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Quantifying the effects of slit confinement on polymer knots using the tube model
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Knots can spontaneously form in DNA, proteins, and other polymers and affect their properties. These knots
often experience spatial confinement in biological systems and experiments. While confinement dramatically
affects the knot behavior, the physical mechanisms underlying the confinement effects are not fully understood.
In this work, we provide a simple physical picture of the polymer knots in slit confinement using the tube model.
In the tube model, the polymer segments in the knot core are assumed to be confined in a virtual tube due to
the topological restriction. We first perform Monte Carlo simulation of a flexible knotted chain confined in a
slit. We find that with the decrease of the slit height from H = +∞ (the 3D case) to H = 2a (the 2D case),
the most probable knot size L∗

knot dramatically shrinks from (L∗
knot )3D ≈ 140a to (L∗

knot )2D ≈ 26a, where a is the
monomer diameter of the flexible chain. Then we quantitatively explain the confinement-induced knot shrinking
and knot deformation using the tube model. Our results for H = 2a can be applied to a polymer knot on a
surface, which resembles DNA knots measured by atomic force microscopy under the conditions that DNA
molecules are weakly absorbed on the surface and reach equilibrium 2D conformations. This work demonstrates
the effectiveness of the tube model in understanding polymer knots.

DOI: 10.1103/PhysRevE.105.024501

I. INTRODUCTION

Knotting is a common phenomenon in linear objects, not
only macroscopic ropes [1–4], but also DNA [5–9], proteins
[10–18], and other polymers [19,20]. Due to the prevalence
of knotting, knots make impacts on many occasions. Knotting
affects many biological processes, such as DNA replication
[21] and catalysis of proteins [22]. Knotting can dramat-
ically slow down the relaxation of a compressed polymer
[23], the stretching kinetics of a polymer [24]. Knotting
dramatically reduces the critical pulling force to break a poly-
mer, because knotting causes additional strains at boundaries
of polymer knots [25–27]. Knots also slow down or jam
DNA nanopore translocation [28–32] and viral ejection of
DNA [33,34].

DNA knots as well as single DNA molecules often experi-
ence spatial confinement in biological systems, experiments,
and simulation models [20,35–43]. In some viruses, the spa-
tial confinement from virial capsids greatly enhances DNA
knotting probability to about 95% and strongly affects knot
spectrum [33,34]. In experiments, nanofluidic and microflu-
idic channels are often used to observe knots in confined long
DNA molecules [36,38,39,44–46]. The effects of spatial con-
finement on knotting are often nontrivial and nonmonotonic
due to the competition of physical interactions and topological
constraints [20,41,42,47,48].

To deeply understand polymer knots in confinement and
rationally control polymer knots by confinement, one has to
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reveal physical mechanisms underlying the effects of con-
finement on polymer knots. In principle, these mechanisms
might be unveiled through the statistical mechanical calcu-
lation of polymer knots. However, the conformational space
for polymer knots is so complex that it is impractical to
perform rigorous calculation of the integral over the ensemble
of knotted conformations. Furthermore, the spatial confine-
ment adds extra complexity into such calculation. Considering
these difficulties, the theoretical treatment of polymer knots in
confinement should make some approximation to simplify the
problem.

In this work, we apply the tube model to understand the
polymer knots confined in a slit, i.e., between two parallel
plates. In the tube model, the polymer segments in a knot core
are assumed to be restricted within a virtual tube due to topo-
logical entanglements. The tube model presents a simplified
view of knotted polymer conformations that appear irregu-
lar and disordered. Furthermore, the tube model converts a
complicated knotting problem to a virtual-tube confinement
problem, which can be tackled more from theory. The idea of
describing polymer knots by virtual tubes was first proposed
by Grosberg, Feigel, and Rabin [49,50]. The tube model for
polymer knots has been further developed by us in recent
years [48,51–53]. In particular, we have developed a compu-
tational algorithm to materialize and visualize the tubes for
polymer knots, which allows us to quantify the tube diameters
and tube shapes and perform the calculation of other physical
quantities based on these tube parameters [54,55]. In this
work, we will first quantify the effects of slit confinement on
polymer knots and then explain these effects using the tube
model. With the slit height decreasing from +� to about zero,
the confined polymer gradually changes from the 3D case to
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FIG. 1. The touching-bead model of polymer in our simulation and the illustration of the calculation of the knot tube. (a) A typical
simulation snapshot of a knotted flexible chain with the most probable knot size polymer knot L∗

knot = 140a. (b) The knot core containing
140a monomers. (c) Superimposing many knot-core conformations to obtain the tube for knots. The bottom-left inset is the tube axis, and the
bottom-right inset is the tube. (d)–(f) Similar images as (a)–(c) but for polymer knots in a slit with the slit height H = 4a.

the 2D case. Hence, our results can be applied to understand
polymer knots on surface, such as DNA knots measured by
atomic force microscopy (AFM) [56].

