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Bistability of a helical filament confined on a cylinder
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The natural configuration of an intrinsically curved and twisted filament is uniquely a helix so that it can be
referred to as a helical filament. We find that confining a helical filament on a cylinder can create a bistable state.
When c0R = 0.5, where c0 is the intrinsic curvature of filament and R is the radius of cylinder, the phase diagram
for the stability of a helix contains three regimes. Regime I has a small intrinsic twisting rate (ITR) and exhibits
a bistable state which consists of two isoenergic helices. In regime II , the filament has a moderate ITR and the
bistable state consists of a metastable low-pitch helix and a stable nonhelix. In regime III , the helix is unstable,
owing to a large ITR. A similar phenomenon occurs when c0R ∼ 0.5. Monte Carlo simulation confirms these
conclusions and indicates further that there are bistable nonhelices in regime III . This bistable system offers a
prospective green material since the wide range of parameters and distinctive configurations for bistable states
favor its realization and application.
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I. INTRODUCTION

A bistable material has two equilibrium states so can stay
in either of two states and switch between them in a control-
lable way. Owing to this fantastic property, these materials
have been widely used as memory, oscillators, multivibrators,
or switches in sensing, information processing, spintronics,
and smart materials. For instance, because of a low energy
cost in keeping different colored state, bistable material is
an idea choice for a display [1–4]. Therefore, to search
for new bistable material and the property of new material
have attracted considerable attentions for decades in material
science. Meanwhile, understanding the conformational and
mechanical properties of a filament is a significant issue ow-
ing to its crucial importance in either macroscopic objects
such as pillars or microscopic objects such as nanotubes or
biopolymers [5–16]. Moreover, confined materials are ubiq-
uitous and crucial in various fields. A confined material is
usually referred to as a material which cannot move freely in
three-dimensional (3D) space so that it includes both one and
two-dimensional (2D) materials [17] since these materials can
be adsorbed on a substrate or confined on a chain or inside
a nanotube. For instance, a single monolayer of graphene or
2D transition metal dichalcogenides can be exfoliated from
multilayers or grown from solutions or obtained by deposit-
ing some molecules into a substrate [18–20]. However, many
biopolymers in vivo are subjected to various constraints, such
as being absorbed on some substrates or moving in a crowd
environment or confined inside some cells [21–52]. MreB
inside rod-shaped (cylindrical) bacteria gives such an exam-
ple [35–52]. MreB and MreB homologs are actin homolog
proteins and are found in all rod-shaped bacteria [36,40,42].
They play important roles in lots of cellular functions, such
as the regulation of cell shape, chromosome segregation, de-
termination of cell polarity, and organization of membranous

organelles [35,37,40,42]. In particular, MreB is essential to
maintain the shape of a rod-like cell, as their disruption leads
to cell rounding. It was reported that MreB filaments have
a persistence length 5 to 10 times larger than bacterial cell
size [35,41] so that the cell provides a strong constraint on
MreB.

A confined material often exhibits significantly different
property from that of the unconfined material. For instance,
a 2D solar cell can have much higher efficiency than that of
the bulk one. Another example is that MreB is intrinsically
straight, i.e., free of external force its ground state configu-
ration (GSC, or the configuration with the lowest energy) is
a straight line. Indeed, MreB is straight when it is expressed
within fission yeast [45]. However, within a cell, MreB can
be either a helix or a ring [35–40,42,44,46–51]. Moreover, it
has been reported that confining a helical filament on a plane
yields a bistable system [53] so is considerably different from
its 3D counterpart. Here a helical filament is referred to as
an intrinsically curved and twisted filament since its natural
or force-free GSC is uniquely a helix [10]. It is reasonable to
expect that other forms of confinement can result in similar
phenomenon and a helical filament confined on a cylinder is
naturally a candidate worth of a close examination. In this sys-
tem, in the limit of a zero radius (R) of cylinder, the filament
must be straight. However, c0R � 1 results in a natural helix
with radius = R, where c0 is the intrinsic curvature (IC) of
the filament, since the confinement becomes futile. What will
occur when 1 > c0R > 0? In this paper, we report that the
competition and cooperation between intrinsic property and
geometric constraint can bring about a new bistable material.
Using variational technique and Monte Carlo simulation, we
find that when c0R = 0.5 and the twisting rigidity is greater
than the bending rigidity, the filament can form a bistable state
(BS) which consists of two isoenergic helices or a metastable
low-pitch helix and a stable nonhelix or two nonhelices. When
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c0R ∼ 0.5 it still has a BS though two helices are no longer
isoenergic. It offers a prospective green material since to keep
the filament staying in one of two configurations in a BS does
not need external force, and a wide range in parameters for
such a system make it easier be realized than a 2D system so
is more practical.

