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Lotka-Volterra versus May-Leonard formulations of the spatial stochastic
rock-paper-scissors model: The missing link
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The rock-paper-scissors (RPS) model successfully reproduces some of the main features of simple cyclic
predator-prey systems with interspecific competition observed in nature. Still, lattice-based simulations of the
spatial stochastic RPS model are known to give rise to significantly different results, depending on whether the
three-state Lotka-Volterra or the four-state May-Leonard formulation is employed. This is true independently of
the values of the model parameters and of the use of either a von Neumann or a Moore neighborhood. In this
paper, we introduce a simple modification to the standard spatial stochastic RPS model in which the range of the
search of the nearest neighbor may be extended up to a maximum Euclidean radius R. We show that, with this
adjustment, the Lotka-Volterra and May-Leonard formulations can be designed to produce similar results, both
in terms of dynamical properties and spatial features, by means of an appropriate parameter choice. In particular,
we show that this modified spatial stochastic RPS model naturally leads to the emergence of spiral patterns in
both its three- and four-state formulations.
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I. INTRODUCTION

Spatial stochastic cyclic predator-prey models have en-
joyed considerable success in the modeling of key dynamical
features of some biological populations with interspecific
competition, including certain populations of E. coli bacteria
[1,2] and lizards [3]. One of the simplest models of this
type is the so-called spatial stochastic rock-paper-scissors
(RPS) model [1–5], which describes the spatial dynamics
of a population of three different species—usually on a
square lattice—subject to reproduction, mobility, and (cyclic)
predator-prey interactions whose strength is the same for all
species (reproduction and mobility) or predator-prey pairs.
Although this baseline model has been generalized to include
additional species [6–15], interactions [16–26], and biases
[15,27–32], in the present paper we shall only consider its
classical three-species version.

The classical RPS model has two possible lattice-based for-
mulations, usually referred to as Lotka-Volterra (LV) [33,34]
and May-Leonard (ML) [35] formulations (see [36] for a re-
view). The main difference between the two is the following:
in the LV formulation, every site on the lattice can be in one
of three states (corresponding to the three different species),
while in the ML formulation four states are possible at every
site (a site may also be empty). In both formulations, a von
Neumann [4,7,8,37–40] or a Moore [30,41] neighborhood,
composed, respectively, of a central cell and its four or eight
adjacent cells, is usually employed.

In the LV formulation of the RPS model, whenever a
predator-prey interaction is carried out, the predator elim-
inates its neighboring prey and replaces it with a new

individual of the predatory species—in the LV formulation,
predation and reproduction happen simultaneously. On the
other hand, in the ML formulation, the predator executes
a predatory action by eliminating the prey and leaving the
neighboring site empty. Hence, unlike in the LV formulation,
reproduction and predation correspond to separate actions in
the ML formulation. In the three-state LV formulation, there
is a conservation law for the total number of individuals
(always equal to the number of sites), while in the ML four-
state formulation the total number of individuals is no longer
conserved since the number of empty sites is, in general, time-
dependent (it is the number of individuals plus the number of
empty sites that is preserved in the ML formulation).

For small enough mobility rates, both formulations of the
spatial stochastic RPS model have been shown to allow for
the stable coexistence of all three species in lattice-based
simulations. However, the complex spiral patterns, observed
in lattice-based simulations of the spatial stochastic RPS
model using the ML formulation, are usually absent when the
LV formulation is employed. Furthermore, the ML formula-
tion generally leads to relatively smooth interfaces between
different well-defined domains—in the LV formulation, the
domains are usually fuzzy and do not have well-defined
boundaries [13,42]. This is true independently of the choice
of a von Neumann or a Moore neighborhood.

