The planes are shown to touch the squirmer (indicated in
green) at the black dot. Parameter values are V = v(0, 0, 1), � =
v(1/

√
2, 0, 1/

√
2)/a, and βr

20 = v. For the simple squirmer (ax-
isymmetric), γ r

20 = 0 and for the chiral squirmer γ r
20 = v. All other

parameters are set to zero. The color code provides the magnitude of
the flow field.

decay more rapidly with r. Additionally, to have a minimal
model, we have ignored l = 2 modes with m �= 0. However, it
is straightforward to include the additional terms in the anal-
ysis. Note that in Eq. (6), the terms o(1/r4) decay faster than
lower order terms, and hence their contribution is negligible
to the flow field at a large distance. The flow field in the body
frame (bf) can be obtained from that in the laboratory frame
(lf) as ubf (r) = ulf (r) − V − � × r.

Figure 2 depicts examples of the laboratory frame flow
field generated by a simple squirmer [top panels, Figs. 2(a)
and 2(b)] and by a chiral squirmer [bottom panels, Figs. 2(c)
and 2(d)]. The flows shown are projected on planes that touch
the squirmer at one point (black dots). The flow field of a
simple squirmer is axially symmetric concerning the z axis,
i.e., the direction of propulsion [Fig. 2(a)]. The flow pattern in
the yz plane is mirror symmetric to the x and y axes [Figs. 2(a)
and 2(b)]. In contrast, the chiral squirmer produces a rotational
flow around the z axis with clockwise sense of rotation when
viewed from the top for z > 0 [Fig. 2(c)] and counterclock-
wise for z < 0 (not shown). Note that for z = 0, no chiral
component exists in the flow. In the yz plane, there is no mirror
symmetry as a result of chirality [Fig. 2(d)]. Also note that the
l = 1 modes do not generate chiral flow patterns. However,
they generate a body rotation � of the chiral squirmer. Chiral
contributions to the flow stem from terms with l � 2 such
as the contribution with the term ∼γ r

20/r3 in Eq. (6). The
dominant term in the far field is proportional to ∼βr

20/r2,
which corresponds to a Stokes doublet and implies the action
of a force dipole on the fluid [2]. Thus, for βr

20/β
r
10 > 0 the

(a) (b)

FIG. 3. (a) Swimming path of a squirmer (straight line) and a
chiral squirmer (helix) for the same parameter values as in Fig. 1. The
swimming velocity and the rotation rate are indicated. (b) Schematic
representation of two chiral squirmers in the laboratory frame of
reference.

chiral squirmer is a puller and for βr
20/β

r
10 < 0, it is a pusher.

For an illustration, see the 3D flow field of a puller and pusher
in Figs. 4(a) and 4(b).

B. Path of a chiral squirmer

The equations of motion of the chiral squirmer determin-
ing the swimming path q(t ) and its instantaneous orientation
(n, b, t) read in the laboratory frame,

q̇ = V,

⎡
⎢⎣

ṅ

ḃ

ṫ

⎤
⎥⎦ = � ×

⎡
⎢⎣

n

b

t

⎤
⎥⎦, (9)

where the dots denote time derivatives. For time-independent
coefficients βlm and γlm, V and � are constant when described
in the body frame. The angle χ between V and � obeys
χ = cos−1( V · �

|V||�| ). For V ‖ �, we get χ = 0, and the resulting
swimming path is a straight line; see Fig 3(a). In this case,
the swimmer rotates around the axis of motion. For χ = π/2,
the chiral squirmer moves in a circular path in a plane (not
shown). For other values of χ , the path of a chiral squirmer is
a helix; see Fig 3(a). Using the velocity and rotation rate of the
swimmer, one can calculate the curvature κ0 = |� × V|/|V|2
and the torsion τ0 = |� · V|/|V|2 or alternatively the radius
r0 = κ0/(κ2

0 + τ 2
0 ) and the pitch p0 = τ0/(κ2

0 + τ 2
0 ) of the

helical swimming path. Without loss of generality, we assume
that the squirmer rotates in the n-t plane, i.e., we set γ i

11 = 0 in
Eq. (4), with the magnitude |�| = v/a. With this choice, we
can write its components as γ r

11/a = (v/a) sin χ , γ i
11/a = 0,

and γ r
10/a = (v/a) cos χ .