II. METHODS

A. Monte Carlo simulation of a knotted polymer

We perform Monte Carlo (MC) simulation to sample the
equilibrium conformations of a circular knotted flexible chain.
The circular chain is modeled by a string of touching beads
[Fig. 1(a)] [57–59]. In the touching-bead model, the bond
length between centers of two adjacent beads is fixed as a.
The pairwise interaction between beads are described by a
hardcore repulsion with the hardcore diameter of a:

Epair (r) =
{+∞ r � a

0 r > a
, (1)

where r is the interbead distance. This hardcore repulsion is
often referred to as excluded volume (EV) interaction. The in-
teraction between one bead and the slit walls is also described
by the hard repulsion:

Ewall(z) =
{

0 |z| � (H − a)/2
+∞ otherwise , (2)

where z is the bead coordinate in the direction perpendicular
to the slit walls and H is the slit height. Unless otherwise
specified, no bending energy is considered in most simula-
tions. Only in a few simulations, we add the bending energy
to investigate the effects of bending stiffness on polymer
knots: Ebend/(kBT ) = (1/2)κθ2, where θ is the bending angle
formed by three adjacent beads, kB is the Boltzmann constant,
and T is the temperature. Unless otherwise specified, the re-
sults presented in this work are for κ = 0.

Each MC simulation starts with a flexible circular chain
containing a trefoil knot with the same handedness (left-
handed). In each MC step, we randomly select three adjacent
beads from the chain and carry out a crankshaft trial move for
the center bead of the three. The trial conformation is rejected
or accepted based on the Metropolis criterion. Note that in the
absence of the bending energy, the chain energy is either 0 or
+∞. So, the trial conformation is accepted if there is no bead-
bead or bead-wall overlap. The reason why we only move
one bead in each MC step is to preserve the topology of the
polymer during simulation, i.e., the trefoil knot. Accordingly,
all sampled conformations are left-handed trefoil knots. If we
carry out the crankshaft move for a large fragment of the poly-
mer, the topology can change, and the polymer can switch to
unknotted conformations. In this situation, it is very inefficient
to sample trefoil-knotted conformations when the equilibrium
knotting probability is very low. For a polymer confined in a
very narrow slit, the knotting probability becomes very small.
As a result, in this work we move only one bead in each MC
step. We typically run 1010 MC steps in each simulation and
save conformations every 104 steps for analysis. We find that
the correlation time of the knot size typically ranges from 107

to 108 MC steps. For each parameter set, the simulation time
covers at least 100 correlation times.

In the simulations of polymer knots in slits, the chain
lengths are L = 200a, 300a, and 400a, which are shorter than
the typical chain length L = 1000a in our previous studies
[55,60]. It is because only one bead is moved in each MC
step and the conformational evolution is slow in simulation.
As mentioned above, such a MC move is to ensure that
the trefoil knot is preserved during simulations. For com-
parison, we also perform simulations in free space with the
chain length of L = 1000a, as shown in Fig. 1(a). In these
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free-space simulations, crankshaft trial moves are imple-
mented for large segments (containing many monomers) to
speed up the simulations [55,60].

Two simulation animations are included in the Supple-
mental Material [61]. These two animations correspond to
L = 200a, H = 2a and L = 400a, H = 3a.

B. Knot analysis

We determine the knot core for a given polymer confor-
mation using the Alexander polynomial [62]. The knot core is
identified by cutting beads one by one from both ends until the
knot type is changed. During this cutting process, the circular
chain becomes open chains. Hence, we have to close both
ends of an open chain before the calculation of the Alexander
polynomial. Here we employ the minimally interfering clo-
sure scheme [63]. It is worth pointing out that a circular chain
has no end, while the cutting-bead process requires knowing
the chain ends. To solve this issue, we select four sites on
the circular chain to sever as the chain ends. These four sites
are evenly distributed along the chain. For each selection, we
calculate the knot size Lknot, which is defined as the number
of beads inside the knot core. Then we compare the four knot
sizes calculated from four selections and save the smallest
knot size as the final result and abandon the results from the
other three selections. The reason for trying four sites to cut
the circular chain is as follows. Before the knot analysis, we
do not know the knot-core position. If we select only one
site within the knot core to cut, we are not able to obtain the
correct knot core, i.e., the smallest knot core. If we try four
evenly distributed sites, at least one site should locate outside
the knot core and allow us to determine the correct knot core
considering that most knot sizes (knot contour lengths) are
less than one half of the entire chain.

