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There still are no effective long-term protective vaccines against viruses that continuously evolve under
immune pressure such as seasonal influenza, which has caused, and can cause, devastating epidemics in the
human population. To find such a broadly protective immunization strategy, it is useful to know how easily
the virus can escape via mutation from specific antibody responses. This information is encoded in the fitness
landscape of the viral proteins (i.e., knowledge of the viral fitness as a function of sequence). Here we present a
computational method to infer the intrinsic mutational fitness landscape of influenzalike evolving antigens from
yearly sequence data. We test inference performance with computer-generated sequence data that are based on
stochastic simulations mimicking basic features of immune-driven viral evolution. Although the numerically
simulated model does create a phylogeny based on the allowed mutations, the inference scheme does not use
this information. This provides a contrast to other methods that rely on reconstruction of phylogenetic trees. Our
method just needs a sufficient number of samples over multiple years. With our method, we are able to infer
single as well as pairwise mutational fitness effects from the simulated sequence time series for short antigenic
proteins. Our fitness inference approach may have potential future use for the design of immunization protocols
by identifying intrinsically vulnerable immune target combinations on antigens that evolve under immune-driven
selection. In the future, this approach may be applied to influenza and other novel viruses such as SARS-CoV-2,
which evolves and, like influenza, might continue to escape the natural and vaccine-mediated immune pressures.
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I. INTRODUCTION

Global seasonal influenza epidemics are caused by in-
fluenza A and B viruses that although being effectively
targeted by natural immune responses, seasonal vaccination
responses, as well as long-term immune memory, are able to
persistently escape population-wide immunity via mutations
[1]. The dominantly targeted antigen of the influenza virus
is the glycoprotein HA that is located on the viral surface
together with the other surface glycoprotein NA, which also
acts as an antigen. HA is responsible for binding to sialic
acid on human cell surfaces and it thereby enables viral
cell entry. The human immune system produces antibodies,
which primarily bind to different regions (epitopes) on HA
thereby blocking the virus from cell attachment and entry.

*Corresponding author: kardar@mit.edu
†Corresponding author: arupc@mit.edu

There are five dominant and easily accessible epitope re-
gions on the head of HA that have been identified in the
circulating subtype H3, which are labeled with the letters
A–E [2,3]. These represent the parts of the protein sequence
where the virus predominantly produces amino acid substitu-
tions that abrogate antibody binding and thus lead to immune
escape [4].

These interlinked dynamics of the mutating virus and re-
sponding human immunity cause a gradual evolution of the
viral antigens that is known as antigenic drift [5], which
leads to characteristic strain succession patterns in seasonal
influenza (Fig. 1). Each unique sequence arises at a specific
time and persists for a small number of years in the pop-
ulation before being replaced by newer strains. Every year,
a relatively small number of strains is observed, although
the total number of strains grows rapidly. Antigenic drift is
also responsible for the fact that there is currently no long-
term protective vaccine against seasonal influenza and why
still around half a million people die globally from influenza
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FIG. 1. Strain succession for the evolution of HA (H3N2) sequences between 1968 and 2020. (a) Each unique HA amino acid sequence
(strain) is shown with its observed frequency in each year as a solid line, with line colors ranging from purple (old strains) to red (new strains).
(b) Strains are labeled with increasing numbers from old strains (low labels) to new strains (high labels). The respective strain, which is the
most prevalent in each year, is marked as a red circle. Blue circles indicate strains that were observed with some nonzero frequency. The
apparent increase in the number of observed sequences at later years is likely an artifact of sampling more sequences, rather than indicative of
increasing diversification of lineages.

infection [6]. Therefore, it is important to create more effec-
tive vaccines and other immunization strategies, which target
the virus where it is most vulnerable.

Even for the currently widely used seasonally updated in-
fluenza vaccines, the choice of vaccine strains is not trivial.
For the best efficacy, one needs to make accurate predictions
of the viral strains that will be prevalent in the future, based
on past and current sequence information. Every year, the
WHO uses detailed information from international labora-
tories and worldwide experts to create recommendations on
the composition of the influenza virus vaccine [7], but many
seasonal vaccines still have a low efficacy compared to other
viral vaccines. Thus many computational and experimental
efforts are undertaken, which exclusively work on the task
of analyzing and predicting the evolution of influenza anti-
genic sequences, with the goal of making seasonal vaccines
more effective [5,8–13]. But, although periodically updated
vaccinations are continually improved and are currently the
most effective method for preventive control of seasonal in-
fluenza epidemics, such relatively short-term predictions do
not generally lead to long-term effective protection of the
population [14].

