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Asymptotic stability of contraction-driven cell motion
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We study the onset of motion of a living cell (e.g., a keratocyte) driven by myosin contraction with focus on
a transition from unstable radial stationary states to stable asymmetric moving states. We introduce a two-
dimensional free-boundary model that generalizes a previous one-dimensional model [P. Recho, T. Putelat,
and L. Truskinovsky, Phys. Rev. Lett. 111, 108102 (2013)] by combining a Keller-Segel model, a Hele-Shaw
boundary condition, and the Young-Laplace law with a regularizing term which precludes blowup or collapse
by ensuring that membrane-cortex interaction is sufficiently strong. We find a family of asymmetric traveling
solutions bifurcating from stationary solutions. Our main result is nonlinear asymptotic stability of traveling
solutions that model observable steady cell motion. We derive an explicit asymptotic formula for the stability-
determining eigenvalue via asymptotic expansions in small speed. This formula greatly simplifies computation
of this eigenvalue and shows that stability is determined by the change in total myosin mass when stationary
solutions bifurcate to traveling solutions. Our spectral analysis reveals the physical mechanisms of stability.
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I. INTRODUCTION

Sustained motion on a substrate has been observed in ex-
periments on living cells, e.g., keratocytes. They are found
naturally moving on flat surfaces, e.g., the human cornea,
making them ideal subjects for experiment. Moreover, their
flat shape lends itself to two-dimensional (2D) modeling. Ker-
atocytes are often observed in a stationary state with a circular
shape, or traveling with constant velocity and maintaining a
constant, asymmetric shape. This motion is explained by three
mechanisms: adhesion, protrusion, and contraction, the effects
of which are summarized as follows. The cytoskeleton which
provides structure for the cell plays a key role in this motion
and it contains actin and myosin proteins. Actin polymeriz-
ing near the edge of the cell causes protrusions of the cell
membrane. These protrusions then adhere to the substrate,
stabilizing the cell in its new shape. Myosin causes the actin
polymers to contract. If the myosin is concentrated on one side
of the cell, the cell contracts on that side, driving intracellular
fluid to the other side of the cell and expanding the cell on that
side. The flow of intracellular fluid also carries the myosin to
the other side of the cell, continuing the process and resulting
in net motion. The study of cytoskeleton gel has led to the
recent development of the so-called active gel physics [1].

We introduce a 2D free-boundary partial differential equa-
tion model for cell motility which describes the evolution of
the cell shape and the distribution of myosin within the cell. In
[2], it is argued that at least some cells are driven exclusively
by myosin contraction (as opposed to adhesion or protrusion),
and our model supports this claim by showing steady motion
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resulting from myosin contraction only. This model exhibits
bifurcation of a family of traveling solutions (modeling cells
moving with constant velocity and shape) from a family of
stationary solutions (modeling nonmoving cells).

In order to be observed in experiment, steady cell motion
must be robust, not disrupted by small perturbations present in
any experimental setup. This property can be established theo-
retically by proving asymptotic stability of traveling solutions;
that is, solutions that start close to a traveling solution not only
stay close, but eventually converge to this traveling solution
(and we introduce a proper notion of convergence for traveling
solutions). We show that traveling solutions to our model have
this property by showing that they are asymptotically stable.
Stability is also important for numerical computations. Since
any computational model of a moving cell is necessarily an
approximation of a true cell, stability of traveling solutions
is necessary for numerical simulations of cell motion to con-
verge.

A one-dimensional (1D) contraction-driven free-boundary
model is proposed in [2,3] (see more recent work [4]). Our
model generalizes this to one to two dimensions, and estab-
lishes conditions for the stability of traveling solutions. We
show that asymmetry in the myosin distribution results in the
net motion of the cell, c.f. “motor effect” [5].

A 2D free-boundary model for cell motion driven by poly-
merization of actin (as opposed to myosin contraction) is
proposed in [6]. Like our model, this model also possesses a
branch of traveling solutions bifurcating from a family of sta-
tionary solutions. Analysis shows that the bifurcation in this
model is subcritical, meaning that traveling solutions near the
bifurcation point are unstable (see also a 2D model in [7]). Our
main objective is to go beyond linearized stability and estab-
lish analytically the nonlinear stability of steady cell motion
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described by traveling solutions for a wide range of physical
parameters (c.f. numerics for linearized stability, e.g., [6,8]).
This is done by deriving a simple explicit asymptotic formula
for the stability determining eigenvalue in two dimensions.
The derivation of this formula is based on a special ansatz
for the corresponding eigenvector with interesting asymptotic
behavior due to the non-self-adjoint nature of the problem,
a key mathematical feature of living systems. For technical
simplicity, derivation of nonlinear stability from linearity is
done in the 1D setting (via asymptotics for semigroups; see
Supplemental Material [9]), but we do not use any specific 1D
argument and our techniques apply in the 2D model.