IV. HYDRODYNAMIC INTERACTION OF TWO
CHIRAL SQUIRMERS

Having discussed the flow field and motion of a
chiral squirmer in the laboratory frame, we can now focus on
the motion of a pair of hydrodynamically interacting chiral
squirmers. We consider the situation where the swimmers are
far apart than their diameter; subsequently, the superposition
of the flow fields can provide an excellent approximation to
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FIG. 4. [(a), (b)] Flow around a puller and a pusher. [(c)–(f)] Represent the numerically obtained swimming behaviors (states) of a pair of
hydrodynamically interacting chiral squirmers. Different symbols represent different states. Square symbol= bounded state (BS), closed circles
= monotonic divergence state (MD), open circles = divergence state (D), closed triangles = monotonic convergence state (MC), open triangles
= convergence state (C), and cross symbols represent the situation where swimmers move parallel to each other. The initial positions for the
swimmers are set to q1 = (9, 9, 0)a and q2 = (3, 3, 0)a. Swimmers have the same initial velocity V1 = V2 = v(0, 0, 1) and rotation rate �1 =
�2 = v (cos χ, 0, sin χ )/a, which depends on the angle χ . [(h)–(l)] The corresponding trajectories of the states, for the values χ = π/3 and
(λ1, λ2) = v(1,−1) for BS, χ = 5π/12 and (λ1, λ2) = v(−2, 2) for MC, χ = π/6 and (λ1, λ2) = v(−2, 2) for C, χ = π/3 and (λ1, λ2) =
v(−1, 1) for MD, and χ = 5π/12 and (λ1, λ2) = v(−1, −1) for D. (g) The corresponding distance R, scaled by the radius of the swimmer
a, between the swimmers is plotted as a function of time t , scaled by τ = v/a.

the combined flow and permits to study hydrodynamic in-
teractions [39]. As a result, a given chiral squirmer obtains
an additional contribution to its velocity and rotation rate
due to the flow field induced by the other swimmer. Thus,
the equations of motion for swimmer 1 in the presence of
swimmer 2 read

q̇1 = V1 + u2(q12, n2, b2, t2),⎡
⎢⎣

ṅ1

ḃ1

ṫ1

⎤
⎥⎦ = [�1 + ω2(q12, n2, b2, t2)] ×

⎡
⎢⎣

n1

b1

t1

⎤
⎥⎦, (10)

where u2(q12, n2, b2, t2) and ω2(q12, n2, b2, t2) are the
velocity field and vorticity created by swimmer 2 at the posi-
tion of swimmer 1, as in Eqs. (6) and (8). The time-dependent
distance between the swimmers is given by R = |q12| = |q1 −
q2|; see Fig. 3(b). A corresponding equation holds for swim-
mer 2. Therefore, we see that the unperturbed velocity and
rotation rate of a swimmer gets modified due to the velocity
field and vorticity, respectively, of the other swimmer.

Using Eq. (10), we numerically calculate the trajectories
of a pair of chiral swimmers and investigate their combined
behavior; see Fig. 4. We consider chiral swimmers hav-
ing translational velocities of equal magnitudes, i.e., |V1| =
|V2| = v. The rotation rates of the swimmers are in general
different and read �1 = v(sin χ1, 0, cos χ1)/a for swimmer
1 and �2 = v(sin χ2, 0, cos χ2)/a for swimmer 2. Modifi-
cation in χ1 and χ2 changes the corresponding torsion and
curvature of the swimmers’ helical trajectories. Additionally,
the flow field of one swimmer influences the motion of the

other swimmer. As mentioned earlier, l > 1 modes in the
velocity field, Eq. (6), play a vital role in the hydrodynamic
interaction between the swimmers. Thus, we choose the l = 2
modes corresponding to swimmer 2 as 3βr

20 = 3γ r
20 = λ1 and

similarly for swimmer 2 as 3βr
20 = 3γ r

20 = λ2. Note that for
λ1 �= λ2, the swimmers differ in their chiral flows that they
generate. Thus, variation in χi and ±λi (i = 1, 2) determine
the nature of the interaction between the chiral squirmers
and gives rise to several interesting swimming characteristics.
We have considered various possible initial configurations for
the swimmers. Here we present only the planar configura-
tion, where both the swimmers start initially on the xy plane,
separated by a distance d , moving in the positive z direc-
tion. This particular choice of the configuration recovers the
known behaviors exhibited by two simple squirmers (without
chirality) and some additional exciting behaviors discussed
below. Note that swimmers get enough time to interact in
this configuration, whereas it may not be the case in other
configurations.