C. Calculation of the tubes for polymer knots

The algorithm to calculate the tubes for polymer knots
have been presented in our recent studies [54,55,64]. Here we
briefly describe the essential steps. We superimpose a large
number (>10 000) of knot-core conformations [Fig. 1(f)] with
the same Lknot and H to obtain the average conformation and
fluctuations. Before superimposition, we fit the conformations
through rotation and translation to minimize the deviations
among structures. The fluctuations of individual knot-core
conformations around the average knot-core conformation are
used to determine tube diameters, while the average knot-core
conformation is the tube axis. The tube radius, Rknot

tube , is defined
as the root-mean-square deviation (RMSD) using the follow-
ing equations:

Rtube(k) =
√√√√[

1

Nconf

Nconf∑
i=1

‖�xi(k) − �xcen(k)‖2

]
,

�xcen(k) = 1

Nconf

Nconf∑
i=1

�xi(k),

Dtube(k) ≡ 2Rtube(k), (3)

where k = 1, 2, . . . , Lknot is the index of bead inside the
knot core, �xi(k) is the 3D coordinates of the kth bead in the ith

(a)

(b)

FIG. 2. (a) Probability of a trefoil knot at a given knot size Lknot

on a knotted flexible chain with excluded volume interaction. (b) The
potential of mean force as a function of the knot size calculated from
the probabilities in (a) using Eq. (6).

conformation, Nconf is the number of knotted conformations,
and �xcen(k) is the mean 3D coordinates (tube axis). Because
the confinement is imposed along the z direction, we also
calculate the fluctuation of knot-core conformations along the
z direction:

Rz
tube(k) =

√√√√[
1

Nconf

Nconf∑
i=1

|z(k) − zcen(k)|2
]
,

zcen(k) = 1

Nconf

Nconf∑
i=1

z(k),

Dz
tube(k) ≡ 2Rz

tube(k), (4)

where zi(k) is the z coordinates of knot-core conformations.
We define

Dxy
tube ≡

√
(Dtube )2 − (

Dz
tube

)2
. (5)

The reason why the x and y directions are treated together
because the tube cross section is two-dimensional (2D) and
there is one additional dimension other than the z direction.

The precise calculation of the tubes for knots requires a
large number of knot conformations and is computationally
expensive. Hence, this work is focused on the trefoil knot.

III. RESULTS AND DISCUSSIONS

A. Knot shrinking in slit confinement

Figure 2 presents the size distributions of trefoil knots from
the simulations of flexible chains confined in slits. Recall that
the knot size, Lknot, is defined as the contour length of the
polymer segment inside the knot core. The distribution of
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FIG. 3. The most probable knot size L∗
knot as a function of the

slit height. Three symbols correspond to simulation results using
three chain lengths. The solid line is the theoretical result using
Eqs. (7)–(14).

Lknot has a peak at the most probable knot size, L∗
knot, which

corresponds to the minimum of the free energy or the potential
of mean force (PMF) [50,51]. The PMF is calculated from

F sim
knot (Lknot )

kBT
= − ln [p(Lknot )], (6)

where p(Lknot ) is the relative probability of the trefoil knot
at a given knot size from simulations, kB is the Boltzmann
constant, and T is the temperature. Note that the total knotting
probability ∫L

0 p dLknot equals unity because the topology of
the chain is fixed at the trefoil knot.

Then we turn to the dependence of L∗
knot on the slit height,

H . As shown in Fig. 3, with the decrease of H , L∗
knot be-

comes smaller. Comparison of L∗
knot from the simulations with

three chain lengths of L = 200a, 300a, and 400a indicates
that L∗

knot is insensitive to L as long as L 	 L∗
knot (see more

comparisons of different L in Figs. S1–S3 in the Supplemen-
tal Material [61]). The insensitivity has also been observed
in previous studies [51,52]. Such an insensitive to the en-
tire chain length is due to the fact L∗

knot is a local property,
which corresponds to localized knots. Such knot localization
is an entropic effect, which has been extensively investigated
previously [50,51,65,66]. For the visualization of these local-
ized knots, two simulation animations are presented in the
Supplemental Material [61]. It is worth noting that when L∗