Other 2D free-boundary models of cell motility have been
examined numerically, e.g., [6,10,11]. For example, in [10],
the authors propose a model for keratocyte motility taking into
account actin polymerization in addition to myosin-driven
contraction. Numerical analysis of this free-boundary model
shows close agreement with both experimental results and
theoretical results in our model. Additionally, a 2D moving
cell model where the boundary has fixed shape was introduced
and studied analytically and numerically in [12]. This model
possesses several stationary solutions the stability of which is
proved provided the total myosin mass is sufficiently small.

Phase-field models of cell motion provide an alternative to
free-boundary models. Computational results of these models,
shown in, e.g., [13,14], also agree qualitatively with results
from our free-boundary model.

II. THE MODEL

Consider a 2D model for a cell occupying a region �(t )
with free boundary. Following [6,11,15], we study a friction-
dominated regime so the flow of acto-myosin gel satisfies
Darcy’s law: ∇σ = ζu, σ is the scalar stress (pressure), u
is the velocity, and ζ is the constant adhesion coefficient.
Generalizing the 1D constitutive equation from [2], the 2D
constitutive equation is σ = μ divu + km. Here, μ, m, and
k are the constant bulk viscosity of the gel, myosin density,
and constant contractility coefficient which models a steady
supply of energy (from, e.g., adenosine triphosphate) so that
the myosin creates a constant active contractile stress per
motor. This constitutive equation is obtained by substituting
Darcy’s law into the force-balance equations used in [1,10]
while using the fact that for acto-myosin gel bulk viscosity
dominates shear viscosity (p. 3 in Supplemental Material of
[10]; see also [16]). For simplicity, we choose μ = k = 1.

On the boundary ∂� with curvature κ the Young-Laplace
law σ = ph + pe − γ κ holds, γ > 0 is the constant surface
tension coefficient, ph is the constant hydrostatic pressure,
and pe is the elastic restoring force due to membrane cor-
tex tension. Following the 1D model [2–4], pe is nonlocal
(c.f., vertex models [17]) and given by

pe(|�|) = −ke
|�| − |�h|

|�h| , (1)

where ke is the constant inverse compressibility coefficient and
|�h| is a reference area, i.e., the typical area occupied by a cell
at rest.

Myosin density obeys the advection-diffusion equa-
tion ∂t m=�m − div(um) with the no-flux condition ∂νm=0

on ∂�(t ) [ν normal to ∂�(t )]. The free boundary moves
according to the kinematic condition Vν = ∂νσ/ζ .

We study the following free-boundary problem obtained
from the above equations by introducing the auxiliary poten-
tial φ = σ/ζ and p∗ = ph + pe:

0 = �φ + m − ζφ in �(t ), (2)

∂t m = �m − div(m∇φ) in �(t ), (3)

ζφ = p∗(|�(t )|) − γ κ on ∂�(t ), (4)

∂νm = 0 on ∂�(t ), (5)

Vν = ∂νφ on ∂�(t ). (6)

Among the solutions to (2)–(6) is the following family
of simple, constant, stationary solutions (verified by direct
substitution), which will be used in our bifurcation analy-
sis: m0 = p∗(πR2) − γ /R, φ0 = m0/ζ , and �0(t ) a disk of
radius R.

Hereafter we assume the following condition holds:

ke >

(
m0 + γ

2R

) |�h|
πR2

. (7)

This condition eliminates mathematical artifacts such as a cell
collapsing to a point for small ke. It ensures that membrane
cortex tension is sufficiently strong to balance the contractive
effects of myosin and surface tension. Differentiation in R
shows that (7) implies that the total myosin mass

M(R) = πR2m0 = p∗(πR2)πR2 − πγ R (8)

decreases strictly (parametrizations by R or M are inter-
changeable).