A. State diagram in the χ-λ plane

We start from initial positions q1 = (9, 9, 0)a and q2 =
(3, 3, 0)a of the squirmers with t1 and t2 in the z direction, and
n1 and n2 in the x direction. Note that the distance between
the swimmers is larger than the radius a of the swimmers.
We choose χ = χ1 = χ2, i.e., the relative orientations of the
swimmers with respect to their motion are the same, and
λ = |λ1| = |λ2|, i.e., the strength of the hydrodynamic flow
fields of both the swimmers are identical. Consider the sub-
cases, i.e., pusher-pusher: (−λ1,−λ2), puller-puller: (λ1, λ2),
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pusher-puller: (−λ1, λ2), and puller-pusher: (λ1,−λ2). Thus,
by varying the strengths of χ and λ, we have observed differ-
ent behaviors of two hydrodynamically interacting swimmers;
see Fig. 4. For example, (1) bounded state (BS), where the
swimmers spiral around each other and move synchronously
with a distance that changes periodically, (2) monotonic con-
vergence (MC), where the swimmers approach each other
and reach a minimum distance at which near field interac-
tions become more dominant over the far-field interactions,
(3) convergence (C), where the swimmers attract each other
after some transient behavior, (4) monotonic divergence
(MD), where the distance between the swimmers increases
monotonically as they move together, and (5) divergence (D),
where the swimmers diverge after a transient attractive behav-
ior. Figures 4(c)–4(f) depict the detailed state diagrams, the
examples of the observed states are showed in Figs. 4(h)–4(l),
and the corresponding distance as a function of time is plotted
in Fig. 4(g).

The peculiar bounded state is a result of the system’s
chiral nature, which can be observed only for the asymmetric
combination of two swimmers, i.e., either puller-pusher or
pusher-puller. Except for the bounded state, the other states
have also been reported for the simple swimmers that move
either in a straight line or a circular path [39,61–63]. These
states can be observed for either the symmetric or asymmetric
combinations of two swimmers. Note that when the swimmers
exhibit the monotonic convergence or convergence behavior,
the distance reduces as they approach each other. Below a
certain distance, the far-field approximation becomes inaccu-
rate, and the near-field becomes dominant. A rigorous analysis
of the near-field interaction between two chiral squirmers will
be subjected to future work.

To investigate the robustness of the observed bounded
states, we have considered various initial configurations of
the swimmers. However, we have found that bounded states
are observed only if the swimmers oriented approximately
in parallel (side-by-side) configuration initially. For other
initial conditions, the swimmers do not stay in proximity
long enough to influence each other’s motion. Therefore,
the contact time between the swimmers is shorter, and they
do not exhibit the bounded state. As the chiral squirmers
move in helical trajectories, their x and y (planar) components
of the helical trajectories oscillate as x(t ) 
 r0 sin(
t ) and
y(t ) 
 r0[1 − cos(
t )], where r0 is the radius of the helix
which is a function of velocity and rotation rate (
) of the
chiral squirmer. During the bounded state, swimmers ex-
hibit in-phase oscillations when they are close to each
other and anti-phase oscillations when far away; see Fig. 5.
Similar behavior can be observed for the y components
of the flow field (not shown). Note that the observed
bounded states are stable even with small perturbations
to λ and χ which are ε1 ∼ 5v/24 and ε2 ∼ 0.01π/24,
respectively.

The influence of initial distance between the swimmers
on the bounded state is discussed in Sec. V. We have
observed that the chiral paths but not the chiral flows in-
fluence the bounded state. Also, by setting λ1,2 = 0, i.e., in
the absence of the l = 2 modes in the flow field, swim-
mers become neutral (neither pullers nor pushers), and they
move in their respective directions without changing their

FIG. 5. Numerically obtained, the scaled x component of the
flow field ux , Eq. (6), and the scaled distance R between the swim-
mers as a function of scaled time t when the swimmers exhibit the
bounded state. u1x (u2x ) corresponds to flow field of swimmer 1 (2)
at the position of swimmer 2 (1). The parameter values are same as
in Fig. 4(h).

orientations. A similar behavior is reported also for axisym-
metric squirmers [62].

B. State diagram in the λ-λ plane

In this case, we consider χ1 = χ2 = π/3 and study the
effect of the hydrodynamic field of one swimmer on the
other. Figure 6 depicts the hydrodynamic behavior of two
swimmers with varying λ1 and λ2. We found that interaction
depends on the swimmer type, i.e., pusher or puller set by
the sign of λ1,2. For example, for the choice λ = −λ1 = λ2

swimmers exhibit a bounded state for the puller-pusher com-
bination (see top right panel in Fig. 6) but show a monotonic
divergence state for the combination of pusher-puller (see top
left panel in Fig. 6). This altered behavior is because of the
asymmetry in the flow patterns about the direction of motion
exhibited by chiral swimmers of puller and pusher nature.
Note that the flow pattern of an axisymmetric puller is mirror