In this paper, we shall introduce a simple modifica-
tion to the standard spatial stochastic RPS model in which
the range of the search of the nearest prey/empty site for
predation/reproduction may be extended up to a maximum
Euclidean radius R. This change can make mobility more
realistic by incorporating an extra degree of freedom that
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considers the possible response of individual motion to envi-
ronmental stimuli (in our case, the close presence of a prey or
an empty space). It is also motivated by the objective of deter-
mining whether or not the spatial stochastic RPS model can
be modified in such a way that its LV and ML formulations
yield similar results. In particular, we shall investigate if such
discrepancies can essentially be eliminated in the modified
version of the spatial stochastic RPS model proposed here.

II. LV AND ML FORMULATIONS OF THE RPS MODEL

In this section, we shall describe the LV and ML formula-
tions of the RPS model investigated in the present paper. In
both cases, individuals of all three species are distributed on a
square lattice with N2 sites and periodic boundary conditions.
In the three-state LV formulation, every site is occupied by
a single individual of one of the three species, while in the
four-state ML formulation there is also the possibility of a site
being empty. The density of individuals of the species i and
the density of empty sites shall be denoted by ρi = Ii/N2 and
ρ0 = I0/N2, where Ii and I0 are, respectively, the total number
of individuals of the species i and the total number of empty
sites (notice that ρ0 = 0 in the LV formulation).

At every time step, an occupied site and one of its neigh-
boring sites are randomly selected as the active and passive
sites, respectively (the passive site being the one that will
be acted upon by the active individual). Then an interaction
is randomly selected to be executed by the individual at the
active site. In the LV formulation of the RPS model, the
predator-prey interaction, defined by

i (i + 1) → i i,

with i = 1, . . . , 3, may be selected (with probability p). Here,
modular arithmetic is assumed (the integers i and j represent
the same species whenever i = j mod 3, where mod denotes
the modulo operation). On the other hand, in the ML imple-
mentation of the RPS model, a predator-prey or a reproduction
interaction, defined, respectively, by

i (i + 1) → i 0, i 0 → ii,

may be selected (with probabilities p and r, respectively) at
every time step. In addition to these, in both LV and ML
formulations a mobility interaction, defined by

i � → � i,

may be selected (with probability m) at every time step. Here,
� represents either an individual of any species or an empty
site. If an interaction cannot be executed (for example, if a
reproduction interaction is selected and the passive is not an
empty site), the above steps are repeated until a possible inter-
action is performed and the time step completed. A generation
time (our time unit) is defined as the time necessary for N2

successive interactions to be completed (each time an inter-
action is completed, the time increases by a discrete amount
equal to 1/N2)—with simultaneous predation and reproduc-
tion associated with a predator-prey interaction in the LV
formulation counting as two time steps. Again, notice that the
predator-prey interaction has a different meaning in LV and
ML formulations of the RPS model (in the LV formulation, re-
production is included in the predator-prey interaction, while

in the ML formulation it is defined as a separate interaction).
Also, in the LV formulation the total density of individuals
is conserved (ρ1 + ρ2 + ρ3 = 1), which in general does not
happen in the ML formulation of the RPS model—in the latter
case, ρ0 + ρ1 + ρ2 + ρ3 = 1, but ρ0 is no longer required to
vanish or to be independent of time.

In most lattice-based studies, a von Neumann neighbor-
hood (or a Moore neighborhood), composed of a central cell
(the active one) and its four nondiagonal (or its eight) adjacent
cells, is employed in the definition of the passive individual
both in the context of LV and ML formulations of the spatial
stochastic RPS model. In this paper, we shall consider a sim-
ple modification to the standard spatial stochastic RPS model
in which the range of the search of the nearest neighbor may
be extended up to a maximum Euclidean radius R: whenever
a predator-prey or reproduction interaction is selected, the
passive individual is chosen, respectively, as the nearest prey
or empty site inside a Euclidean circle of radius R. We will
show in the following section that this single modification
with respect to the most common choice of neighborhood
can be used to greatly attenuate the observed discrepancies
between the results obtained using LV and ML formulations
of the spatial stochastic RPS model.