Other approaches aim for cross-protective influenza treat-
ments that are effective against a wide range of strains. Such
approaches typically consider strongly conserved epitopes
such as the receptor binding site (RBS) or the stem of HA
[15–24]. Methods targeting those regions require specialized
methods for sophisticated vaccine protocols and drug designs
[25–35].

Easily accessible sites on highly mutable virus antigens,
e.g., on the head of HA in the case of influenza, can generally
quickly escape human immune memory via amino acid substi-
tution. However, mutations at some of those strongly targeted

sites will be functionally more costly to the virus than others.
For a long-term protective immunization approach, it there-
fore would be useful to find and target primarily those easily
accessible sites on viral antigens that are most vulnerable, i.e.,
that have difficulty finding viable mutational escape routes.
We can further imagine targeting several sites simultaneously
by specifically designed multiclonal immune responses. In
this case, it would be useful to choose such combinations
of sites as targets, which together are most vulnerable and
do not easily allow the combinations of mutations that lead
to escape from the simultaneous responses. The information
about the cost of such single and combined mutations at
different protein sites is encoded in the intrinsic mutational
fitness landscape of the viral sequence.

Previous studies were able to use approaches based on
maximum entropy considerations and a method called adap-
tive cluster expansion (ACE) to computationally infer intrinsic
mutational fitness landscapes for other highly mutable viruses,
HIV, as well as polio, from sequence prevalence data [36–47].
The result of such fitness inference was used to propose
a novel cross-protective immunization method against HIV
using multidimensionally conserved parts of the proteome,
which has been shown to be immunogenic in rhesus macaques
[48]. In fact, similar inverse statistical physics models have
been extensively used in various contexts to learn from mul-
tiple sequence alignments about the structure and function of
various pathogenic and human proteins [49].

Seasonal influenza, however, evolves very differently in
the human population than viruses such as HIV, for which
maximum entropy-based fitness inference methods have been
successful. Since influenza is targeted by a population-wide
immune memory, it is permanently driven away from past
strains as opposed to HIV, which evolves much more freely
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within its fitness landscape and is able to periodically revisit
old strains [10,38,50]. This immune-driven, nonequilibrium
nature of influenza evolution requires a different method for
the inference of the intrinsic mutational fitness landscape than
the maximum entropy-based methods that were successful for
other viruses.

For influenzalike evolving viruses, in which the
population-wide immune memory against each emerging
mutant accumulates with every season, the effective fitness
landscape depends on the viral evolutionary history and
therefore changes in time. Such a changing fitness landscape
has also been referred to as a “seascape” [51,52]. This time
variance of the effective fitness landscape makes approaches
that rely on conserved fitness landscapes, such as the recently
proposed marginal path likelihood (MPL) method [53],
generally unsuitable for fitness inference from sequence time
series of influenzalike evolving antigens.

Here we present a method with which we can infer the
single and pairwise mutational intrinsic fitness costs from
population-level sequence time series of an influenzalike
evolving pathogen. We test our inference approach on se-
quence data generated by computer simulations and propose
its potential application in the future to investigate yearly
protein sequence time series data from influenzalike evolving
viruses, in order to obtain combinations of vulnerable anti-
body targets.

II. MODEL OF INFLUENZA ANTIGEN EVOLUTION

In our model for influenzalike evolution, we consider each
epidemic season as an evolutionary step, in which different
viral strains, represented as unique protein sequences, evolve
and compete with each other according to intrinsic and host
immunity-mediated driving forces. In the following, we will
describe the components of our model, which we use both
to create computer-generated sequence data and to motivate
the inference method, which we will describe in Sec. III. Our
influenza evolution model is motivated and inspired by several
previous modeling studies, which describe the essential prop-
erties of the evolution of influenzalike pathogen populations
that lead to the characteristic spindlelike phylogeny and strain
succession pattern of seasonal influenza [9,10,54–56]. Those
pathogen models also relate to more general models of rapid
adaptation in asexual populations that evolve towards increas-
ing fitness in a traveling-wave-type manner [57–59].

A. Sequence representation

For the representation of viral strains, we use a binary se-
quence representation, in which a strain S j = (s1

j , s2
j , . . . , sL

j ),
i.e., a unique sequence, is represented as a string of L ones and
zeros. This is a coarse-grained representation of a real protein,
wherein, in principle, there could be 20 possible amino acids
at each residue. For proteins that do not mutate too much
(such as the p24 structural protein of HIV), a binary Ising-like
representation, instead of a Potts model, is reasonable [39].
Also, our approach could be generalized to Potts models.
Here, we consider sequences of L < 100, which are much
shorter than real protein sequences.