knot
becomes comparable with L, L∗

knot depends on L due to the
finite-chain-length effect. In other words, only when the chain
length is sufficient long, these local knots reach the long-
chain-limit behavior. Our simulations with L = 200a, 300a,
and 400a should reach the long-chain limit for H � 8a be-
cause the simulation results of L∗

knot collapse among the three
chain lengths. Note that in free space, i.e., H = +∞, L∗

knot is
approximately 140a [52]. Here, in the smallest slit with H =
2a, L∗

knot is approximately 26a. Overall, the slit confinement
leads to dramatical knot shrinking. If we treat H = 2a as the
2D case, then the most probable knot size shrinks by a factor
of 5 (140a vs 26a) from the three-dimensional (3D) case to the

2D case. Note that in free space (3D), the most probable knot
size is 140a in the presence of the EV interaction and is only
7a in the absence of the EV interaction as observed by the
simulations by Katritch et al. [67]. The repulsion from the EV
interaction dramatically swells knots because in the absence
of EV interaction, the segments in knots are very close to
each other and their distributions are very sensitive to the EV
interaction. In the following subsections, we will explain this
confinement-induced knot shrinking using the tube model.

B. Effect of slit confinement on the knot tubes

To provide a simplified view of how slit confinement af-
fects polymer knots, we generate the tube for polymer knots
(Figs. 4 and 5). While individual knot-core conformations
are irregular, their average conformation, i.e., the tube axis,
assumes a neat and beautiful heart shape. We can approximate
that all knot-core conformations are confined in a tube. The
tube axis sketches the shape of knot-core conformation, and
the tube diameter characterize the fluctuations of knot-core
conformations. In the following part, we will present the de-
pendences of the tube on the knot size and the slit height,
respectively.

Figure 4(a) displays the tubes for the polymer knots con-
fined in a slit with H = 5a. Four tube images correspond to
four knot sizes. The tube properties can be quantified by many
geometric parameters about the tube axis and tube cross sec-
tion. The size of tube axis is quantified by the maximum spans
in three directions: Sx, Sy, and Sz [see illustration in the last
inset of Fig. 4(a)]. The tube diameter is quantified by Dtube.
Considering that the tube cross section becomes anisotropic
under strong confinement, we separate the z component of
the tube diameter, Dz

tube, which characterizes the z-component
deviation of individual knot-core conformations with respect
to the tube axis. We also define Dxy

tube ≡
√

(Dtube )2 − (Dz
tube)2.

It is worth mentioning that our tube plotting program can
draw only circular tube cross sections, including the tubes in
Fig. 4(a) and other figures.

Figures 4(b)–4(g) show the variations of the tube param-
eters when varying the knot size at H = 5a. To better view
the dependence of the tube axis on the knot size, we make
3D curves in Fig. 4(b) and two projections in Figs. 4(c) and
4(d). It is worth noting that in each tube, the tube diameter
Dtube varies along the tube axis. We calculate an average tube
diameter 〈Dtube〉 for each tube.

We observe several changes of the tube when varying Lknot.
First, the maximum spans of the tube axis in the x and y
directions, Sx and Sy, increase with Lknot. Second, the max-
imum span of the tube axis in the z direction, Sz, decrease
with Lknot [Fig. 4(f)]. Third, 〈Dtube〉 increases almost linearly
with Lknot [Fig. 4(f)]. Fourth, 〈Dz

tube〉 increases slowly with
Lknot, while 〈Dxy

tube〉 increases rapidly with Lknot. The reasons
for these changes, together with the reasons for other changes
presented below, will be elaborated in the last part of this
subsection.

Then we move to the dependence of the knot tube on the
slit height. Figure 5 presents the data in the similar manner
as Fig. 4, except that now we vary the slit height with a
fixed knot size Lknot = 60a. With the decrease of H , both
Sx and Sy become slightly larger [Fig. 5(c)], and Sz becomes
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FIG. 4. Variation of the tube parameters when varying the knot size with a fixed height H = 5a. (a) Knot tubes for four knot sizes. (b) The
3D tube axes for four knot sizes. (c), (d) Projections of tube axes on the x-y and x-z planes. (e) The tube diameter along the tube axis. (f) Mean
tube diameter and max z-span of the tube axis as a function of the knot size. (g) z component and xy component of the tube diameters.