III. BIFURCATION OF TRAVELING SOLUTIONS

Substituting the ansatz φ = φ(x − Vt ), m = m(x − Vt ),
� = �0 + Vt for the traveling solutions with velocity V ∈ R2

into (2)–(6), we find that (2), (4), and (5) are unchanged while
(3) and (6) become

∂t m = V · ∇m + �m − div(m∇φ), (9)

0 = ∂ν (φ − V · x), (10)

respectively. Substituting into (9) solutions of the form m =
�(V)eφ−V·x, we reduce (2)–(6):

0 = �φ + �eφ−V·x − ζφ in �, (11)

ζφ = p∗(|�|) − γ κ on ∂�, (12)

0 = ∂ν (φ − V · x) on ∂� (13)

for unknowns φ(x, V), �(V), and �(V). When V = 0, we
recover the stationary solution φ0, m0, and �0. We write the
cell boundary ∂� in polar coordinates R + ρ(θ, V) [where
ρ(θ, 0) = 0] chosen such that θ = 0 is the direction of V.
Then φ, ρ, and � depend only on V = |V|. To find total
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FIG. 1. Supercritical bifurcation diagram (M2 > 0). For subcrit-
ical bifurcation, see Supplemental Material [9].

myosin mass M(V ) we expand solutions (φ, ρ,�) for small
V :

φ(r, θ,V ) =
3∑

i=0

φi(r, θ )V i + O(V 4), (14)

ρ(θ,V ) = ρ1(θ )V + ρ2(θ )V 2 + ρ3(θ )V 3 + O(V 4), (15)

�(V ) = �0 + �1V + �2V
2 + �3V

3 + O(V 4). (16)

Substituting the expansions (14)–(16) into (11)–(13), we
obtain coefficients φn, ρn, and �n iteratively. In (12) and (13)
we expand φ about r = R to transform the boundary condi-
tions on the unknown ∂� to a fixed boundary r = R. Then φ1

is the product of an explicitly known function of r and cos θ ,
ρ1 = �1 = 0.1 For n � 2, φn is the sum of Fourier modes
cos(kθ ), k � n, and Fourier coefficients are found numerically
(see Supplemental Material [9]).

The parameters R, ζ , γ , ke, and ph are chosen so that φ1

satisfies (12) and (13) [c.f. when n � 2, ρn and �n are chosen
so φn satisfies (12) and (13)], leading to a transcendental equa-
tion for the critical radius R0 = R0(ζ , γ , ke, ph) of stationary
solutions when they bifurcate to traveling solutions:

F (R, ζ , γ , ke, ph) := ζ I1(Rs)

s3I ′
1(Rs)

− (ζ − s2)R

s2
= 0, (17)

where s =
√

ζ − p∗(πR2) + γ /R, and I1 is the modified
Bessel function.

The stationary and traveling solutions are parametrized by
M and V , respectively. The bifurcation occurs at M = M0 ob-
tained by substituting R0 in (8) (see Fig. 1). The total myosin

1No uniqueness for system (2)–(6): if φ(x, t ), m(x, t ), and �(t )
solve (2)–(6), so does the translation φ(x − y, t ), m(x − y, t ), and
�(t ) + y. Taking ρ1 = 0 we select the traveling solution centered at
the origin, �1 = 0, since �(V ) = �(−V ).

FIG. 2. The dependence of M2 on ke. Note M2 > 0 when ke > kc,
i.e., when (7) is satisfied. See Supplemental Material [9] for parame-
ter values used for simulations.

mass of traveling solutions is

M(V ) =
∫ 2π

0

∫ R0+ρ

0
�(V )eφ(r,θ,V )−V r cos θ r dr dθ (18)

= M0 + M1V + M2V
2 + O(V 4), M0 = m0πR2

0,

(19)

M1 = 0, M2 = 2πζ

∫ 2π

0

m0R2
0

γ − 2keR0
φ2(R0, θ ) dθ

+
∫ 2π

0

∫ R0

0
φ2(r, θ )r dr dθ. (20)

In Sec. IV, it will be shown that the sign of M2 determines
the stability of traveling solutions, and this sign depends on
R0, m0, ζ , γ , and ke. Figure 2 shows the key dependence of
M2 on ke. Note that M2 has a singularity at ke = k∗—for this
value of ke, the bifurcation is not smooth. Numerically, for
most parameter values, M2 > 0. Also, M2 > 0 for all ke > kc,
the minimal value of kc where (7) holds.

Next, we solve for the coefficients ρn of the curve r = R +
ρ(θ,V ) that determines the boundary ∂� of traveling solu-
tions. Then ρ1 = 0, while ρ2(θ ) = a + b cos(2θ ) and ρ3(θ ) =
c cos(3θ ), where a, b, and c depend on φ2, φ3 (both found
numerically), and physical parameters. Figure 3 shows the
evolution of cell shape and myosin density. It qualitatively
agrees with simulations from a similar free-boundary model
(see Fig. 1 in [18]) and a phase-field model (see Fig. 3 in [13]).