B. Fitness model

The time-dependent fitness landscape in our model, which
defines the fitness of different strains, is composed of two
components. The intrinsic fitness represents the intrinsic abil-
ity of a particular virus strain (with a specific sequence) to
infect, reproduce, and transmit in a susceptible human popula-
tion. We assume that this intrinsic landscape does not change
as the host immunity evolves over time. This is tantamount
to assuming that the basic functions of the viral proteins
remain the same over the timescales of interest. The host
immunity-mediated fitness cost, on the other hand, represents
the accumulated immunity against viruses belonging to a
given strain in the host population, which reduces the number
of susceptible hosts and therefore reduces the fitness of the
respective strain. The total fitness of a strain S j at time t ,
given the evolutionary history x(t ′ < t ) of the whole virus
population in humans, is modeled as

Ftotal[S j, x(t ′ < t )] = Fint (S j ) + Fhost[S j, x(t ′ < t )], (1)

with intrinsic and immunity-mediated fitness components Fint

and Fhost.

1. Intrinsic fitness model

The intrinsic fitness of a strain in our model is represented
by a two-point approximation as

Fint (S j ) = F0 +
L∑

α=1

hαsα
j +

∑
α<β

Jαβsα
j sβ

j . (2)

Here, F0 represents the intrinsic fitness of a reference strain
which is represented as a string of zeros, the second term
represents the fitness change due to independent mutations at
each sequence site α compared to the reference strain (sα

j = 0
if unmutated, 1 otherwise), and the last term represents the
additional fitness change due to coupled mutations at pairs of
sites α and β. The single-mutational fitness coefficients {h}
and the mutational coupling coefficients {J} describe the in-
trinsic mutational fitness landscape, which we ultimately want
to infer from the observed sequences. The intrinsic fitness
coefficients describe how easy or difficult it is for the virus
to create escape mutations if specific sites or pairs of sites
are targeted by the host. Note that by using this Ising-type
approximation of the intrinsic fitness landscape, we reduce the
number of fitness parameters for binary sequences with, e.g.,
length L = 20 from 2L = 104 857 6 unique strains to L(L +
1)/2 = 210 fitness parameters {h, J}. The fitness model used
in Eq. (2) is different compared to maximum entropy models
wherein the fitness is the exponential of an expression such
as Eq. (2). We use this formulation for convenience and for
demonstrating our method.

2. Representation of host immunity-mediated fitness costs

The host-dependent immunity-mediated fitness component
depends on the evolutionary history of the viral population
and, in our model, is calculated with a functional form sim-
ilar to that previously used in other influenza fitness models
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[9,54,56], i.e.,

Fhost[S j, x(t ′ < t )]

= −σh

∑
t ′<t

M=2L∑
i=1

x(Si, t ′) exp
(−|Sep

j − Sep
i |/D0

)
. (3)

The immunity-mediated fitness component decreases the fit-
ness of each emerging strain over time and is proportional to
the prevalence x(Si, t ′) of antigenically similar strains Si in
previous years t ′. This accumulating fitness cost forces the
virus to continuously evolve away from previously prevalent
sequences. Here, |Sep

j − Sep
i | describes the mutational distance

between strains Si and S j within their immune-targeted epi-
tope regions and D0 is the cross-immunity distance (i.e., the
typical mutational distance within epitope regions beyond
which two strains are dissimilar enough to not be targeted
by immune responses that were raised against the other). In
the following, we will assume for simplicity that all modeled
sequence sites are equally immune targeted and therefore
Sep

j = S j , but the model can, in principle, be extended to
account for less or untargeted sites in the model sequence S j .

In this model, for fitness cost accumulation, it is assumed
that immunity against each particular strain lasts forever. In
fact, human immune memory against influenza strains seems
to be able to persist for many decades [60]. However, if there is
evidence for a particular memory duration or decay function,
it is straightforward to include this in our model.

C. Sequence selection

During the spread of viral infections in the course of a flu
season, different strains are assumed to grow with a growth
rate given by their respective fitness [Eq. (1)], i.e.,

Ftotal[S j, x(t ′ < t )]

= F0 +
∑

α

hαsα
j +

∑
α<β

Jαβsα
j sβ

j

−σh

∑
t ′<t

∑
i

x(Si, t ′) exp
(−|Sep

j − Sep
i |/D0

)
. (4)

At the end of a season, a fixed number Npop of sequences
is assumed to survive into the next season. The expected
frequency of a given strain S j among the selected sequences
in season t + 1 is calculated as

p(S j, t + 1) = exp {Ftotal[S j, x(t ′ < t )]}xm(S j, t )∑
i exp {Ftotal[Si, x(t ′ < t )]}xm(Si, t )

, (5)

where xm(S j, t ) denotes the frequency of strain S j in season
t before growth and selection. The number of selected se-
quences, N (S j, t + 1), belonging to strain S j are drawn from
a multinomial distribution with probabilities given by Eq. (5)
and Npop as the number of draws.

