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Dynamics of epidemics from cavity master equations: Susceptible-infectious-susceptible models
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We apply the recently introduced cavity master equation (CME) to epidemic models and compare it to
previously known approaches. We show that CME seems to be the formal way to derive (and correct) dynamic
message passing (rDMP) equations that were previously introduced in an intuitive ad hoc manner. CME
outperforms rDMP in all cases studied. Both approximations are nonbacktracking and this causes CME and
rDMP to fail when the ecochamber mechanism is relevant, as in loopless topologies or scale free networks.
However, we studied several random regular graphs and Erdős-Rényi graphs, where CME outperforms individual
based mean field and a type of pair based mean field, although it is less precise than pair quenched mean field.
We derive analytical results for endemic thresholds and compare them across different approximations.
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I. INTRODUCTION

Since the seminal works introducing susceptible-
infectious-recovered compartment models (SIR) of Kermack
and McKendric [1], epidemics modeling has grown fast as a
field. The approach has changed with time, from dynamical
systems or population dynamics towards more stratified
approaches as patchy, mobility based, age-structured, or
contact matrices compartment models.

The current context of a global COVID-19 pandemic and
the perspective of a coexistence with an endemic virus re-
quires a test-trace-isolate epidemiological system to keep the
outbreak controlled. Much attention is now put on agent based
models [2–4] that could improve the efficacy of the testing
strategy. Assuming that new technologies can provide reliable
contact data between humans, the likelihood of people being
infected needs to be estimated either by numerical simulations
or some statistical modeling. To this end, it is suitable to count
with fast algorithms that can accurately predict probabilities
of infection for agents in networks.

There are a wide variety of such algorithms. The classical
approach to the forecasting of epidemics on networks is an
averaging of the master equation of the process complemented
by a factorization assumption at some level. This yields a
hierarchy of ever more complex but more accurate differential
equations for expected values and correlations [5,6]. Most of
the time only the first two levels, known as individual based
mean field and pair based mean field, are used.

More recently, ideas from discrete optimization algorithms
have sneaked into the inference of SIR kind of models in the
shape of dynamical message passing [7,8] or belief propa-
gation (BP) [9,10]. The main difference with respect to the
previous approach is the appearance of conditional—rather
than multivariate—probabilities to be integrated in time. It
has been used with success in the reconstruction of epidemics
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on graphs and it is currently being tried in the task of risk
assessment for COVID-19 [11,12]. However, these two types
of approaches—the standard master equations and the mes-
sage passing one—have remained similar but theoretically
disconnected.

It is known that a BP fixed point is connected to the
cavity method from statistical mechanics [13]. An exten-
sion of the cavity method to continuous time Markov chain
processes within discrete spin systems has been recently
achieved through the derivation of a set of differential equa-
tions for cavity conditional probabilities: the cavity master
equation (CME) [14]. In this article we explore CME’s ap-
plication to susceptible-infectious-susceptible (SIS) models in
graphs (Sec. III) and compare it with Monte Carlo simulations
and with well established mean-field approaches and dynamic
message passing (rDMP). We will show that CME somehow
binds both approaches, since it starts from a master equation,
but produces message passing–like equations. CME seems to
be the formal path to obtaining (and fixing) the dynamic mes-
sage passing for recurrent models of epidemics rDMP [8] that
were formerly presented in an ad hoc manner. Therefore, we
retain the main contribution of this work to be methodological.

In some simple cases we draw analytical results for a
group of steady state quantities and the corresponding critical
spreading rate (Sec. IV). We also explore the average case
dynamics of these equations, in particular in random regular
and Erdős-Rényi graphs (Sec. V). Limitations of CME are
discussed throughout the paper and the pros and cons are
outlined in the Conclusions (Sec. VI).

II. EPIDEMICS ON NETWORKS

In what follows we focus on continuous time compartment
epidemic models on networks. We assume a fixed network of
contacts to be given G = (V, E ) with a set of vertices V =
{1, 2, . . . , N} and a set of edges E . An edge (i, j) is present if
nodes i and j are neighbors in the network, meaning there is a
possibility of transmission of diseases between both nodes.
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FIG. 1. Allowed transitions in SIS compartment model on
networks.