The paper is organized as follows. In the next section we
set up the elastic model for a helical filament. It follows a
section to derive static equations, i.e., the equations to de-
termine GSC of the filament, and find their helical solutions.
In Sec. IV we derive stability criterion for helical configura-
tion. In Sec. V we present analytical results for bistability.
In Sec. VI we report results obtained from Monte Carlo
simulation to support our analytical conclusions. Section VII
completes the paper with conclusions and discussions.

II. MODEL

A. Continuous model

The configuration of a filament is determined by the shape
of its centerline and the twist of its cross-section around the
centerline. Denoting the arclength of centerline as s and the lo-
cus of centerline as r(s), the configuration of a filament in 3D
space can be described by a triad of unit vectors {ti(s)}i=1,2,3,
where t1 and t2 are oriented along the principal axes of the
cross-section, t3 ≡ ṙ is the tangent to the centerline and the
symbol “·” represents the derivative with respect to s [5–10].
The orientation of the triad is determined by the general-
ized Frenet equations ṫi = ω × ti [5–10,54], where the vector
ω = (ω1, ω2, ω3) represents curvature and torsion parameters.
Moreover, ti and ω can be represented by Euler angles θ , φ,
and ψ as [5–10,55]

t3 = (sin φ sin θ,− cos φ sin θ, cos θ ), (1)

ω1 = sin θ sin ψ φ̇ + cos ψ θ̇, (2)

ω2 = sin θ cos ψ φ̇ − sin ψ θ̇, (3)

ω3 = cos θ φ̇ + ψ̇. (4)

The main advantage of using Euler angles is that it is relative
easier to find some exact results, as we can see later.

In 3D space, the energy of an isotropic and uniform fila-
ment with finite intrinsic twisting rate (ITR = ω30) and c0 can
be written as [5–10]

E =
∫ L

0
Eds, (5)

E = k

2
[(ω1 − ω10)2 + (ω2 − ω20)2] + k3

2
(ω3 − ω30)2, (6)

where k is bending rigidity, k3 is twisting rigidity, ω10 and

ω20 are components of c0 (c0 =
√

ω2
10 + ω2

20), L is the total
contour length and a constant so the filament is inextensible.
This model is valid for both macroscopic and microscopic
filaments and is often used to describe a semiflexible biopoly-
mer. For instance, for a dsDNA at temperature T = 298K ,
k/kBT ≈ 50 nm, k3/kBT ≈ 75 nm where kB is the Boltzmann
constant, and ω30 ≈ 1.76 nm−1 [11,12]. The unique GSC of
the model in 3D space is a helix with tan θ = c0/ω30 and
radius R0

h = c0/(c2
0 + ω2

30) [9,10].

Equation (5) ignores external force or torque. Applying a
torque (�) along the axis of filament yields an energy density
−�ω3 [56]. But since k3/2(ω3 − ω30)2 − �ω3 = k3/2[ω3 −
(ω30 + �/k3)]2 − (ω30 + �/2k3)�, � plays a role of effective
ω30 so we ignore it in calculation but it can be useful in ap-
plication since � can be replaced by binding cross-section in
two ends. Moreover, let ω10 = c0 cos α0 and ω20 = c0 sin α0,
it is straightforward to show that α0 adds only a constant in ψ

so we also ignore α0 henceforth.
Confining the filament on a cylinder applies a constraint

on r so x = R(1 − cos φ) and y = −R sin φ [56,57]. It follows
φ̇ = sin θ/R [56,57] and E can be rewritten as

E = k

2

[
(θ̇ − c0 cos ψ )

2 +
(

sin2 θ

R
− c0 sin ψ

)2
]

+ k3

2

(
ψ̇ + sin θ cos θ

R
− ω30

)2

. (7)

B. Discrete model

Using standard variational technique we can derive static
equations for GSC and find their helical solutions exactly,
as we will report in Sec. III. The static equations are non-
linear differential equations so they have multiple solutions
and since it is very difficult to find the general solution, these
exact results are not yet enough to decide GSC or helices may
be only metastable. Moreover, the property of a microscopic
filament may be sensitive to thermal fluctuation and the con-
tinuous model represents the limit of a long filament so that
its conclusion may demand a correction for a short one.