FIG. 6. Numerically obtained swimming behaviors of a pair of
hydrodynamically interacting chiral squirmers, one with the strength
λ1 and the other one with λ2. Here we set χ1 = χ2 = π/3. Symbols
are same as in Fig. 4.
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FIG. 7. Numerically obtained swimming behaviors of a pair of
hydrodynamically interacting chiral squirmers, one with the orienta-
tion χ1 and the other with χ2. Here we set |λ1| = |λ2| = v. Symbols
are same as in Fig. 4.

symmetric, about the swimming direction, to the flow pattern
of its counterpart, a pusher. However, in chiral swimmers, the
flow patterns of puller and pusher are not mirror symmetric
to each other. Thus, the puller-pusher combination gives a
different behavior compared to the puller-pusher combination
at fixed λ1 and λ2 values. The same is reflected in Fig. 6.
Note that only puller-pusher combinations of chiral swimmers
exhibit bounded states but not nonchiral swimmers. For the
other combinations, i.e., pusher-pusher or puller-puller, de-
pending on the strength of λ1 and λ2, a pair of chiral swimmers
exhibit the states such as C, MC, D, and MD. Similar states
have been reported in the case of a pair of axisymmetric
swimmers [39,61,62]. Also, note that the observed bounded
states are stable even with a small perturbation ε1 ∼ 5/24 to
λ1 and λ2.

C. State diagram in the χ-χ plane

Here we study the interaction between two swimmers by
varying their respective initial angles between velocity and
rotational axis, i.e., χ1,2 at time t = 0, by setting λ1 = λ2 = v.
Varying χ induces different directions of the rotational axis
with respect to the velocity of the swimmer. Note that χ

does not influence the magnitude of swimmers’ rotation rate;
however, it influences the velocity field and vorticity. There-
fore, when two swimmers interact hydrodynamically, their
collective behavior is dictated by their respective χ values.
This gives rise to different swimming states; see Fig. 7. In
a puller-pusher or pusher-puller combination, if the net rota-
tion rates of both the swimmers are equal, i.e., χ1 = χ2, the
swimmers get attracted to each other, giving rise to either
bounded or monotonic convergence states. If the net rotation
rates are different, the swimmers mainly repel each other, giv-
ing rise to divergence and monotonic divergence states. Note
that the observed bounded states are stable even with a small

FIG. 8. Numerically obtained swimming behaviors of pusher-
puller type chiral swimmers with different initial positions. The
corresponding initial (t = 0) distance is R0. (a) For q1 = (9, 9, 0)a
and q2 = (3, 3, 0)a [as in Fig. 4(e)], (b) for q1 = (12, 12, 0)a and
q2 = (3, 3, 0)a, (c) for q1 = (20, 20, 0)a and q2 = (3, 3, 0)a, and
(d) for q1 = (60, 60, 0)a and q2 = (3, 3, 0)a. Swimmers have the
same initial velocity V1 = V2 = v(0, 0, 1) and rotation rate �1 =
�2 = v (cos χ, 0, sin χ )/a, which depends on the angle χ . Symbols
are same as in Fig. 4.

perturbation ε2 ∼ 0.01π/24 to χ1 and χ2. Interestingly, apart
from the case χ1 = χ2, interaction of the squirmers flips about
χ1 = χ2 = π/4 and shows symmetric pattern; see Fig. 7.

V. INFLUENCE OF THE INITIAL CONFIGURATION OF
THE SWIMMERS

To get the stability of the observed states as a function
of the initial (t = 0) distance R0 between the swimmers,
we consider a pair of pusher-puller type chiral swimmers
as a test case. As before, we keep the initial velocity and
rotation rate the same for both the swimmers and vary the
initial distance between them (see Fig. 8). Interestingly, B and
MD states are stable even with the varying distance between
the chiral swimmers. For lower R0, C and D states appear
between the B and MC states [see Fig. 8(a)]. However, as
R0 increases, swimmers exhibit mainly B and MD states. In
general, the tendency of the swimmers is either repulsive or at-
tractive. In purely repulsive situations, swimmers exhibit MD
states. However, if swimmers tend to attract each other, the
swimming behavior can be classified as C, MC, D, or B based
on their far-field interactions. As R0 increases, the closest dis-
tance that the swimmers can approach increases. Accordingly,
the nature of the interaction between swimmers changes with
varying R0. With increasing R0, the flow field of the swimmers
prohibits them from approaching close to each other. Thus,
swimmers do not exhibit C and D states in this situation,
leaving mainly B and MD states in the state diagram. For
χ = π/2, swimmers show attractive behavior at lower R0

values, and at higher R0, they move parallel to each other.
In the other combination of swimmers, e.g., pusher-pusher or
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FIG. 9. [(a)–(c)] Stability of the bounded (B) and monotonic
convergent (MC) states as a function of initial orientations at a fixed
distance R0 = 6