D. Sequence mutation

We assume that mutation is a separate step from selection
in each flu season. Thus, in every modeled season t before
growth and selection, sequences are modeled to mutate and
thereby create a new frequency distribution xm(t ). We assume
one symmetric mutation rate μ, per season, between the two

different states at each site, such that the mutation probability
μi j = μ ji for mutation between strains Si and S j is given as

μi j = μ|Si−S j |(1 − μ)L−|Si−S j |. (6)

In a stochastic simulation procedure, the mutated sequences
can simply be created by randomly switching the state at each
site in each selected sequence with probability μ.

As mentioned before, the main motivation for the model is
to generate a controlled dataset that can be used to develop and
test a method for inferring the intrinsic mutational fitness land-
scape of influenzalike evolving antigenic sequences. The goal
within our model framework is to infer the intrinsic fitness
coefficients {h, J} from yearly observations x(t < T ) (until
the most recent season T ) of antigenic protein sequences, in
order to learn about the vulnerability and mutational escape
likelihood at different single and combinations of sequence
sites upon being targeted.

On this account, we developed an inference approach,
which we test on computer-generated data that we produced
via simulation of our sequence evolution model with a known
fitness landscape.

III. ANALYSIS AND INFERENCE BASED ON SIMULATED
SEQUENCE DATA

A. Simulation produces influenzalike antigen evolution

Based on the presented model, we ran stochastic simula-
tions to compare the computer-generated sequence evolution
to influenza sequence data and to test our fitness inference
method. The simulation parameters are the sequence length
L, population size Npop, number of simulated seasons, Nsimu,
mutation rate μ, cross-immunity distance D0, host-immunity
coefficient σh, and intrinsic fitness coefficients {h, J} (cf.
Table I). In the beginning of each simulation, the population
is initialized with the unmutated strain S0 = (0, 0, . . . , 0).
Accordingly, the initial strain frequency distribution is given
by x(S0, t = 0) = 1. The intrinsic fitness landscape in our
simulations is predetermined by the chosen intrinsic fitness
parameters {h, J}. As just an example, we sample a limited
number of these parameters from Ising coefficients inferred
for the HIV p24 protein using a maximum entropy model
[39]. In each time step representing one epidemic season, se-
quences are first mutated according to rate μ. After mutation,
the current fitness of each present strain is calculated with
Eq. (4), based on which the selection probability [Eq. (5)]
of each strain is determined. The sequence population for
the next season is then sampled by Npop random draws from
a multinomial distribution, with the individual probabilities
given by the respective selection probabilities of each strain.

For a range of parameter choices, our stochastic simula-
tions produce immune-driven evolutionary patterns (Fig. 2),
which are qualitatively similar to those observed for evolu-
tion of the influenza spike protein HA (H3N2) in the human
population (Fig. 1). This similarity implies that our model is
able to capture the essential dynamics of antigenic evolution
for pathogens such as seasonal influenza. This also indicates
that the inference approach, which we develop with the help
of simulated data, can in principle be applied to influenza
sequence data. One difference in the shown figures [Figs. 1(b)
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TABLE I. Parameters for simulation of influenzalike sequence evolution and for intrinsic fitness inference.

Parameter Description Default value

{h, J} intrinsic fitness coefficients for single mutations sampled values from
and pairwise mutational couplings HIV protein p24

L length of sequence representation 20
μ mutation rate (per sequence site) 10−4

D0 cross-immunity distance 5
Npop population size 105

σh host-fitness coefficient 1
{λh, λJ , λF∗ } regularization coefficients for inference {10−4, 1, 10−4}
nseasons number of seasons used for inference 100
B number of sampled sequences per season 103

and 2(b)] is the approximately exponential increase of to-
tal sequence diversity in strains based on full HA amino
acid sequence data versus the more linear increase of total
sequence diversity in a simulation of binary sequences of
length 20. The dependence of this growth of strain diversity
on various parameters and its underlying mechanisms should
be further investigated when translating our procedures to
infer the fitness landscape of influenza. We speculate that the
exponential increase of sequence diversity in the observed
influenza sequences may be due to the rapid increase in
the amount of yearly acquired sequencing data in the past
years.