The standard susceptible-infectious-susceptible model
(SIS) considers the nodes to be in either of two compartments
(states), Xi = 0 ≡ susceptible or Xi = 1 ≡ infectious, and is
the simplest standard for recurrent transmissible diseases. The
epidemic is thus a continuous time stochastic process with
only two admitted transitions occurring at (i) rate β, at which
a link (i, j) can transmit the state 1 from node i to j, and (ii)
rate μ at which state 1 decays to state 0 on any infectious
node, as represented in Fig. 1. An analytical description of this
stochastic process is given by the master equation for the evo-
lution in time of the probability over the whole configuration
space P(Xi, . . . , XN , t ) [6]. However, concise and exact, the
integration in time of such an equation is generally impractical
given the size 2N of the configuration space.

Attempts to reduce the complexity start from factorizing
the single master equation into many equations for each node
marginals Pi(Xi, t ). Given that the X ’s are two-state variables,
Pi(Xi ) is parametrized by the mean value E [Xi] = Pi(Xi = 1).
This results in an equation that is still exact [6],

dE [Xi(t )]

dt
= E

[
−μXi(t ) + βSi(t )

N∑
j=1

ai jXj (t )

]
, (1)

where ai j are the elements of the adjacency matrix, meaning
that ai j = 1 if nodes i and j are neighbors [(i, j) ∈ E ] and is
zero otherwise.

However, the expectation value on the right hand side
acts over products of variables Xi(t )S j (t ), which requires a
differential equation for the evolution of the correlations. Not
surprisingly, the two point correlation functions depend on
three point correlations and so on and so forth.

The simplest closure of Eq. (1) is the individual-based
mean field (IBMF) in which independence is assumed
as E [Xi(t )S j (t )] ≈ E [Xi(t )] E [S j (t )] ≡ ρi(t )� j (t ) (�i is the
probability that node i is susceptible) and therefore Eq. (1)
is now a closed set of nonlinear differential equations:

dρi(t )

dt
= −μρi(t ) + β[1 − ρi(t )]

∑
j∈∂i

ρ j (t ), (2)

where we used the notation ∂i to represent the set of neighbors
of node i.

The second simplest closure is the one known as the pair
based mean field (PBMF), in which two point correlations are

treated analytically [15–18],

dE [XiS j]

dt
= − 2μE [XiS j] + μE [Xi] + β

N∑
k=1

aikE [SiS jXk]

−β

N∑
k=1

(a jk )E [XiS jXk], (3)

but a factorization is assumed for higher correlations. Dif-
ferent approaches have been used to approximate E [XiS jXk]
in terms of smaller correlations. In this paper we will com-
pare with the approximations proposed in [15] E [XiS jXk] ≈
E [XiS j]E [Xk] ≡ φi j (t ) ρi(t ),

dρi(t )

dt
= −μρi(t ) + β

∑
j∈∂i

φi j (t ), (4)

dφi j (t )

dt
= − (2μ + β )φi j (t ) + μρi(t ) − βφi j (t )

∑
k∈∂ j\i

ρk (t )

+β[1 − ρi(t ) − φi j (t )]
∑

k∈∂i\ j

ρk (t ), (5)

and [16] (pair quenched mean field) E [XiS jXk] ≈
E [XiS j ]E [S j ,Xk ]

E [S j ]
≡ φi j (t ) φk j (t )

ρ j (t ) ,

dρi(t )

dt
= −μρi(t ) + β

∑
j∈∂i

φ ji(t ),

dφi j (t )

dt
= − (2μ + β )φi j (t ) + μρi(t ) − βφi j (t )/[1 − ρ j (t )]

×
∑

k∈∂ j\i

φk j (t ) + β[1 − ρ j (t ) − φi j (t )]/[1 − ρi(t )]

×
∑

k∈∂i\ j

φki(t ). (6)

We will refer to the two different approximations shown in (5)
and (6) as PBMF-1 and PBMF-2, respectively.

In both approaches, IBMF and PBMF, the expected values
evolving in time are intended to be expectations over different
stochastic stories of the whole epidemic process. Therefore,
they are to be compared with averages over many Monte Carlo
simulations of such a process.