√
2 between the swimmers. Note that the initial body

frame of reference of swimmer 1 (n1, b1, t1) is aligned with the
laboratory-frame of reference. However, (n2, b2, t2) of swimmer 2
is rotated with respect to the frame of swimmer 1. Rotation about
t2 axis is ψ1, rotation about b2 axis is ψ2, and rotation about n2

axis is ψ3. For the B state we have chosen λ1 = 2, λ2 = −2, and
χ1 = χ2 = π/3. For the MC state we have chosen λ1 = −2, λ2 = 2,
and χ1 = χ2 = π/8.

puller-puller, MD states do not alter concerning R0. However,
for intermediate R0, swimmers mostly remain in the D state.
If R0 is very high, the swimmers never approach each other
at a distance to interact effectively (gray cross states in the
state diagrams). Note that for R0 ∼ 103, the hydrodynamic
interaction becomes ineffective.

While throughout the study, we considered parallel
swimming configurations, a question may arise how does
the initial relative orientation of the swimmers influence
the swimming dynamics and, in particular, the stability of
various swimming states that they exhibit. We perturb the
initial configuration by keeping one of the swimmers’ body
frame of reference (n1, b1, t1) aligning with the laboratory
frame (x, y, z) while the body frame of the other is rotated
slightly. Rotation about t2 axis is ψ1, rotation about b2 axis is
ψ2, and rotation about n2 axis is ψ3. We have observed that
the perturbation in the orientations does not influence the D,
MD, and C states much. However, it influences the B and
MC states; see Fig. 9. Note that B and MC states are stable
even with a small change in the initial relative orientations
of the swimmers. For example, the bounded state is stable
within the limits, (−0.006π/24) � ψ1 � (0.007π/24),
(−0.007π/24) � ψ2 � (0.007π/24), and (−1.4π/24) �

ψ3 � (π/24). Similarly, for the monotonic convergence
state, (14π/24) � ψ1 � (2π/24), (−1.9π/24) � ψ2 �
(0.9π/24), and (−0.9π/24) � ψ3 � (1.5π/24). However, if
the orientation angles are high, B and MC states are converted
to divergence states.

VI. CONCLUSIONS

Using the chiral squirmer model, a generalization of
the well-known squirmer model, we have investigated the
dynamic behavior of two chiral squirmers coupled hydro-
dynamically. A chiral squirmer exhibits a chiral asymmetry
of the surface slip velocity due to which it has both linear
and rotational motion. The coupling of linear and rotational
motion of the swimmer leads to a helical swimming path.
We found that when a pair of chiral squirmers interact
hydrodynamically, they can exhibit various types of mo-
tion. We first reestablished the well-studied behaviors in the
case of a pair of simple axisymmetric squirmers [39,61,62].
However, we found situations in which two swimmers en-
tered a bounded state and moved jointly on helical paths.
This situation is related to swimmers’ chiral nature, and we
found it only for the asymmetric combination of pusher and
puller type swimmers. These behaviors might be related to
the planar oscillatory movements reported for three-sphere
swimmers, which also stem from rotational contributions
in the hydrodynamic interactions but lack chirality [64].
Bound states of rotating swimmers have been previously re-
ported for a pair of Volvox algae that rotate and interact
hydrodynamically near a substrate in the presence of grav-
ity [13–15]. In this case, the observed bounded states are
due to the combined effect of hydrodynamic interaction be-
tween the spinning bodies, lubrication force between them
when they close by, and the gravity. However, in the cur-
rent study, the observed bounded states are because of the
chiral nature of the swimmers and their corresponding heli-
cal trajectories. The significance of bounded motion lies in
its possible role in fertilization in an adverse environment.
Notably, throughout this work, we assume constant surface
squirming motion or slip velocity. However, in general,
microorganisms may alter their squirming velocity in the pres-
ence of a nearby microswimmer.

Our model could be applicable to study the migration and
the collective behavior of ciliated microorganisms and artifi-
cial swimmers [33,65–68]. It can also be further extended to
study chemotaxis [23,24,69] or phototaxis [44,70], where the
hydrodynamically coupled active swimmers move against a
chemical gradient or a light source. As in the case of sperm
cells [23,24], the presence of an external stimulus may regu-
late the amplitudes of the slip velocity in the chiral squirmer
model and may ultimately lead to steering towards a stimulus.
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