To clarify these problems, we discretize the continuous
model and perform Monte Carlo simulation. In discrete
model, a filament consists of N straight and inextensible rods
of length d0 joined end to end. Replacing θ (s) by θi, ψ (s)
by ψi, θ̇ (s) by �θi/d0 ≡ (θi+1 − θi )/d0, ψ̇ (s) by �ψi/d0 ≡
(ψi+1 − ψi )/d0, the reduced energy becomes

ET ≡ E/kBT

= 1

2

N−1∑
i=1

[b(�θi − c0 cos ψi )
2 + b(sin2 θi/R + c0 sin ψi )

2

+ b3(�ψi + sin θi cos θi/R − ω03)2], (8)

where b ≡ k/d0kBT and b3 ≡ k3/d0kBT . We also scale the
length by d0, i.e., let d0 = 1 so L = N . In this convention,
we can no longer let R = 1 so that to compare with the exact
calculations, we need to replace c0 by c0R and ω03 by ω03R.
In simulation we apply hinged-hinged boundary conditions,
i.e., angles at both ends are free, so that the filament can
switch freely among different configurations. We equilibrate
every sample for 2 × 106 Monte Carlo steps (MCS) before
performing average, and MCS for thermal average of a sample
is up to 2 × 108 but the results are the same when MCS
� 107. Moreover, the initial configuration of every sample
is randomly set to avoid bias. The thermal average will be
denoted as 〈...〉.
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III. STATIC EQUATIONS AND HELICAL SOLUTIONS

For a filament with large k and k3 or at a low T , we
can ignore thermal effect and find stable configuration by
minimizing E . Extremizing E results in the following static
equations:

∂E
∂θ

− d

ds

∂E
∂θ̇

= ∂E
∂ψ

− d

ds

∂E
∂ψ̇

= 0. (9)

Explicitly, they are

4θ̈ + 4(c0 sin ψ − k3 cos 2θ )ψ̇ + (1 − k3) sin 4θ

+ 2 sin 2θ (2c0 sin ψ − 1) + 4k3ω30 cos 2θ = 0, (10)

k3ψ̈ + (k3 cos 2θ − c0 sin ψ )θ̇ + c0 sin2 θ cos ψ = 0. (11)

For convenience in numerical calculation, we let R = 1 and
k = 1 in Eqs. (10) and (11). Equations (10) and (11) are
nonlinear differential equations so that in general they have
multiple solutions but it is very difficult to find their general
solutions. However, it is easy to obtain the helical solution
since owing to symmetry, a helix in the model implies to take
θ = θh as a s-independent constant. Without lose of generality,
we let π/2 � θH � 0 so sin 2θH � 0 and define zr ≡ z(L)/L
so zr = cos θh for a helix. The pitch is the height of one
complete helix turn measured along the axis of helix so is
proportional to zr .

At c0 = ω30 = 0, the unique GSC of the filament is a
straight cylinder [10]. Moreover, when c0 = 0, ω30 �= 0 and
θ = θh, from Eqs. (7)–(11), it is straightforward to find that
the twist energy is zero and θ is decoupled from ψ so we
reach the same result as that at c0 = ω30 = 0.

However, finite c0 and ω30 result in remarkably different
results. Taking θ = θh, we can find that either ψ = ψh = π/2
or 3π/2 gives a solution for Eqs. (10) and (11), and let v =
cos 2θh = 2z2

r − 1, Eqs. (7)–(10) become

A = [(1 − k3)v ± 2c0 − 1]
√

1 − v2 + 2k3ω30v = 0, (12)

Eh = 1

2

[
k3

(
ω30 −

√
1 − v2

2

)2

+
(

±c0 − 1 − v

2

)2
]
. (13)

The negative sign before c0 is due to ψh = 3π/2. However,
exact calculations show that ψh = 3π/2 always results in a
rather large Eh and stability analysis reveals that it always
gives a unstable state, and similarly there is not bistable
helices when ω30 < 0. Therefore, we will ignore the cases
with ψh = 3π/2 and ω30 < 0 henceforth. Equation (12) also
confirms that Eqs. (10) and (11) must have multiple solutions.

IV. STABILITY CRITERION

Excluding ψh = 3π/2, Eq. (12) still has four solutions for
v but physically v must be a real number. Even v is real, the
helix can be still unstable since it can correspond to either a
maximum or a saddle point in E . To examine stability of a
helix, we linearize Eqs. (10) and (11) by setting θ = θh + �θ ,
ψ = ψh + �ψ and keeping the terms up to the first order to
obtain

�̈θ + (c0 − k3v)�̇ψ + G�θ = 0, (14)

FIG. 1. Eh vs v when c0 = 0.5, k3 = 1.5 and ω30 = 0.03 (solid
red), 0.07 (black dashed), 0.15 (green dotted), and 0.2 (blue dash-
dotted). Reduced units are used.

2k3 �̈ψ +2(k3v − c0)�̇θ − c0(1 − v)�ψ = 0, (15)

G = (2c0 − 1)v + (1 − k3)(2v2 − 1) − 2k3ω03

√
1 − v2.