A slightly different approach to modeling epidemics on
graphs comes from message-passing inspired methods. The
dynamic message passing [7,8] involves a set of proba-
bilities and a set of conditional probabilities, rather than
correlations [8]:

d pi

dt
= −μpi + β(1 − pi )

∑
k

pki, (7)

d pi j

dt
= −μpi j + (1 − p j )β

∑
k∈∂i\ j

pki, (8)

where pi = E [Xi] similarly as before, but pi j ≡ P(Xi =
1|Xj = 0) is a conditional probability resembling the kind of
cavity fields or messages that commonly appear in the cav-
ity method and the belief propagation algorithm for discrete
optimization.
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The main results of this article are drawn from the cavity
master equation [14]. They are quite similar to those of rDMP
and help in formalizing this rather empirical approach by
deriving it from a more solid mathematical setting. In doing
so we do not only correct one term of the rDMP equations,
but also underline the approximations involved and therefore
shed light on possible improvements.

III. CAVITY MASTER EQUATIONS FOR SIS EPIDEMICS

In order to connect with its first presentation in [14], we
start by considering the general continuous time dynamics of
a system σ = {σ1, . . . , σN } of N bimodal variables σi ∈ {±1}
interacting with their neighbors in some given topology. In
the very generic Markovian case, the dynamic is fully defined
by the rate function ri(σ) at which variables flip their states
from σi → −σi. The distribution P(σ, t ) in the configuration
space of this stochastic process is ruled by the joint master
equation:

dP(σ )

dt
= −

N∑
i=1

[ri(σ)P(σ ) − ri(Fi(σ))P(Fi(σ))], (9)

where Fi represents the flip operator on variable i, i.e., Fi(σ) =
{σ1, . . . , σi−1,−σi, σi+1, . . . , σN }.

Although exact, the previous equation is useless already
for middle size systems, since it actually represents a set of
2N coupled differential equations that take exponential time to
enumerate, let alone to integrate. However, this is the correct
starting point for approximations, as is usually done to obtain
mean-field equations (2), (4), (5), and (6) in epidemics models
[5,6,19].

In [14] this master equation is recast into an equi-
librium problem by extending the configuration space to
consider the continuous trajectory of each variable in time
X = {X1, . . . , XN }, where Xi = {σi(t ) : ∀t∈[o,T ]}. Although
at a glance it seems untreatable the infinite dimensional
space for the functions Xi(t ), the discrete values of σi(t )
allow for a codification of the functions in a num-
ber of transition times {T {i}

1 , T {i}
2 , . . .} such that σi(T

{i}
k ) =

−σi(T
{i}

k + dt ). The resulting random point process is
treated with standard techniques in equilibrium statistical
mechanics to write down a closed set of cavity master
equations as

dP(σi )

dt
= −

∑
σ∂i

[
ri(σi, σ∂i )

( ∏
k∈∂i

p(σk|σi )

)
P(σi ) − ri(−σi, σ∂i )

( ∏
k∈∂i

p(σk| − σi )

)
P(−σi )

]
, (10)

d p(σi|σ j )

dt
= −

∑
σ∂i\ j

[
ri[σi, σ∂i]

( ∏
k∈∂i\ j

p(σk|σi )

)
p(σi|σ j ) − ri[−σi, σ∂i]

( ∏
k∈∂i\ j

p(σk| − σi )

)
p(−σi|σ j )

]
. (11)

We have lightened the notation by not putting the i and
i j dependence of the distributions, understanding that they
assume the index of the variables they depend on [as
P(σi ) ≡ Pi(σi, t ) and p(σi|σ j ) ≡ pi, j (t, σi|σ j )]. Both proba-
bilities are intended in the sense “over the ensemble of
dynamic evolutions up to time t ,” starting from the same initial
conditions.