B. Observation of stringent selection regime

For the analysis of the simulated sequences, we randomly
sampled a number B of sequences per season to imitate
the sampling properties of real observed protein data, which

contain only subsets of the yearly circulating viruses. For
an example set of sampled data from one simulation, we
see that the distribution of total fitness is narrower than
the distributions of the intrinsic and the immunity-dependent
fitness components (Fig. 3). The narrow total fitness distri-
bution in each season indicates a stringent selection regime,
in which only those strains in a narrow fitness range around
the currently fittest strain survive into the next season. In this
observed regime, we have

Ftotal{S j[t], x(t ′ < t )} ≈ F [t, x(t ′ < t )], (7)

with F [t, x(t ′ < t )] being dependent on time t but indepen-
dent of sequence identity S, given the specific evolutionary
history x(t ′ < t ). Here, S j[t] denotes a sequence of identity
S j that is actually selected at time t .

Indeed, we find with our simulation a clear 1:1 correspon-
dence between the intrinsic fitness variation and immunity-

FIG. 2. Strain succession for the evolution of simulated data over 200 time steps. (a) Each unique sequence (strain) is shown with its
observed frequency in each simulated season as a solid line, with line colors ranging from purple (old strains) to red (new strains). (b) Strains
are labeled with increasing numbers from old strains (low labels) to new strains (high labels). The respective strain, which is the most prevalent
in each simulated season, is marked as a red circle. Blue circles indicate strains that were observed with some nonzero frequency. For the shown
example, the parameter values for simulation and analysis are Npop = 105, L = 20, μ = 10−4, σh = 1, D0 = 5, Nsimu = 200, and B = 103.
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FIG. 3. Fitness deviations from the mean of sampled strains for each simulated season between seasons 100 and 200. (a) Intrinsic fitness
component Fint , (b) immunity-dependent fitness component Fhost , (c) total fitness Ftotal = Fint + Fhost . For the shown example, the parameter
values for simulation and analysis are Npop = 105, L = 20, μ = 10−4, σh = 1, D0 = 5, Nsimu = 200, and B = 103.

dependent fitness variation in each season [Fig. 4(a)],
which add up to a roughly constant total fitness in each
season, as the stringency assumption [Eq. (7)] suggests.
In Fig. 4(b), it can be observed that in our simula-
tion, the absolute population fitness decreases with each
year, due both to the emergence of less intrinsically fit
strains and to the population-wide accumulation of immune
pressure.

As for the evolution of influenza in the human population,
its seasonal dynamics has been well described with traveling-
wave models, which indicate a localized, narrow distribution
of the viral population in fitness space at any given time point
[57–59,61]. Such a narrow fitness distribution of concurrently
selected viral antigenic sequences indicates that one necessary
condition [Eq. (7)] for our stringency-based inference method
may be fulfilled by seasonal influenza antigens.

FIG. 4. Negative immunity-dependent fitness cost −Fhost (y axes) compared to intrinsic fitness Fint (x axes) for sampled strains for each
simulated season between seasons 100 and 200 (same data as in Fig. 3). (a) Fitness deviations from the mean as colored circles with a solid
black line indicating 1:1 correspondence. (b) Absolute fitness components as colored circles with a solid black line indicating slope 1. Colors
from purple to red in both panels indicate seasons from 100 to 200, in which the respective strains were sampled.
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C. Method for intrinsic fitness inference

From Eq. (1) together with Eq. (7), we obtain the following
relation for the observed strains S j[t] in each given year t in
the case of stringent selection:

−Fhost{S j[t], x(t ′ < t )}
≈

∑
α

hαsα
j +

∑
α<β

Jαβsα
j sβ

j + F ∗[t, x(t ′ < t )], (8)

where F ∗[t, x(t ′ < t )] = F0 − F [t, x(t ′ < t )] is a different
constant at each time t , conditional on the evolutionary history
until t . If we approximate the evolutionary history x(t ′ < t )
with the observed strain frequencies starting from the first
year of observation and assume the model parameters σh and
D0 to be known, e.g., as fit parameters to independent cross-
immunity studies [9], we can calculate Fhost{S j[t], x(t ′ < t )}
for each observed strain in each season. We now use these
host-dependent fitness values together with Eq. (8) to infer the
intrinsic fitness coefficients {h, J} as well as the additional pa-
rameters {F ∗} (one additional parameter per season). Here we
treat {F ∗} as independent parameters, although they generally
depend on other model parameters and on the history via the
full evolutionary dynamics of the system. For the regression,
we minimize the sum of squared residuals between the data,