FIG. 3. Simulations for the cell shape and myosin density as
speed increases. Motion is to the right. Darker colors indicate higher
myosin density. See Supplemental Material [9] for parameter values
used for simulations.
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IV. STABILITY OF TRAVELING SOLUTIONS

Observable steady motion of the cell corresponds to stable
traveling solutions. However, the standard notion of Lya-
punov stability needs to be generalized to traveling solutions.
Namely, the best one can hope for is stability up to shifts,
rotations, and velocity changes, understood as follows. Denote
a traveling solution to (2)–(6) with velocity V as u0(t, V) :=
(m0(x, t, V),�0(t, V)). Consider another traveling solution
u1(t, V), obtained by an ε � 1 shift of u0 in the x direction.
Asymptotic stability implies that a small perturbation ũ close
to both u0 and u1 at t = 0 is exponentially close to only
one of them at t = T � 1. Thus, solutions that are shifts of
one another should not be distinguished. Even more dramatic
changes in stability occur if at t = 0 we consider u0(t, V0)
and u1(t, V1) such that V0 − V1 = �δ, 0 < |�δ| � 1. Then at
t = T � 1, these solutions will be a large distance |�δ|T apart,
and a small perturbation ũ of u0 and u1 at t = 0 will be far
away from either u0 or u1 at t = T . Again, stability does
not hold in the classical sense and one should not distinguish
solutions obtained by rotations (changes direction of velocity)
and finite shifts of one another (solutions are observed in
translated or rotated coordinates).

Initial perturbations at t = t0 are arbitrary; therefore, at
t > 0, u(t, V) may not be a traveling solution. However, due
to asymptotic stability, it becomes such a solution as t → ∞
with the same myosin mass M as at t = 0, which uniquely
determines speed |V| (conservation of M).

To show that stability is determined by a special eigen-
value, rewrite (2)–(6) in a phase space (m, ρ):

∂

∂t
(m, ρ) = F (m, ρ). (21)

Here F is a nonlinear operator from (2)–(6), and φ is an
auxiliary function determined by (2) and (4). Introduce the
linearizations AS (R) and AT (V) of F about the stationary and
traveling solutions, respectively, (AT (V) is found in coordi-
nates moving with velocity V so the traveling solution appears
stationary). At the bifurcation point, the families of traveling
and stationary solutions intersect: AS (R0) = AT (0). The signs
of the real parts of the eigenvalues of AS (R) and AT (V) de-
termine the stability of the stationary and traveling solutions.
For R �= R0, all the eigenvalues of AS (R) are negative except
the zero eigenvalue (multiplicity 3) and an eigenvalue E (R)
(multiplicity 2) the sign of which is determined by (24) since
E (R0) = 0. Similarly, for V �= 0, all eigenvalues of AT (V) are
negative except the zero eigenvalue (multiplicity 4), and an
eigenvalue λ(V ) (multiplicity 1) the sign of which determines
stability of traveling solutions.

Away from the bifurcation point, each of the eigenvectors
of AS (R) [or AT (V)] corresponding to the zero eigenvalue
is a derivative of the stationary (or traveling) solution in a
parameter, e.g., the coordinates of the center of mass with re-
spect to which the class of stationary (or traveling) solutions is
invariant. Both AS (R) and AT (V) have two eigenvectors Ex and
Ey for the zero eigenvalue corresponding to invariance with
respect to shifts in the x and y directions. Additionally, AS (R)
has another eigenvector corresponding to invariance with re-
spect to a change in the radius R. For the zero eigenvalue,
AT (V) also has two generalized eigenvectors corresponding

to infinitesimal changes in speed and direction of motion
(rotation) of traveling solutions. Consider, for instance, the
vector b(V) = ∂

∂V u0(t, V) in V = |V| (change in speed). Then
AT (V)b(V) = a(V) where a(V) = (ExV · ex + EyV · ey)/|V|
is the eigenvector of AT (V) for the zero eigenvalue corre-
sponding to invariance with respect to shifts in the direction
of motion V/|V|. To see this, consider the traveling solution
u(t, V) to the nonlinear problem (21) with velocity V and
perturb its velocity by V′ = V + εV/|V| to obtain u(t, V′),
another traveling solution of (21). Substituting u(t, V′) into
the linearization of (21) about u(t, V) and taking t = 0 shows
that AT (V)b(V) = a(V), that is, b(V) is a generalized eigen-
vector.