III. RESULTS

In this section, we shall present and discuss the results
of 5002 lattice-based numerical simulations of the standard
and modified versions of the stochastic RPS model, starting
from random initial conditions with ρ1 = ρ2 = ρ3 = 1/3. We
verified that, as long as coexistence can be maintained, the
memory of the initial conditions is erased on a relatively
short timescale. As a result, the particular choice of initial
conditions has no significant impact on our results.

Here, we shall consider LV and ML formulations and the
following model parameters: m[LV] = 0.857, p[LV] = 0.143,
and m[ML] = 0.50, p[ML] = 0.25, r[ML] = 0.25 (LV and ML
formulations, respectively); also, R is equal to R[LV] = 13 and
R[ML] = 10. These values of the parameters were chosen so
that LV and ML formulations of the modified spatial stochas-
tic RPS model produce similar quantitative results. A von
Neumann neighborhood has been employed when considering
the standard version of the lattice-based spatial stochastic RPS
model.

In particular, the predation probability is smaller in the
LV formulation. This compensates for the fact that predation
and reproduction occur simultaneously in the LV formulation,
while in the ML formulation they correspond to two separate
actions (this also justifies considering equal predation and
reproduction probabilities in the ML formulation). In fact, in
the ML formulation, an individual of the species i may execute
a predatory action against an individual of the species i + 1
leaving behind an empty space, only to see the space again
occupied by an individual of the species i as a consequence of
a subsequent reproduction interaction. The combined result
of these predator-prey and reproduction interactions is null,
as if no action had been taken. Hence, a larger predation
probability is required in the LV formulation in order to
compensate for this effect and to get a similar characteristic
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FIG. 1. Snapshots of the spatial distribution of the different
species on a 5002 lattice at t = 2000 for LV and ML formulations
of the standard and modified versions of the spatial stochastic RPS
model. Notice the absence of spiral patterns in the LV formulation of
the standard spatial stochastic RPS model and that the significant dis-
crepancies observed for the LV and ML formulations are no longer
present in the modified version.

dynamical timescale to the one obtained in the context of the
ML formulation.

The other crucial parameter is the radius R, which needs
to be larger in the ML than in the LV formulation in order
to match the corresponding characteristic lengthscales. This
difference is related to the fact that if an individual of the
species i predates an individual of the species i + 1 in the
ML model, leaving behind an empty site, this site can then
be occupied by an individual of the species i + 2. Hence, for
the same value of R, the spirals have a larger characteristic
length in the ML formulation than in the LV formulation. This
effect can be compensated by choosing a larger value of R in
the LV formulation. Finally, the mobility probability m was
chosen in such a way that p + m = 1 in the LV formulation
and p + m + r = 1 in the ML formulation.

Figure 1 displays snapshots of the spatial distribution of
the different species at t = 2000. Notice that the spiral pat-
terns are absent in the LV formulation of the standard spatial
stochastic RPS model. Also, the significant discrepancies be-
tween LV and ML formulations—which would be present in
the standard version independently of the parameter choice—
essentially disappear in the modified version, for the chosen
values of the model parameters. Although the average density
of empty sites obtained using the ML formulation (repre-
sented in white),

ρ
ML[standard]
0 = 0.102 ± 0.002, (1)

ρ
ML[modified]
0 = 0.0018 ± 0.0001, (2)

is small both in the standard and modified versions of the
spatial stochastic RPS model, it is much smaller in the modi-
fied than in the standard version. This happens because in the
modified version of the spatial stochastic RPS model, due to
the use of an extended neighborhood, the fraction of failed
reproduction interactions is much smaller than in the standard
one.