Ydata (S j[t], t ) = −Fhost{S j[t], x(t ′ < t )}

= σh

∑
t ′<t

M=2L∑
i=1

x(Si, t ′) exp
(−|Sep

j − Sep
i |/D0

)
,

(9)

which are given by the left-hand side of Eq. (8), and the model
function

Ymodel(S j[t], t, {h, J, F ∗}) =
∑

α

hαsα
j +

∑
α<β

Jαβsα
j sβ

j + F ∗
t ,

(10)

which is given by the right-hand side of Eq. (8), i.e.,

{h, J, F ∗} = arg min
{h,J,F ∗}

[
1

2

∑
t

∑
j

{Ydata (S j[t], t )

−Ymodel(S j[t], t, {h, J, F ∗})}2

+ λh

2

∑
α

h2
α + λJ

2

∑
α<β

J2
αβ + λF ∗

2

∑
t ′

F ∗2
t ′

]
,

(11)

where we also take into account regularization with coef-
ficients λh, λJ , λF ∗ that in a Bayesian sense correspond to
Gaussian prior distributions.

For inference, we use the following equation [62,
Eq. (3.44)]:

M = (XT X + �)−1XT y (12)

to solve for the unique parameter values M =
(h1, . . . , hL, J1, . . . , JL∗(L−1)/2, F ∗

1 , . . . , F ∗
n seasons)T , which

minimize the sum of squared residuals subject to ridge
regularization [Eq. (11)]. The feature vector for each sampled
strain, which forms a row in the feature matrix X, consists

of binary features representing the single-mutational and
double-mutational states of the respective sequence, as well
as its time of observation. y is a column vector, whose entries
are given by the values −Fhost{S j[t], x(t ′ < t )} [cf. Eq. (3)]
for the respective sequence S j[t], sampled at time t . The
nonzero regularization coefficients {λh, λJ , λF∗} are collected
in the diagonal matrix �, and regularization also ensures
that no singularities are encountered at matrix inversion.
The coefficients λh and λF∗ are set to very small values
corresponding to a very wide, rather nonrestrictive, prior
distribution, while λJ , corresponding to the assumed sparse
mutational couplings, is set to 1.

D. Inferring the intrinsic mutational fitness landscape
from simulated influenzalike sequence data

The parameters for simulation and inference with chosen
default values are collected in Table I.

In Fig. 5, we compare the inferred and the simulated in-
trinsic fitness coefficients for one simulation. The correlation
coefficients between simulated and inferred coefficients and,
in particular, the Pearson correlation rhJ between the total fit-
ness effects of double mutations indicates if the specific fitness
inference on the particular sequence data set can successfully
distinguish between pairs of sites, at which escape mutations
lead to either low or high (negative) fitness costs.

Besides the correlation coefficient rhJ , we use another mea-
sure for inference performance, which can be useful if we are
mainly interested in identifying those pairs of sites that have
the most deleterious fitness effect, i.e., those whose intrinsic
fitness change compared to the reference sequence is below a
certain negative threshold, with

hα + hβ + Jαβ < Fthreshold < 0. (13)

In this case, we can use typical classification performance
measures to assess how well our inference method can dis-
tinguish between deleterious and more neutral or beneficial
double mutations. We compare the classification of each pair
(based on the inferred coefficients) with the classification of
the simulation input values by calculating the precision-recall
curve (PRC) as well as the receiver operating characteristic
curve (ROC) and the respective areas under the curves (AUC)
(Fig. 6), which approach 1 in the case of perfect classification
skill.

When calculating the inference performance for one sim-
ulation with sequence length L = 20 in terms of correlation
rhJ and classification performance (AUC) for various sample
sizes (Fig. 7), we find that a minimum total number of sam-
pled strains, nseasonsB, is required for accurate inference. In
the shown example, a total sample size of � 105 strains is
required for high inference performance [Fig. 7(b)]. Since this
is true for a sequence of length L = 20, a very large number of
sequences would be needed for an inference based on a pro-
tein representation with all amino acid sites L > 100, which
indicates that for real proteins, sequence representations with
strongly reduced dimensions are needed for inferences based
on the available amount of observed data.

The inference performance further strongly depends on the
sequence length L [Fig. 8(a)] as well as on the population size
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FIG. 5. Parameter correlations for the inference on one simulated data set. Inferred values of the fitness coefficients are shown against the
fitness coefficients that were used as input values for the simulation. (a) Single-site mutational fitness coefficients h, (b) coupling coefficients
J for simultaneous mutations at any two sites, (c) total fitness changes hk + hl + Jkl due to simultaneous mutations at any two sites k and l .
Pearson correlation coefficients r together with their respective p values are shown in each panel for the respective set of parameters. For the
shown example, the parameter values for simulation and analysis are Npop = 105, L = 20, μ = 10−4, σh = 1, D0 = 5, Nsimu = 200, B = 103,
nseasons = 100, λh = 10−4, λJ = 1, and λF∗ = 10−4.