larger [Figs. 5(d) and 5(f)]. It is intriguing that 〈Dtube〉 remains
almost unchanged when varying H . Separation of the z and
xy components of 〈Dtube〉 reveals that the slit confinement
squeezes 〈Dz

tube〉 and expands 〈Dxy
tube〉 [Fig. 5(g)], which results

in a nearly constant of 〈Dtube〉.
Figure 6 presents the tube parameters over wide ranges of

Lknot and H . The average tube diameter increases almost lin-
early with Lknot for all slit heights from H = +∞ to H = 3a.
We define an aspect ratio for the knot tube: p = Lknot/〈Dtube〉.
The aspect ratio p varies slightly between 18 and 20 for a wide
range of H. For comparison, a wormlike chain has an aspect
ratio about 10 [54]. So the aspect ratio is larger in the case
of flexible chains with excluded volume interactions. This is
because flexible chains adopted more curved conformations
than wormlike chains.

The dependence of Sz on Lknot is not simple. In free space,
i.e., H = +∞, Sz increases with Lknot.This is reasonable con-
sidering that a larger knot has a larger tube axis. In very
strong confinement, e.g., H = 3a, Sz decreases with Lknot. As
explained above, it is because the slit height restricts the sum
of Sz and 〈Dz

tube〉. A large knot has a larger tube diameter,
and hence Sz needs to be reduced to satisfy the restriction.
For intermediate slit heights, e.g., H = 6a, Sz first increases

and then decreases with Lknot. The reason is as follows. The
increase of Sz with Lknot occurs in the situation that the sum
of Sz and 〈Dz

tube〉 does not reach the limit of the slit height so
that both Sz and 〈Dtube〉 increases with Lknot. After the sum
of Sz and 〈Dz

tube〉 reaches the limit of the slit height, Sz must
decrease. Overall, placing a large knot in a slit must compress
something, either the tube diameter or the tube axis. Our
results suggest that the compression eventually is imposed on
the tube axis instead of the tube diameter, probably because
compressing the tube axis costs less than compressing the
tube diameter. Such interpretation will be supported by more
evidence shown below.

It might appear to be controversial that the average tube
diameter is even larger than the slit height in Fig. 6(a). This
is impossible for a tube with an isotropic cross section. The
reason for this apparent controversy is that the tube cross
section becomes anisotropic for a strongly compressed tube.
It means that the tube cross section has a smaller dimension
in the z direction than the one in the x or y direction. The
tube cross section can even expand along the x or y direction
to compensate the shrinking along the z direction. Recall that
for a large knot, the tube axis spans widely in the x and y
directions as indicated by the values of Sx and Sy, and hence
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FIG. 5. Similar plots as Fig. 4 but for knots with a fixed knot size Lknot = 60a and four different slit heights. Four colors in (c)–(e)
correspond to four H values as indicated in the legend of (e).

there is plenty of room for the tube cross section to expand
along the x and y directions.

Based on the results in Figs. 4–6, we draw an illustration
in Fig. 7 to depict the slit-confinement effects on the knot
tubes. Note that Fig. 7 considers the situation of varying the
slit height with a fixed knot size. As shown in Fig. 7(a), with
the decrease of the slit height from H = +∞, the first slit-
confinement effect is aligning the knot tubes, which mainly
occurs in Sfree

z � H � (Sfree
x and Sfree

y ). When H becomes less
than Sfree

z , the knot tubes are almost fully aligned with slit
plates and the second slit-confinement effect is the compres-
sion of the knot tubes [Fig. 7(b)]. At first, Sz is reduced
because the tube axis is relative easier to be compressed than
the tube diameter, and then both Sz and Dz

tube are reduced,
because the slit height cannot even accommodate the free-
space value of Dz

tube. Our results in Fig. 5(g) indicates that
Dxy

tube expands in strong slit confinement in order to maintain
the conformational space of polymer knots. Note that for a
large knot, the tube axis spans widely in the x and y directions
as indicated by the values of Sx and Sy, and hence there is
plenty of room for the tube cross section to expand along the
x and y directions. Recall that Fig. 7 focuses on the situation
that the knot size is fixed at a given value. The onset of the

knot-tube compression [Fig. 7(b)] is determined by Sfree
x , Sfree

y ,
and Sfree

z , which depends on the knot size. Large knots feel the
compression earlier than small knots and hence experience
more confinement free energy. In other words, large knots
are more disfavored in slits, which is the reason why knot
population shifts toward small knots in slits.