(16)

Substituting �θ = Bθeγ s+δ and �ψ = Bψeγ s+δ into
Eqs. (14) and (15), we obtain two linear and s-independent
equations for Bθ and Bψ , and demanding nonvanishing Bθ and
Bψ leads to

(γ 2 + G)[2k3γ
2 − c0(1 − v)] − 2(c0 − k3v)2γ 2 = 0. (17)

Equation (17) is a quadratic equation of γ 2. If both γ 2 < 0,
then the helix is at least metastable since all γ ’s are imaginary
so �θ and �ψ will keep small or it gives either a global or
local minimum E ; otherwise, the helix is unstable since at
least one Re(γ 2) > 0 so it will deviate considerably from a
helix at a large s even both Bθ and Bψ are small. Therefore,
γ 2 can be used as stability criterion to justify stability of a
helix.

V. BISTABILITY

A. When c0 = 0.5

A very intrigue case occurs at c0 = 0.5. In this case,
A = 0 has three real solutions, v = v1 = 0, v = v2,3 =
±

√
(k3 − 1)2 − 4k2

3ω
2
03/(k3 − 1) with k3 > 1. Eh is the same

at both v = v2,3, i.e., v = v2,3 offer two isoenergic helices.
Clearly, zr,2 = √

(1 + v2)/2 > zr,3 = √
(1 + v3)/2. It is easy

to show exactly that at least one γ 2 is positive when v = v1

so that the correspond helix is unstable. In contrast, with
appropriate ω03 we can find γ 2 < 0 at both v = v2,3 so it gives
a BS with two distinctive helices.

The typical relationships between Eh and v when k3 = 1.5,
ω30 = 0.03, 0.07, 0.15, and 0.2 are presented in Fig. 1. From
Fig. 1, we can find that when ω30 is small, Eh has clearly
a maximum at v = v1 and two minima at v = v2,3, and the
larger the ω30, the smaller the |v2,3|, shown as the red, black,
and green lines in Fig. 1. When ω30 = 0.15, Eh is almost flat,
shown as the green line in Fig. 1. Moreover, there is no longer
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FIG. 2. Phase diagram for stable helix at c0 = 0.5. The solid line
and k3 axis enclose regime I in which two helices are stable. The solid
and dashed lines enclose regime II in which it has a metastable low-
pitch helix. The dashed line is given by ω03 = (k3 − 1)/2k3. Helix
is unstable in regime III which is above k3 axis and dashed line.
Reduced units are used.

minimum at ω30 = 0.2, shown as the blue line in Fig. 1. In a
word, two isoenergic helices can coexist up to a moderate ω30.
However, we should indicate that the existence of minimum
in Eh only offers a necessary condition for stability since it
ignores effects of either s or ψ . It requires to analyze γ 2 to
obtain the sufficient condition for a stable helix.

Figure 2 displays the phase diagram for stability of a he-
lix obtained from analyzing γ 2. The diagram contains three
regimes. Regime I is enclosed by k3 axis and solid line which
defines the critical ω03 and is obtained from γ 2 = 0 at both
v = v2,3. In regime I , γ 2 < 0 at both v = v2,3 so that two
helices are at least metastable and Monte Carlo simulation
reveals that they are stable. In this regime, ω03 	 c0 and
critical ω03 → 0 slowly with k3 → ∞, so that zr,2 ∼ 1 but
zr,3 ∼ 0, i.e., two helices are clearly distinguishable. The max-
imum critical ω03 ≈ 0.052 occurs at k3 ≈ 1.8. Regime II is
enclosed by the solid and dashed lines which is given by
ω03 = (k3 − 1)/2k3 < c0 obtained from γ 2 = 0 at v = v3. In
this regime, γ 2 < 0 at v = v3 so that the low-pitch helix is
either stable or metastable, but at v = v2 the helix is unstable.
Recalling that two helices have the same Eh, we can conclude
that in regime II the GSC is no longer a helix and the low-
pitch helix must be metastable. In other words, in both regimes
I and II we can find BS though in regime II there is only one
metastable low-pitch helix. Regimes I and II also share the
same starting point at k3 = 1. Regime III is above k3 axis and
dashed line, and in this regime a helix is unstable due to a
small k3 or a large ω03.