To characterize the size of the structures in the simulations,
we shall compute a discrete spatial autocorrelation function
defined by

C(r) =
∑

k,l∈S(r)

fk,l

ξ f0,0
, (3)

where

S(r) =
{

(i, j) ∈ N : i + j = r

�r
∧ i � N ∧ j � N

}
, (4)

fk,l =
N∑

i=1

N∑
j=1

ϕi, jϕi+k, j+l , (5)

ξ = min[2N − (k + l + 1), k + l + 1]. (6)

Here, �r is the grid spacing, ϕi, j = φi, j − φ̄, φi, j is equal to
the species number of the individual at the position (i, j) on
the lattice (or to zero if the site is empty), and φ̄ represents
the mean value of φ. Notice that C(r) is only defined for r ∈
N ∧ r � 2N .

Figure 2 shows the spatial autocorrelation functions C(r)
estimated using simulations of LV and ML formulations of the
standard (top panel) and modified (bottom panel) versions of
the spatial stochastic RPS model similar to those considered
in Fig. 1—these functions were obtained considering an aver-
age of over 250 snapshots taken after 6000 generations. The
arrows shown in the bottom panel of Fig. 2 indicate the ap-
proximate value of the characteristic lengthscale � defined as
C(�) = 0.5 (�[LV] = 21.2 and �[ML] = 21.7, respectively). Al-
though the functions C(r) are only defined for integer values
of r, we display them as continuous curves for visualization
purposes. The similarity between the two curves shown in
the bottom panel of Fig. 2 is a quantitative measure of the
agreement between the results obtained using the LV and ML
formulations of the modified version of the spatial stochastic
RPS model (also evidenced in the snapshots shown in the two
bottom panels of Fig. 1)—in sharp contrast to the significant
differences observed when the standard version is employed.

Figure 3 displays the time evolution of the densities ρi

of the different species over time for the realizations of the
spatial stochastic RPS model considered in Fig. 1. In all four
cases, there is an oscillatory behavior, albeit with signifi-
cantly different properties for LV and ML formulations of the
standard version of the spatial stochastic RPS model. These
qualitative and quantitative differences are essentially absent
in the modified version.

Despite the long-range interactions present in the modified
version of the spatial stochastic RPS model, the stochastic
nature of the model is evidenced by the significant dispersion
of the amplitude A of the oscillations of the species densities,
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FIG. 2. The spatial autocorrelation functions C(r) of the models
considered in Fig. 1—the arrow represents the lengthscale � defined
by C(�) = 0.5. Notice the similarity between the two curves obtained
using the LV and ML formulations of the modified version of the
spatial stochastic RPS model (bottom panel), in sharp contrast to
the significant differences observed when the standard version is
employed (top panel).

which we estimate as

σ�A/A =
√〈(

A − 〈A〉
〈A〉

)2〉
, (7)

where 〈 · · · 〉 represents a simulation average over a time span
of 5000 generations (a simulation time span of 6000 gen-
erations has been considered, but the first 1000 have been
discarded), and the amplitude A is estimated as half of the
difference between consecutive maxima and minima of the
species densities. Performing 250 simulations for each case,
we obtained σ�A/A[LV] = 0.57 ± 0.28 and σ�A/A[ML] = 0.42 ±
0.19, respectively, for LV and ML formulations of the modi-
fied version of the spatial stochastic RPS model—we verified
that this value of σ�A/A is more than one order of magnitude
larger than that found considering a mean-field version of the
ML formulation of the RPS model [43] with similar average
amplitude and quasiperiodic structure.

To perform a quantitative comparison between temporal
series obtained for the LV and ML formulations of the modi-
fied version of the spatial stochastic RPS model, let us define
the temporal discrete Fourier transform as

ρi( f ) = 1

N

N−1∑
t=0

ρi(t ) exp [2π i f t], (8)

where ρi(t ) represents the evolution with time of the fractional
abundance of a species i, and f is the frequency.

FIG. 3. The time evolution of the densities ρi of the different
species over time for the realizations of the spatial stochastic RPS
model considered in Fig. 1. Again notice that the observed qualitative
and quantitative differences between the results obtained assuming
LV and ML formulations of the standard spatial stochastic RPS
model are essentially absent in the modified version.