C. Explanation of confined-induced knot shrinking
using the tube model

Next, we apply the tube parameters obtained above to ex-
plain confined-induced knot shrinking. Before proceeding to
the quantitative calculation, we first present the simple reason
for confined-induced knot shrinking. The polymer segments
inside the knot core experience more confinement free en-
ergy than the polymer segments out of the knot core, and
hence expelling the polymer segments from the knot core
to the outside region can lower the free energy of the entire
chain. This expelling process tightens the knot, which needs to
overcome the restoring force of a tightened knot. Eventually,
an equilibrium knot size is resulted from the competition of
the expelling force and restoring force. Both forces will be
derived below.
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FIG. 6. (a) The average tube diameter varies with the knot size in different slit heights. (b)–(d) The max spans of the tube axis in three
directions.

Following the above qualitative explanation, we write the
free energy cost of forming a trefoil knot with the size Lknot in
a slit, F slit

knot (Lknot ), as [48]

F slit
knot (Lknot ) = F free

knot (Lknot ) + Fexcess(Lknot ), (7)

Fexcess(Lknot ) ≡ F wall
knot (Lknot ) − F wall

unknot (Lknot ). (8)

In the above equations, F free
knot (Lknot ) is the free energy cost

of knot formation in free space, F wall
knot (Lknot ) is the confinement

free energy experienced by the knot in a slit, and F wall
unknot (Lknot )

is the confinement free energy experienced by the unknot-
ted segments of length Lknot in a slit. The difference in
confinement free energy between knotted and unknotted seg-
ments, Fexcess(Lknot ), is responsible for confinement-induced
knot shrinking. The expelling force mentioned in the above

(a)

decreases

increases

decreases
H

decreases

Tube axis

x
z

Tube cross-section

(b) Tube compression by slits in strong confinement

Tube alignment by slits in weak confinement

, a

random orientations 
, a

alignment of tube axis

FIG. 7. Illustration of slit confinement on the knot tubes. (a) In free space or very wide slits, the tube orientations are nearly random. With
the decrease of the slit height, the tube orientations become aligned. (b) Further decreasing the slit height compresses the knot tubes. The
compression is first imposed on the tube axis along the z direction, Sz, and then the tube diameter along the z direction, Dz

tube. The shrinking of
Dz

tube is accompanied with the expansion of Dxy
tube. This figure focuses on the situation that the knot size is fixed.
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paragraph corresponds to −∂Fexcess(Lknot )/∂Lknot, and the
restoring force corresponds to −∂F free

knot (Lknot )/∂Lknot.
Then we need to find out the expressions for F free

knot , F wall
knot ,

and F wall
unknot. In our previous study [52], we have investigated

the free energy cost of knot formation on a flexible chain
in free space, but there is no analytical expression of F free

knot .
Here we obtain an approximate equation for F free

knot (Lknot ) based
on connecting two asymptotic relationships in the small- and
large-knot regimes:

F free
m ≡ F free

knot/Lknot ≈ 1

e
Lknot/a−47.5

4 + 1
F free

small

+ e
Lknot/a−47.5

4

e
Lknot/a−47.5

4 + 1
F free

large, (9)

F free
small/(kBT ) ≈ 0.0884 ln

(
D2

eff/12a2
)
, (10)

F free
large

kBT
≈ 0.256

(Deff

a

)−1.7

, ((11)

Deff = Lknot/p − a. (12)

In the above equations, F free
m is the confinement free en-

ergy per monomer in the knot core, and F free
small and F free

large
are the asymptotic relationships in the small- and large-knot
regimes, respectively [52]. The two coefficients in front of
F free

small and F free
large are used to smoothly connect the two asymp-

totic relationships. The two coefficients in Eqs. (10) and (11)
are obtained from the fit to simulation results as shown in
Fig. 8(a). In Eq. (12) we define an effective tube diameter
Deff ≡ 〈Dtube〉−a and 〈Dtube〉 = Lknot/p, considering that the
excluded volume interaction decreases the accessible tube
diameter [52]. As shown by Fig. 8(a), F free

m calculated from
Eq. (9) can quantitatively agree with the simulation result.

After obtaining an expression for F free
knot , we turn to Fexcess

in Eq. (7), which consists of two terms: F wall
knot and F wall

unknot. We
propose two empirical expressions for F wall

knot and F wall
unknot based

on the fit to simulation results:

F wall
knot /(kBT ) ≈ 7.7

(Lknot − pa)1/3a2/3

Heff
, (13)

F wall
unknot/(kBT ) ≈ 0.205

Lknota

H2
eff

, (14)

Heff ≡ H − a. (15)

As shown by Fig. 8(c), the above two equations can quan-
titatively capture the simulation results of Fexcess(Lknot ), which
is calculated from the difference of potentials of mean force
(PMF) in free space and in a slit. The examples of PMFs
are presented in Fig. 2(b). Besides H = 5a, we compare the
simulation results and theoretical predictions of Fexcess for
other slit heights in Fig. S4 of the Supplemental Material [61].