Figures 3 and 4 present relationships between zr and ω30

in regime I at k3 = 1.2, 1.5, 2.0, and 2.5 and exhibit some
common behaviors at various parameters. At first, zr depen-
dents on both k3 and ω03 so it is considerably different from
that in free space in which zr or θh is independent of k3

and the unique GSC is a low-pitch helix since ω30 	 c0.
Moreover, zr of low-pitch helix increases with increasing ω30

but decreases with increasing k3, and zr of high-pitch helix
shows opposite tendency. Meanwhile, for high-pitch helix

FIG. 3. zr vs ω30 in regime I when c0 = 0.5, k3 = 1.2 (solid
black), 1.5 (red dash-dotted), 2.0 (green short dashed), and 2.5 (blue
short dash-dotted). Reduced units are used.

zr ∼ 1 and different k3 makes little difference in zr so that
for clarification we plot the enlargement of the high-pitch part
in Fig. 4, together with two isoenergic helices of the same
L = 19. Note that the high-pitch helix (magenta dashed) in
Fig. 4 has only 0.27 turn so it does not look like a helix in
the figure, but the low-pitch one has 3 turns. In all figures of
this paper we use the same color for the data with the same
parameters.

B. When c0 = 0.45

When c0 �= 0.5, there is no longer isoenergetic helices
since different roots of Eq. (12) lead to different energies.
However, from the sign of γ 2 we can still find BS when
c0 ≈ 0.5.

We find that when c0 < 0.5, the phase diagram obtained
from analyzing γ 2 is divided into four regimes and a typical
phase diagram at c0 = 0.45 is displayed in Fig. 5. Regime I ′
has bistable helices with a small ω30 and in this regime the
high-pitch helix has a lower Eh so is more stable. Note that

FIG. 4. Enlargement of high-pitch part in Fig. 3 and two isoen-
ergic helices, i.e., curves (a) and (b), when k3 = 1.5, ω30 = 0.03,
L = 19, zr = 0.0905 (cyan dashed and 3 turns), and zr = 0.9959
(solid magenta and 0.27 turn). Reduced units are used.
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FIG. 5. Phase diagrams for stable helix when c0 = 0.45. Regime
I ′ is bound by solid line and has bistable helices. Regime II is bound
by solid and dash-dotted lines and has a metastable low-pitch helix.
Regime III is above dash-dotted and short dotted lines and a helix is
unstable in this regime. Regime IV has a metastable high-pitch helix
and is bound by short dotted and solid lines. The empty circle is at
k3 ≈ 1.3, ω30 = 0.043 and denotes the end of dotted line as well as
the start of dash-dotted line. Reduced units are used.

two helices are no longer isoenergetic in regime I ′ so we use
a different symbol from that at c0 = 0.5 to label the regime.
Similar to that at c0 = 0.5, in regime II there is a metastable
low-pitch helix since it has a higher Eh than that of the high-
pitch unstable helix, so that BS still exists in the regime. Both
regimes I ′ and II require k3 > 1 but regime II starts at a larger
k3 than that in regime I ′, as shown in Fig. 5 in which the the
empty circle gives the starting k3 for regime II . Again and
the same as that at c0 = 0.5, helix is unstable in regime III .
Moreover, regime IV allows k3 < 1 and has a small range,
exists only when c0 < 0.5 and there is a stable or metastable
high-pitch helix since it has a lower Eh than that of the low-
pitch unstable helix so this regime is clearly different from
other three regimes. We cannot determine directly whether
BS exists in regime IV since we cannot decide whether the
high-pitch helix is GSC, but it should be similar more to
regime II .

Figures 6 and 7 display the relationships between zr , Eh,
and ω30 in regimes I ′ when c0 = 0.45, k3 = 1.2, 1.5, and 2.5.
The basic properties are similar to that at c0 = 0.5. From
Figs. 6 and 7, we know that when c0 < 0.5, the high-pitch
helix with Eh = E2 is more stable since it has a lower Eh than
that of the low-pitch helix with Eh = E3. Moreover, similar
to that at c0 = 0.5, zr of high-pitch helix is very close to 1
and decreases slightly with increasing c0. We find that when
c0 < 0.5, zr of high-pitch helix is more close to 1 than that
at c0 = 0.5 so that without a proper enlargement it is very
difficult to distinguish them according to the value of k3, as
shown in Fig. 6. Therefore, in Fig. 7 we replot the enlarged
high-pitch part in Fig. 6, together with two bistable helices of
the same k3 and ω30 as that in Fig. 4. The high-pitch helix in
Fig. 7 has only 0.15 turn, much smaller than its counterpart in
Fig. 4. Eh are nearly overlapped at different k3 and ω30 owing
to a small ω30, shown as E2 and E3 in Fig. 6.

FIG. 6. zr and Eh vs ω30 in regime I ′ when c0 = 0.45, k3 = 1.2
(solid black line for zr and black dash-dotted line for Eh), 1.5 (red
dashed line for zr and red dash-dot-dotted line for Eh), and 2.5 (green
dotted line for zr and green short dashed line for Eh). E2 is the energy
for high-pitch helix and E3 is the energy for low-pitch helix at the
same k3. Reduced units are used.