Npop [Fig. 8(b)]. Inference performance in terms of the corre-
lation rhJ between inferred and simulated double-mutational
fitness coefficients decreases with increasing sequence length
and increases with increasing population size towards an up-
per limit �1. Thus, if the protein sequence representation is
high dimensional, a very large amount of data is needed for

a high inference performance (indicating the need for dimen-
sionality reduction) and, second, if the effective population
size that defines the selection bottleneck is small, inference
can be poor. A large population size, however, will not con-
tribute to high inference performance if the sample size B is
low.

FIG. 6. Classification performance for the inference on one simulated data set. Double mutations are classified as deleterious if their total
fitness cost is lower than Fthreshold = −10 [cf. Eq. (13)]. (a) The precision-recall curve (PRC) and (b) the ROC curve for the classifier derived
from inferred fitness coefficients. Black dashed lines show a no-skill classifier for comparison and the area under the classifier curve (AUC) is
given in each panel, respectively. For the shown example, the parameter values for simulation and analysis are Npop = 105, L = 20, μ = 10−4,
σh = 1, D0 = 5, Nsimu = 200, B = 103, nseasons = 100, λh = 10−4, λJ = 1, λF∗ = 10−4, and Fthreshold = −10
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FIG. 7. Inference performance for varying yearly sample size B per season and varying number nseasons of seasons used for inference.
(a) The correlation coefficient rhJ between inferred and simulated double-mutational fitness costs as a function of yearly sample size B for
various nseasons. (b) The correlation coefficient rhJ as a function of total sample size, Bnseasons. (b) The area (AUC) under the ROC curve and
under the precision-recall curve (PRC) for the classification of deleterious double mutations with classification threshold Fthreshold = −10,
shown as a function of total sample size Bnseasons. Each value is averaged over six simulations, respectively, and error bars show the respective
sample standard deviations. For the shown example, the fixed parameter values for simulation and analysis are Npop = 105, L = 20, μ = 10−4,
σh = 1, D0 = 5, Nsimu = 200, λh = 10−4, λJ = 1, and λF∗ = 10−4.

The five epitope regions of influenza HA contain 131
amino acid sites [2,63]. If we represent this antigenic region
with a binary representation, i.e., 1 for being mutated, 0 for not

being mutated compared to a reference sequence, we remain
with a sequence length of L = 131. On the other hand, the
total number of H3N2 sequences that have been collected

FIG. 8. Inference performance in terms of the correlation coefficient rhJ between inferred and simulated double-mutational fitness costs,
for varying simulation and analysis parameters. (a) Inference performance as a function of sequence length L, (b) inference performance as
a function of population size Npop. For both parameter explorations, the yearly sample size B was varied between 10 and 105. Each value is
averaged over six simulations, respectively, and error bars show the respective sample standard deviations. For the shown simulation results, the
respective fixed parameter values for simulation and analysis are Npop = 105, L = 20, μ = 10−4, σh = 1, D0 = 5, Nsimu = 200, nseasons = 100,
λh = 10−4, λJ = 1, and λF∗ = 10−4.
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since 1968 is of the order of Bnseasons ∼ 104, which is less data
than minimally required for accurate inference on simulated
sequences of shorter length [Figs. 7(b) and 8(a)]. Therefore,
we do not expect a significant inference performance with our
method applied to the currently available influenza sequence
data. Nevertheless, we have conducted an inference trial on
the HA epitope sequence data, the code and results of which
can be found on GitHub [64]. This trial confirmed our expec-
tations of insufficient inference performance by comparison
with deep-mutational scanning measurements from Lee et al.
(2018) [65].

Regarding the amount of data needed for fitness inference
of a given antigen, we can quantify our rough scaling expecta-
tions with the following argument. For a sequence of length L
and nseasons the number of observed epidemic seasons, we need
to determine m = nseasons + L(L + 1)/2 ≈ nseasons + L2/2 pa-
rameters. With the simplifying assumption that we need m
independent equations for this inference task, we can esti-
mate that we approach optimal inference performance when
B nseasons μ ∼ m. Here the number of needed total samples
Bnseasons is assumed to increase with decreasing mutation
rate μ, since an independent set of samples is obtained only
roughly every 1/μ years.