The functional form in Eq. (13) can be understood in
this way. As explained above, the compression of the knot
tube by slit confinement is mainly imposed on the dimen-
sion of the tube axis along the z direction, Sz. The free
energy cost of compressing the tube axis is approximately
characterized by Eq. (13) using the following analysis. As
shown in Fig. 8(b), in free space, Sfree

z can be well fitted by
Sfree

z (Lknot ) = 0.726(Lknot − pa)1/3a2/3 + 0.320, which shares

FIG. 8. Effect of slit confinement on the free energy of
polymer knots. (a) The free energy cost F free

knot (Lknot ) of form-
ing a trefoil knot with the knot size Lknot on a flexi-
ble chain with excluded volume interaction in free space.
Here the y axis corresponds to the free energy per monomer, which
is defined as Fm ≡ F free

knot /Lknot. (b) The max span of the tube axis
along the z direction for trefoil knots in flexible chains with excluded
volume interaction in free space. (c) The free energies of a knot in
free space and in the slit H = 5a and their difference. The theoretical
curve (green) is calculated from Eqs. (13) and (14).

the same functional form as the denominator in Eq. (13)
except a constant term. It is reasonable that the compression
free energy cost is determined by the ratio of Sfree

z to Heff . Note
that due to the hardcore diameter of beads (monomers), the
accessible slit height is Heff ≡ H−a instead of H . The same
reasoning can be applied to understand the functional form
in Eq. (14) for the compressed free energy cost of unknotted
segments of length Lknot. A random walk over the contour
length of Lknot spans about

√
Lknota in free space and is

compressed into a space with the height of Heff . It is worth
noting that although the functional forms in Eqs. (13) and (14)
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FIG. 9. Polymer knots in the extreme case with H = 2a (the 2D
case). (a) Three simulation snapshots of flexible knotted polymers
with L = 200a. (b) The knot tube for the most probable knot size
L∗

knot ≈ 26a.

are empirical to a large extent, both equations have reasonable
physical meanings and work well to explain the simulation
results in Fig. 8.

Substituting Eqs. (9)–(15) into Eq. (7) and minimizing
F slit

knot with respect to Lknot for each H, we obtain the depen-
dence of L∗

knot on H, which fairly agrees with the simulation
results as shown in Fig. 3. Overall, our theoretical prediction
is based on the physical picture that Fexcess tends to squeeze a
knot, which is eventually balanced with the restoring force of
a compressed knot.

D. Understanding a polymer knot on a surface
through the extreme case of H = 2a.

With the decrease of the slit height from H = +∞ to
H = 2a, the confined polymer gradually changes from the
3D case to the 2D case. Accordingly, the slit confinement
provides a unique property to investigate the polymer knots
in the 2D case or on a surface. Our analysis gives not only the
knot properties in the 2D case but also how 2D polymer knots
evolve from 3D polymer knots through the slit confinement.

Recall that to accommodate the crossing of two polymer
segments, the minimum slit height is Hmin = 2a. The exact
Hmin value can be slightly lower than 2a considering the
grooves between two adjacent beads. Note that the sampling
efficient of polymer conformations dramatically decreases as
the slit height approaches to Hmin. The smallest slit height
considered here is 2a.

Figure 9(a) displays the simulation snapshots of knotted
polymers and the knot tube for H = 2a. The most probable
knot size is (L∗

knot )2D ≈ 26a, and the corresponding tube di-
ameter is 〈Dtube〉2D ≈ 1.63a. The z component is 〈Dtube〉2D ≈
0.54a. The average knot conformation and the tube for
(L∗

knot )2D ≈ 26a are shown in Fig. 9(b). Recall that our tube
plotting program can only draw circular tube cross sections,
including the tubes in Fig. 9. The average knot conformation
has the maximum spans in three dimensions as Sx ≈ 5.35a,
Sy ≈ 4.14a, and Sz ≈ 0.912a. For the visualization of the
knots at H = 2a, a simulation animation is presented in the
Supplemental Material [61].