This is a substantial improvement over the original mas-
ter equation since we are dealing now with N functions
Pi(σi, t ) representing the distribution of variables σi, and with
N ∗ 〈k〉 functions p(i, j)(σi|σ j, t ) that represent the probabil-
ity of finding variables in a given state, conditioned to the
state of one of its neighbors (〈k〉 is the average degree of
the nodes in the interactions network). In the worst case
of a fully connected system, we still would have O(N2)
equations, that can be numerically integrated even for rel-
atively large systems, compared to what we can do with
Eq. (9).

We can readily translate the cavity master equations (10)
and (11) to the case of the SIS epidemic model by iden-
tifying our two states as S → σi = −1 and I → σi = 1.
After complementarity [Pi(I ) + Pi(S) = 1], it is enough to
track the infection probability in each node Pi(I ). The
first term in Eq. (10) largely simplifies due to the fact
that the recovery rate ri(σi = 1, σ∂i ) = μ is independent
of the neighbors’ state, resulting in −μP(I ). Considering
also that the transmission rates are additive ri(S, σ∂i ) =∑

k′ ri(S, σk′ ) and that ri(S, S) = 0 and ri(S, I ) = β, we
get to the cavity master equations for the SIS model

as

d pi

dt
= −μpi + β(1 − pi )

∑
k

pki, (12)

d pi j

dt
= −μpi j + (1 − pi j )β

∑
k∈∂i\ j

pki, (13)

where we simplified the notation further by making P(σi =
1) ≡ pi and P(σi = 1|σ j = −1) ≡ pi j . Appendix A contains
a more detailed derivation of these equations for the SIS
model. Equations (12) and (13) are almost identical to rDMP
(7) and (8), except for the very last term where (1 − p j ) is
replaced by (1 − pi j ). In particular, the linearized version of
Eq. (13) is equal to that of (8), resulting in the same endemic
thresholds for either method.

The integration of both approximations might not be too
different in certain cases. For instance, for an SIS epidemic
outbreak in Zacharia’s karate club network (following [8]),
starting at node 1 both approaches are quite similar as shown
in Fig. 2 (left). In Fig. 2 (right) the L1 distance between the
average from many Monte Carlo simulations and the pre-
dictions made by all four methods CME, rDMP, IBMF, and
PBMF show features that will repeat in other benchmarks: (i)
that both rDMP and CME get the general qualitative behav-
ior well, (ii) with a rather faster outbreak expansion in the
transient, compared to Monte Carlo simulations, and (iii) with
CME better fitting the stationary state, and quite close (exactly
the same for regular graphs) to PBMF-2.
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FIG. 2. (a) Probability of node 29 to be infected as a function of time, discounting at each time the situations in which the epidemics
disappear. The epidemic outbreak was in node 1, with β = 0.1 and μ = 0.05. The inset is a closer look in the stationary state. (b) L1 distance
between the four approximations IBMF, PBMF, rDMP, and CME with respect to 105 Monte Carlo (MC) simulations.

Individual based mean field tends to be the fastest grow-
ing prediction. Overall, PBMF-2 seems to be the most
accurate approximation, both for the transient and the
steady.

When computing the Monte Carlo averages we have ne-
glected the simulations in which the epidemic is randomly
wiped out in the first few iterations. None of these methods
can take these fluctuations into account, since they are all
mean-field approaches.

Differences are more evident in the case of random regular
graphs with degree k = 3 in Fig. 3. We represent the average
epidemic size, i.e., the fraction of infected nodes with respect
to N = 1000, the number of nodes in the graph at every time
step. We started from a fraction α = 0.5 of nodes infected and
observed the onset of the endemic state.

Limitations: Nonbacktracking

It has already been underlined that message passing–like
equations are not particularly suited for SIS models [20], since
they are naturally nonbacktracking, and therefore miss the
existing ecochamber transmission, a handicap absent in mean-
field approximations. It is important to emphasize that the
present approach, although correcting rDMP and improving
it, still has this handicap.

Consider, for instance, the integration of our equations in
a star model, where a central node, name it 0, is connected to
N nodes around it. While both Monte Carlo simulations and
mean-field approximations predict a long lasting epidemic
(depending on β, μ, and N), CME and rDMP equations will
rapidly converge to zero, regardless of β, μ, and N . This is
easy to check, since, for instance, the equation for the central
node 0 will read

d p0

dt
= −μp0

as all messages from the leaves of the star pk0 are identically
zero. This situation, that may seem exceptional, is funda-
mental in scale free graphs, where hub nodes keep getting
reinfected by their immediate partners, that eventually leads
to infect them back (ecochamber).