C. When c0 = 0.55

When c0 > 0.5 there are only three regimes in phase di-
agram for stable helix. Figure 8 displays a typical phase
diagram at c0 = 0.55. In regime I ′, there are bistable helices
but the low-pitch helix is more stable so is different from that
at c0 � 0.5. Regime II is similar to that at c0 � 0.5 since there
is only one metastable low-pitch helix. Moreover, helix is also
unstable in regime III . When c0 > 0.5, regime I ′ requires
k3 > 1 but regime II allows k3 < 1 so they have not a common
starting k3. Moreover, comparing Figs. 2, 5, 8, we can find that
the larger the c0, the larger the range of regimes I ′ and II .

Figure 9 displays the relationships between zr , Eh, and ω30

in regimes I ′ when c0 = 0.55, k3 = 1.2, 1.5, and 2.5. The
basic properties are also similar to that at c0 = 0.5. In Sec. V B
we point out that when c0 < 0.5, the high-pitch helix is more
stable since it has a lower Eh than that of the low-pitch helix.

FIG. 7. Enlargement of high-pitch part of Fig. 6 and two bistable
helices, i.e., curves (a) and (b), in regime I ′ when k3 = 1.5, ω30 =
0.0303, L = 19, zr = 0.0543 (cyan dashed and 3 turns, E = 0.1504),
and zr = 0.9989 (solid magenta and 0.15 turn, E = 0.1006). Re-
duced units are used.
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FIG. 8. Phase diagrams for stable helix when c0 = 0.55. Three
regimes have the same meaning as that in Fig. 5. Reduced units are
used.

However, when c0 > 0.5, the low-pitch helix with Eh = E3

becomes more stable since it has a lower Eh than that of the
high-pitch helix, as shown in Fig. 9. Moreover, similar to that
at c0 = 0.5, zr of high-pitch helix is close to 1 but decreases
slightly with increasing c0. Again, Eh are nearly overlapped at
different k3 and ω30, shown as E2 and E3 in Fig. 9.

Comparing Figs. 3, 6, 9, we can find that the larger the c0,
the smaller the zr for a low-pitch helix. Similarly, we can see
that the smaller the c0, the smaller the difference between zr of
two helices at the same BS owing to the larger zr at low-pitch
case.

D. Three regimes in terms of k3 and c0

We find further that a large k3 and a moderate c0 favor
helix, as shown in Fig. 10. The boundaries of three regimes
in Fig. 10 are given by k3 = 2c0 and k3 = 2 − 2c0. The solid

FIG. 9. zr and Eh vs ω30 in regime I ′ when c0 = 0.55, k3 = 1.2
(solid black line for zr and black dash-dotted line for Eh), 1.5 (red
dashed line for zr and red dash-dot-dotted line for Eh), and 2.5 (green
dotted line for zr and green short dashed line for Eh). E2 and E3 have
the same meaning as that in Fig. 6. Reduced units are used.

FIG. 10. Three regimes in terms of k3 and c0. There are bistable
helices in regime I or I ′ bound by solid lines. It has only one stable or
metastable helix in regime II bound by solid and dashed lines. There
is no stable helix below dashed lines which defines regime III . Two
straight lines are given by k3 = 2c0 and k3 = 2 − 2c0. Three regimes
have the same meaning as that in Figs. 2 and 5. Reduced units are
used.

line is obtained from γ 2 = 0 at both v = v2,3 and the dashed
is obtained from γ 2 = 0 at either v = v2 or v = v3. Note that
regime II in Fig. 10 includes regime IV in Fig. 5.

Our results reveal that c0R plays a key role for the forma-
tion of BS and it is a natural result since it represents the
competition and cooperation between intrinsic property and
geometric confinement, and this is also why one of bistable
helices is close to a straight cylinder and the other is close to
a circle. However, a finite ω03 favors a large zr so that to have
a BS it requires both a finite ω03 and a large k3.

VI. SIMULATION RESULTS

To verify whether a helix is in ground state and whether
above exact results are also valid for a discrete short chain, we
perform MC simulation to some short chains when c0R = 0.5.

FIG. 11. 〈zr〉 (solid) and 〈ET 〉/N (empty) vs sample counts when
c0R = 0.5, R = 3, N = 20, b = 80 (black circle) or 10 (red square),
b3/b = 1.5, and ω03R = 0.03 (in regime I). The percentage of high-
pitch helices in the figure is 31%. Reduced units are used.