As more sequences become available in the future, we
expect our method to become useful for real data for viruses
under strong selection pressure due to human immunity,
which could soon include SARS-CoV-2. Another interim ap-
proach that we are beginning to consider is to coarse grain
these 131 residues into groups, and then infer the fields and
couplings for the groups. Then, we successively add more
residues to the groups between which large couplings exist,
and carry out this procedure iteratively. But, such a study is
beyond the scope of this paper.

IV. DISCUSSION

Here we presented a method for inferring the intrinsic
mutational fitness landscape of influenzalike antigens from
population-level protein sequence time series data. Our ap-
proach is able to infer single as well as pairwise mutational
effects for binary sequences with several tens of sites. By
simulating influenzalike evolutionary dynamics, we were able
to analyze inference performance under different conditions,
such as for various sequence lengths and sample sizes. Our
inference approach, in principle, only relies on the raw strain
frequency data as a function of time and does not depend on
a separate inference of sequence phylogenies, in contrast to
other analyses [9,10].

In comparison to the recently proposed marginal path like-
lihood method (MPL) for sequence time series [53], we were
able to disentangle time-varying immunity-dependent fitness
effects from intrinsic fitness, and we not only inferred the
fitness effects of single mutations but also of double mutations
at pairs of sites. Although there have been previous stud-
ies inferring double-mutational fitness effects from influenza
protein sequences [66,67], those approaches do not generally
attempt to systematically decouple intrinsic fitness effects
from time-varying, immunity-dependent effects. These stud-
ies further tend to focus on the detection of positive epistasis,

i.e., more likely than neutral double mutations, that are gener-
ally more easily detected than negative epistatic fitness effects,
which lead to more rarely observed mutation events. Detecting
positive fitness effects is important for predicting sequence
mutations that are most likely to evolve in the future. In this
study, however, we are especially interested in pairwise muta-
tions that incur a large negative mutational fitness effect since
those might point towards effective immunization targets.

In order to make meaningful predictions based on observed
influenza protein sequence data, our inference approach needs
to be translated to this more complex system, which generally
has a high-dimensional sequence landscape with around 100
residues in the head epitope regions of HA (A/H3N2) and 20
possible amino acids per residue. The inference performance
will also be constrained by a relatively small number of sam-
ples, around 3 × 104 HA sequences in total between 1968 and
2020 [68,69].

For using our inference approach on the influenza protein
data, one further needs to make sure that the cross-immunity
function in −Fhost [Eq. (3)], which we use as the response
variable, adequately captures the cross immunity between
different strains. The total mutational distance in the epitope
regions, which we use in our model and which has been
used in previous studies [9] for estimating cross immunity,
only roughly captures the cross-immunity measurements from
hemagglutination inhibition (HI) assays [5,70]. Analysis of
such HI data, in which the proposed cross-immunity function
is compared to measured cross immunities, suggests a typical
cross-immunity distance D0 of 5 amino acids or 14 nucleotide
residues for seasonal influenza A (H3N2) strains [9,70], i.e.,
two strains that differ by more than 5 amino acid mutations
within their epitope regions typically experience negligible
cross immunity to each other’s immune responses.

For testing fitness inference performance on real data, we
generally do not have much direct information on the intrinsic
effects of various mutations besides from some in vitro muta-
tional assays, which are locally constrained to small parts of
the sequence space or which only consider single-mutational
fitness effects based on a given reference strain [65,71–73].
Furthermore, these empirical studies only measure fitness
in terms of functional replication in cells, not in terms of
spread across the human population. The application of clas-
sical machine-learning methods of testing inference based
on predictions on held-out data are also challenging due to
the complex time-dependent nature and general sparsity and
heterogeneity of available sequence data.

Our computer simulations with a well-defined model of the
evolution of a mutable virus subjected to human immune pres-
sure over time have generated a data set of temporally ordered
sequences. These sequences could be used in the future to test
the veracity of different inference schemes against data that
is the “ground truth.” For example, do existing models devel-
oped for predicting the most likely influenza strains given data
until the preceding year [9,10] give the right answers for the
data set that we have generated?

In conclusion, we have proposed a method for inferring the
intrinsic mutational fitness landscape of influenzalike viruses
from time series of observed antigenic sequences. This ap-
proach can, with increasing availability of sequence data
in the future, contribute to the development of new cross-
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and long-term protective immunization strategies against
viruses that evolve due to immune-driven selection. Like sea-
sonal influenza, SARS-CoV-2 and other novel viruses might
become endemic by evolving under vaccine and natural im-
mune pressure, and our approach might provide valuable
insight into their intrinsic fitness landscapes and reveal their
vulnerabilities.

The computer code used for simulations and analyses as
well as the data that were used to produce the figures in the
paper are available on GitHub [64].
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