The eigenvectors a(V) and b(V) play a key role in
the ansatz (22) below, which is used in calculating the
stability-deciding eigenvalue λ(V ). The eigenvector c(V) cor-
responding to λ(V ) becomes parallel to a(V) as V → 0 (c.f.
orthogonality of eigenvectors for self-adjoint operators) and
λ(V = 0) = 0. The eigenvalue λ(V ) is even (due to symme-
try x �→ −x, V �→ −V ), thus λ′(0) = 0 and λ(V ) = λ2V 2 +
O(V 4). Therefore the stability is determined by the sign of λ2.

Both a(V) and b(V) can be found explicitly as derivatives
of traveling solutions with asymptotic expansions (14)–(16).
To find λ2, we introduce a special ansatz (see Supplemental
Material [9]) for c(V) starting with coefficients a(V) and
b(V):

c(V) = a(V) + λ2V
2b(V) + O(|V|3) (22)

Substituting (22) into AT (V)c(V) = λ(V)c(V) and comparing
terms of like power in V , we obtain λ2, which requires solving
equations up to fifth order in V (see [19] for details of this
calculation); we obtain an explicit formula:

λ2 = − dE

dM

∣∣∣
M=M(0)

d2M

dV 2

∣∣∣
V =0

. (23)

Therefore, the stability of traveling solutions is determined
by the signs of the two derivatives in (23). First, from (19),
∂2M/∂V 2|V =0 = 2M2 (see its sign in Fig. 2). In particu-
lar, ∂2M/∂V 2|V =0 > 0 when condition (7) is met. Second,
dE/dM is determined by F from (17):

dE

dM
= dE

dR

dR

dM
= C

∂F

∂R
, (24)

where C > 0 (explicitly calculated in Lemma 4.5 in [19]).
The eigenvalue E (R) describes moveability of stationary so-
lutions: if Re E (R) > 0, then stationary solutions “want to
move,” becoming motile after a small perturbation. Straight-
forward calculations show E (R) = E (M ) > 0 if M > M0 and
(7) holds [E (R0) = 0]. Figure 2 shows how ∂F/∂R|R=R0 de-
pends on ke and ∂F/∂R|R=R0 = 0 precisely when M2 has
a singularity. If condition (7) holds, then ∂F/∂R|R=R0 and
∂E/∂M|M=M(0) are both positive, so λ2 < 0. All other eigen-
values of AT (V) have negative real part except the zero
eigenvalue the eigenvectors of which correspond to shifts in
the x and y directions, and generalized eigenvectors corre-
spond to rotations, and shifts in speed (the latter controlled
by conservation of myosin). Thus, for parameters satisfying
(7), traveling solutions are linearly stable up to shifts and
rotations.
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This analysis explains the mathematics behind the stabil-
ity of cell motility. Namely, instability of radial stationary
states manifests itself in the presence of an eigenvector for
the eigenvalue E (R) > 0 the structure of which is similar
to eigenvector c(V ) in (22), corresponding to λ(V ). Indeed,
the leading terms in both eigenvectors correspond to spatial
shifts. The key difference is that E (R) > 0 while λ(V ) <

0. Thus perturbations of stationary states lead to acceler-
ating shift motion (translations) whereas perturbations of
traveling solutions lead to a decelerating shift motion. Quali-
tatively, upon perturbation, an unstable stationary state starts
to move and it eventually becomes a stable traveling solu-
tion.

V. NONLINEAR ASYMPTOTIC STABILITY:
DISCUSSION AND RESULTS

Direct numerical computation of the eigenvalue λ(V )
the sign of which determines stability is quite difficult for
several reasons. First, λ(V ) is small. Second, instability
of numerical methods and computational error may be-
come conflated with actual physical instability. Third, while
numerical methods for self-adjoint problems based on varia-
tional principles are well developed, such principles are not
available for non-self-adjoint problems that model out-of-
equilibrium systems. However, we easily calculate λ(V ) =
λ2V 2 + O(V 4) thanks to the explicit formula (23) for λ2 in
which dE/dM is explicitly found in (24) and it remains to
compute d2M/dV 2 via numerical evaluation of the integrals
in (20).