024502-6



BISTABILITY OF A HELICAL FILAMENT CONFINED ON … PHYSICAL REVIEW E 105, 024502 (2022)

FIG. 12. 〈zr〉 (solid) and 〈ET 〉/N (empty) vs. sample counts when
c0R = 0.5, R = 3, N = 20, b = 80 (black circle) or 20 (red square),
b3/b = 1.5, and ω03R = 0.1 (in regime II). The percentage of high-
pitch helices in the figure is 30%. Reduced units are used.

Figures 11–14 show some typical results for 〈zr〉 and
〈ET 〉/N of 100 samples when N = 20, R = 3, b = 10 (red
square), 20 (red square), 50 (red square), 80 (black circle),
b3/b = 1.5, ω03R = 0.03 (in regime I), 0.1 (in regime II), and
0.5 (in regime III). In these figures, we us the same symbol
to represent samples having the same parameters (N , R, b, b3

and ω03) but different initial configurations. From black solid
circles in Figs. 11–13, we can see that when b (=80) and b3

are sufficient large, 〈zr〉 of the same parameters has indeed
two distinct values and the magnitude of larger zr is close to
1. Meanwhile, the larger the ω03R, the smaller the difference
between two 〈zr〉’s. It confirms exact results in regime I and
II , i.e., in regime I two helices in the same BS are GSCs
and in regime II the low-pitch helix is at least metastable.
Simulation results also suggest that there is not any other
stable configuration than helices in regime I and the stability
analysis in last section is also valid for a short filament.

〈zr〉 in simulation is slightly different from zr obtained in
Sec. V, but increasing b and b3 can improve the agreement
and it is a natural result since GSC is the limit at T = 0 or at
b → ∞ and b3 → ∞. Moreover, even at large b (=80) and

FIG. 13. 〈zr〉 (solid) and 〈ET 〉/N (empty) vs. sample counts when
c0R = 0.5, R = 3, N = 20, b = 80 (black circle) or 50 (red square),
b3/b = 1.5, and ω03R = 0.5 (in regime III). The percentage of high-
pitch helices in the figure is 17%. Reduced units are used.

(a) (b) (c)

(d)

FIG. 14. Snapshots of some samples when c0R = 0.5, R =
3, N = 20, b = 80, b3/b = 1.5, and (a) ω03R = 0.03 and 〈zr〉 =
0.3065. The dash-dotted line with empty square is the initial config-
uration (MCS = 0) with zr = 0.8023; the solid line with circle is the
snapshot of the same sample at MCS = 1.5 × 107. (b) ω03R = 0.03
and 〈zr〉 = 0.9036. The black dash-dotted line with empty square
is the initial configuration with zr = 0.0826; the black solid line
with circle is the snapshot of the same sample at MCS = 1.5 × 107,
the red line with triangle is a helix obtained by averaging the
snapshot. (c) ω03R = 0.1, MCS = 1.5 × 107, 〈zr〉 = 0.3392 (black
solid line with circle) and 0.9005 (green solid line with square),
the red line with triangle is a helix obtained by averaging the snap-
shot with 〈zr〉 = 0.9005. (d) ω03R = 0.5, MCS = 1.5 × 107, 〈zr〉 =
0.6322 (black solid line with circle) and 0.8285 (green solid line with
square), the red line with triangle is a helix obtained by averaging the
snapshot with 〈zr〉 = 0.8285. Reduced units are used.

b3, two 〈ET 〉’s in the same BS are still different in all three
regimes and the sample with a larger 〈zr〉 has a higher 〈ET 〉,
shown as empty symbols in Figs. 11–13. This result disagrees
with exact calculations, but two 〈ET 〉’s tend to close to each
other with increasing b and b3 so the disagreement is also a
thermal effect. Thermal fluctuation also leads to that fewer
samples in the same BS can stay in the configuration with a
large 〈zr〉 since it has a higher 〈ET 〉, as shown in Figs. 11–13.
In fact, when b or b3 is sufficient small, simulation outputs a
single 〈zr〉 only or we can no longer observe BS, shown as
red circles in Figs. 11–13 with b = 10, 20, and 50. This is
because the energy barrier between two configurations in a
same BS must be smaller than or comparable to kBT so that
the filament shifts frequently between two configurations. At
moderate b and b3, we can even observe several different 〈zr〉’s
in simulation and it must be due to that the energy barrier
is close to kBT so the system relaxes very slowly and leads
to a scattered average. Simulation results also indicate that in
regime I it is relative easier to find BS, i.e., it requires smaller
b and b3 to obtain a single 〈zr〉, as shown in Figs. 11–13. All in
all, at a finite T it requires sufficient large b and b3 to keep the
filament staying at one of two configurations in a BS because
in this case the energy barrier between two configurations is
larger than kBT .