Figure 4 shows the power spectra 〈|ρ1|2〉 estimated using
250 simulations (similar to those used in Fig. 3) of LV and ML
formulations of the standard (top panel) and modified (bottom
panel) versions of the spatial stochastic RPS model—a simu-
lation time span of 6000 generations has been considered, but
the first 1000 have been discarded. The top panel of Fig. 4
shows that the significant differences in the evolution of the
species densities, observed in the two top panels of Fig. 3
for LV and ML formulations of the standard version of the
spatial stochastic RPS model, have a correspondence in the
power spectra. On the other hand, the bottom panel of Fig. 4
shows that the visually alike oscillations shown in the two
bottom panels of Fig. 3, obtained considering LV and ML
formulations of the modified version of the spatial stochastic
RPS model, have similar power spectra. In this case, the first
peak of the power spectra, at the first harmonic frequency,
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FIG. 4. Power spectra of ρ1(t ) obtained using LV and ML for-
mulations of the standard (top panel) and modified (bottom panel)
versions of the spatial stochastic RPS model—a similar behavior
is found for the species 2 and 3 (see Fig. 3). Notice the similarity
between the curves and the absence of triplen harmonics.

occurs at f ∼ 85/N . Hence, there are about 85 maximums
of ρi in a time span of 5000 generations, or equivalently, the
abundance of any of the species i has a maximum roughly
every 58.8 generations. Also notice the absence of triplen
harmonics (multiples of the third harmonic). This absence is a
consequence of the conservation of the number of individuals
(only approximate in the ML formulation) and of the nearly
constant displacement (by a third of the quasiperiod) between
the curves of almost identical shape representing the time
evolution of the densities ρi of the different species shown
in Fig. 3 (see [44] for a related discussion in the context of
electronics).

Although in this work we have considered a specific set of
model parameters, we have verified that similar results can be
obtained for other parameter choices. A more rigorous numer-
ical analysis of the power spectra and correlation functions

using the Master Equation and the van Kampen expansion
[19,45,46] shall be left for future work.

IV. CONCLUSIONS

In this paper, we investigated the dynamical impact of
a simple modification to the lattice-base spatial stochastic
RPS model which extends the range of the search for the
nearest neighbor up to a maximum Euclidean radius R. We
have shown that, with this modification, the results obtained
using LV and ML formulations of the spatial stochastic RPS
model—which differ significantly when a standard neighbor-
hood definition (von Neumann or Moore neighborhood) is
used, independently of parameters chosen—can be brought
into agreement by means of an appropriate parameter choice.
We have further shown that this modified version of the
lattice-based spatial stochastic RPS model naturally leads to
the emergence of spiral patterns in both LV and ML formula-
tions, which contrasts with their absence in LV lattice-based
simulations using the standard neighborhood definition.

These results are in agreement with those obtained using
off-lattice simulations where the emergence of spiral patterns
may occur in the LV formulation for sufficiently high values
of the (conserved) total density of individuals [47]. Hence, the
absence of spiral patterns in lattice-based spatial stochastic
RPS models employing the LV formulation and a standard
neighborhood definition appears to be an artificial effect asso-
ciated with the fact that the characteristic von Neumann and
Moore neighborhood lengthscale essentially coincides with
the lattice spacing. As shown in the present paper, this prob-
lem can be resolved by employing an extended neighborhood.

A recent work [48] has found that spiral patterns can appear
in the context of spatial stochastic RPS models in which
the predation probability is exponentially reduced with the
number of preys in the predator’s neighborhood (a circle of
radius R centered in the predator). Although, the emergence
of spiral patterns in this context was attributed to antipredator
behavior, our results suggest that it is the use of an extended
neighborhood that is responsible for relaxing the differences
between the results obtained using LV and ML formulations
of lattice-based spatial RPS models and for the emergence of
spiral patterns in both cases.
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