Our results of the polymer knots on a surface may be
applied to understand DNA knots on a surface measured by
AFM [56]. However, we must consider two major differences

between our simulations and AFM experiments when com-
paring these two cases. First, in our simulations, the polymers
are pushed to the 2D case by spatial confinement and as-
sume equilibrium 2D conformations. In AFM experiments,
DNA molecules are absorbed on the surface due to the DNA-
surface attraction. Depending on the attractive strength, these
DNA molecules can assume equilibrium 2D conformations
for weak attractions or frozen 2D conformations for strong
attractions. Experimentalists have recently developed meth-
ods to tune the attractive strength between DNA molecules
and the surface, mainly through controlling the salt specie and
concentration or chemical modification of the surface [68,69].
When the attractions between DNA molecules and the sur-
face are sufficiently weak, DNA conformations on the surface
can be considered to be fully relaxed, i.e., reach equilibrium
2D conformations, which has been validated by quantitative
analysis of these DNA conformations [68,69]. In such cases,
equilibrated DNA conformations on the surface should be
quite close to the polymer conformations confined between
two plates with H = 2a.

Second, in our simulations, polymers are flexible chains,
while double-stranded DNA molecules are semiflexible
chains. When using Ebend/(kBT ) = (1/2)κθ2 for the bending
energy in our polymer simulations, the bending stiffness of
DNA is typically between 10 and 25 depending on the ionic
strength [70]. As mentioned in the method section, the sim-
ulations with a large κ require long chains to cover the most
knot sizes and are very computationally expensive. To get an
idea about how the bending stiffness affects the knot tube,
we compare the simulation results for κ = 0, 1, and 2 with
H = 6a and Lknot = 60a. See Fig. S5 in the Supplemental
Material [61]. We use H = 6a instead of H = 2a because the
sampling efficiency for H = 2a and κ > 0 is too low. We find
that 〈Dtube〉 increases rapidly with κ . It is very computationally
expensive to further increase κ to the value corresponding
to double-stranded DNA. For example, supposing that Lp ≈
50 nm and the effective DNA diameter a ≈ 2.5 nm, we have
κ ≈ 20 [70]. To obtain the long-chain limit of the knots,
L 	 L∗

knot should be satisfied. It is probably computationally
impractical to simulate a long chain with L on the order
of thousand in strong confinement with H ≈ 2a using the
touching-bead model. Other polymer models or other confor-
mational sampling methods may be employed to obtain the
knot properties of a semiflexible chain with large κ in strong
confinement with H ≈ 2a.

IV. CONCLUSIONS

In conclusion, the effects of slit confinement on polymer
knots are quantified and analyzed using the tube model. The
most probable knot size dramatically shrinks from (L∗

knot )3D ≈
140a at H = +∞ to (L∗

knot )2D ≈ 26a at H = 2a. The reason
for confined-induced knot shrinking is as follows. Compared
to monomers outside the knot core, monomers in the knot
core experience more confinement free energy due to segment
crossings. As a result, the polymer expels monomers from the
knot core to the outside region to lower the free energy of the
entire chain. Quantification of the knot tubes reveals that to
squeeze a large knot tube into a slit, the compression is mainly
imposed on the tube axis rather than the tube diameter. When
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the slit height is too small to accommodate the tube diameter,
the tube cross section is compressed along the z direction
while the tube cross section maintains its dimensions along
the x and y directions.

This work also demonstrates that the tube model provides
a simplified view of the polymer knots, which usually appear
irregular and disorder. Using the tube model, we can imagine
that these polymer knot conformations are confined in heart-
shape tubes. Then the confinement effects can be understood
through the deformation of the knot tubes.

It is worth pointing out that our algorithm of calculating
the tubes for knots strongly relies on the fact that the knots
have well-defined shapes, which allows us to superimpose
equilibrium knot-core conformations to obtain the tubes. For
unknotted polymer segments and interchain entanglements
in polymer melts, our algorithm is not applicable, because
there is often no well-defined shape and hence superimposing
many random conformations leads to a single structureless
point.

The significance of this work lies in both fundamental
and practical aspects. From the fundamental viewpoint, the
slit confinement bridges the polymer knots in the 3D and
2D cases, which allows us to understand the differences of
polymer knots in the 3D and 2D cases. It is worth pointing out
that our model of flexible chains are essentially self-avoiding
walks (SAWs), and so our results reveal generic properties of
knotting in 3D and 2D SAWs. From the practical viewpoint,
our results can be applied to understand DNA knots in bio-
logical and experimental systems, in particular, DNA in AFM
[56] and nanofluidic experiments [36,38,39,45].
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