A little surprised we find that BS also exists in regime
III , as shown in Fig. 13. It is out of anticipation from exact
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calculations and suggests that there are bistable nonhelices
in regime III . Owing to thermal effect, we cannot determine
whether the BS in this regime is energetically degenerate.
Moreover, we should point out that in this case, the difference
between two 〈zr〉’s in a BS is relative small and it is rather
sensitive to magnitudes of b and b3. For instance, from Fig. 13
we can see that keeping b3/b unchanged but decreasing b from
80 (black circle) to 50 (red square) is enough to yield a single
〈zr〉.

Figure 14 shows some snapshots for bistable configura-
tions at MCS = 0 (initial configuration) or 1.5 × 107 and
with the same parameters (except for those with b < 80) as
that in Figs. 11–13. Examining initial configurations we find
that the final configuration tends to close to the initial one,
but it is not always so, as shown in Figs. 14(a) and 14(b).
In Fig. 14(a), the initial configuration (dash-dotted line with
empty square) has zr = 0.8023 so is closer to that of the
high-pitch one of the same parameters as shown in Fig. 14(b),
but the snapshot is a low-pitch one and 〈zr〉 = 0.3065. In
contrast, in Fig. 14(b), the initial configuration (dash-dotted
line with empty square) has zr = 0.0826 so is closer to that
of the low-pitch one, but the snapshot is a high-pitch one and
〈zr〉 = 0.9036. This is again a thermal effect so that large b
and b3 can prevent such a behavior. We also find that more
samples with large initial zr have such a behavior and this is
a natural result since they have a higher 〈ET 〉. The thermal
fluctuation also leads to difficult in setting a proper standard
to justify whether the snapshot with a small zr is a helix
so we do not display the mean configuration for them, but
for the snapshot with a large zr , from Figs. 14(b)–14(d) we
can see that the larger the ω03R, the larger the deviation
from a helix, especially note that in Fig. 14(d) the snapshot
in green-solid-line with square is clearly different from its
mean helix, i.e., the red line with triangle. It supports the
stability analysis in Sec. V, i.e., a high-pitch helix is unstable
in either regimes II or III . Moreover, in both regimes I and
II , the low-pitch snapshots are clearly distinguishable from
the high-pitch ones, as we can see from Figs. 14(a)–14(c).
However, in regime III it is difficult to distinguish snapshots
of two configurations though they still have clearly different
〈zr〉, as shown in Fig. 14(d), so it suggests that to distinguish
them requires much larger b and b3 than that in regimes I
and II .

Simulation results indicate that when b or b3 is small, the
system can be used as an oscillator since it tends to shift
frequently between two configurations. In contrast, with large

b and b3 the system can be used to make memory or switch or
energy storage material or display. In practice, the values of
b and b3 can be changed by either changing T or both k and
k3. Finally, the simulation results also suggest that the static
equations of the system has only two stable or metastable
solutions and in regime I or I ′ helices give GSCs of the
system.

VII. CONCLUSIONS AND DISCUSSIONS

In summary, we show exactly that confining an intrinsically
curved and twisted filament on a cylinder can create a bistable
material. Using standard variational technique first we derive
static equations for stable configurations of system and find
the closed-form expressions for helical solution, and then we
linearize static equations around the helical solution to obtain
closed-form stability criterion for a helix. We find that the
key parameter for bistability of a helix is c0R since it reflects
competition and cooperation between intrinsic property and
geometric constraint. When c0R = 0.5 and k3 > k1, the phase
diagram for stability of helices is divided into three regimes.
Regime I has a small ω30 and exists a BS which consists
of two isoenergic helices. In regime II , the filament has a
moderate ω30 and BS consists of a metastable helix and a
stable nonhelix. In regime III , large ω30 prevents stable helix.
Similar results are observed when c0R ∼ 0.5 though there is
no longer isoenergic helices. Monte Carlo simulation confirms
these conclusions and suggests further that there are bistable
nonhelices in regime III .

Some significant advantages can facilitate the realization
and application of this BS system. First, it offers a potential
green material since it does not need external force to keep the
system staying in one of two configurations in a BS. Second,
it allows an arbitrary length of filament and has a wide range
in parameters so is rather flexible for choosing appropriate
materials in application. In particular, the requirement of a
small ω30 for BS can be removed by applying a torque or
binding the cross-section in ends to obtain a small effective
ω30. Third, distinctive pitches in BS makes it be easier to
detect or control. Moreover, helix is a chiral system so that
the bistable system provides a promising optically active ma-
terial. More exactly, in regime I the transition between two
distinctive helices may yield variable colors; and in regime
II , the helix-nonhelix transformation may also lead to novel
optical property. Finally, our findings must be instructive to
other confined systems.
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