These reasons highlight the importance of the analytical
study of stability in our non-self-adjoint free-boundary model.
Moreover, our analysis is not restricted to the linearized prob-
lem but establishes conditions for nonlinear stability. For
example, multiple zero eigenvalues in the linearized prob-
lem with generalized eigenvectors lead to solutions that grow
linearly as t → ∞. Because of these eigenvalues, linearized
stability analysis is inconclusive and we construct a Lya-
punov function to establish nonlinear asymptotic stability
when the parameters satisfy (7). This is done by proving
that all eigenvalues except λ(V ) and zero eigenvalues have
negative real part, while zero eigenvalues (and corresponding
eigenvectors) are eliminated as follows. The shift or rotation
eigenvectors are eliminated by mapping the free-boundary
domain to a fixed domain such that if two vectors (m, ρ)
differ only by a shift and rotation the governing equation (21)
for them is the same, and the shift or rotation eigenvectors
are mapped to zero because they are defined via differenti-
ation in these shifts or rotations. Recall that V is uniquely
determined by M and the conservation of M property [see
the paragraph before (21)]. Thus the generalized eigenvec-
tor b(V) corresponding to a change in speed is eliminated
by considering solutions with fixed total myosin mass M
in view of the conservation of M property. A possibility of
a sequence of eigenvalues the negative real parts of which
converge to zero is eliminated by a priori estimates presented
in the Supplemental Material [9] in the 1D setting for tech-
nical simplicity. Finally, numerics for (23) determines that if
ke > kc [sufficiently strong membrane cortex elasticity; (7)
holds] then asymptotic nonlinear stability follows. Note that

our modeling and analysis are performed in the small veloc-
ity regime: V � Vchar = ζ−1(ph/R). For larger velocities, the
model needs to be modified, e.g., polymerization is no longer
negligible.

VI. CONCLUSIONS

We proposed a 2D free-boundary model for cell motility
the traveling solutions of which represent persistent motion
of the cell. We first performed linear stability analysis of the
traveling solutions. Linearizing about the traveling solution of
velocity V resulted in two challenges: the linearized problem
is not self-adjoint and it has zero eigenvalue of multiplicity
4 with both true and generalized eigenvectors correspond-
ing to shifts in the x and y directions and to changes in
speed and rotation angle of traveling solutions. This led us
to introducing a notion of generalized stability up to shifts
or rotation and speed changes, since the standard Lyapunov
stability does not apply. Furthermore, we show that there is
only one eigenvalue, λ(V ), which may have a positive real
part. Moreover, the non-self-adjoint nature of the linearized
problem manifests in the eigenvector c(V) for λ(V ) becom-
ing asymptotically parallel to one of the shift eigenvectors.
This difficulty is resolved by a special ansatz for c(V), em-
ploying a shift eigenvector and its corresponding generalized
eigenvector as coefficients. This ansatz led to an explicit
asymptotic formula for λ(V ) (in terms of physical quantities).
Zero eigenvalues made the linear stability analysis inconclu-
sive, requiring construction of a Lyapunov function for the
generalized asymptotic stability of traveling solutions. We
establish nonlinear asymptotic stability of traveling solutions
by showing that λ2 < 0 in (23) in a wide range of physi-
cal parameters (adhesion, surface tension, and total myosin
mass).

Expansions (14)–(16) and (23) reveal the physical ingre-
dients responsible for stability: the underlying force coupling
and shape effects. Due to (23), stability is determined by M2

in (19), which shows that the distribution of myosin is coupled
with the shape [(33) and (34) in the Supplemental Material [9]
couple M2 and shape ρ2; shape does not change in first order,
ρ1 = 0].

In summary, our analysis reveals the mathematical under-
pinnings of stability in the cell motility problem. The elastic
regularization term introduced in our 2D model (2)–(6) by
analogy with the 1D case [2] shows that sufficiently strong
elastic constant ke is necessary for the model to capture the
motility phenomenon by avoiding mathematical instabilities
such as collapse. We quantify what is meant by “suffi-
ciently strong ke” via (7). Our spectral analysis explains the
mechanisms of the instability-stability transition. The explicit
formula (23) shows that stability of traveling solutions is
determined by the change in total myosin mass. Namely, if
the total myosin mass exceeds the critical value M(0) = M0

[M ′′(0) > 0 in (23)], then unstable stationary solutions be-
come asymptotically stable traveling solutions. Finally, the
comparison between eigenvectors corresponding to the sta-
bility deciding eigenvalues λ(V ) and E (R) (end of Sec. IV)
explains the mathematics behind the transition between sta-
tionary and moving states.
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