For a similar reason, neither rDMP nor CME will predict
a sustained epidemic in a tree, while Monte Carlo simulations
and mean-field methods do. We have checked these facts,
discussed in [20], numerically. It is surprising that the ap-
proximation, nevertheless, gives some accurate predictions in
graphs with loops where the ecochamber transmission is not
the relevant mechanism.

IV. ENDEMIC (STEADY) STATE

We analytically compute the epidemic size in the endemic
state for these approximations for random regular graphs.
Since every node has the same degree k, the equations are
similar for every node, and we can assume that in the steady
state the topology is averaged out, and all the probabilities are
the same, regardless of the node indexes.

Working explicitly for the CME approximation, station-
arity means we have to set d pi

dt and d pi j

dt to 0 in Eqs. (12)
and (13):

μpi = β(1 − pi )
∑

k

pki ≡ β(1 − pi )kpi j,

μpi j = (1 − pi j )β
∑

k∈∂i\ j

pki ≡ (1 − pi j )β(k − 1), (14)

where now the indices i and i, j are generic. Solving this
system of equations we get, for the two variables pi and pi j ,

pi = λ(k − 1) − 1

λ(k − 1) − 1 + (k − 1)/k
, pi j = 1 − μ

(k − 1)β
.

(15)

This can be already tested against simulations of random
regular graphs. Furthermore, we can obtain the spreading rate
or effective infection rate λ = β/μ above which there is an
endemic outbreak (sustained in time epidemic) by solving
pi(k) = 0, resulting in the epidemic threshold λc = 1/(k −
1). A similar procedure for all five approximations results in
Table I. Notably, in spite of being different in the transient, the
pair-based mean-field 2 approach coincides in the stationary
state with the cavity master equation.

The critical values λc = 1/k for IBMF are consistent with
those in [21] and citations therein with similar approaches.
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FIG. 3. Random regular graph with connectivity k = 3. Top figures: percent of the population in the infected state (a) and the L1 distance
(b), in a graph of 1000 nodes with parameters β = 0.11 and μ = 0.1 and an outbreak in one node of the system. Bottom figures: (c1)–(c4)
percent of the population in the infected state for different values λ = β/μ in a graph of 1000 nodes, starting with half of the population in the
infected state. In all figures each point of MC is an average over 104 simulations.

PBMF-2, CME, and rDMP prediction λc = 1/(k − 1), how-
ever, is known to be a second order correction to the endemic
threshold [15,16], and it is numerically [16,22] seen to outdo
the individual based value.

In Fig. 4 we present the analytical predictions of each
approximation for the epidemic size pi at the steady state

TABLE I. Steady state and epidemic threshold λc under four
approximations (IBMF, PBMF, rDMP, and CME) on random regular
graphs of connectivity k.

Approximation Endemic state (equilibrium) λc

IBMF pi = 1 − 1
kλ

λc = 1
k

PBMF-1 pi = k+k(k−1)λ−2/λ−1
(k−1)(λk+2) λc =

√
1+ 8k

k−1 −1

2k

PBMF-2 pi = λ(k−1)−1
λ(k−1)−1+(k−1)/k λc = 1

k−1

rDMP
pi = 1 − 1

(k−1)λ

pi j = (k−1)λ−1
kλ

λc = 1
k−1

CME
pi = λ(k−1)−1

λ(k−1)−1+(k−1)/k

pi j = 1 − 1
(k−1)λ

λc = 1
k−1

as a function of λ. When compared to Monte Carlo results,
mean-field approximations (IBMF and PBMF-1) give an over-
estimation of the epidemic size at small λ, and rDMP an
underestimation at large λ. Meanwhile, CME and PBMF-2
seems to be a better prediction mixing the large λ behavior of
IBMF and PBMF-1 with the small λ behavior of rDMP.

The results presented in Fig. 4 are very similar to those
shown in [23] where a tractable master equation is presented
for the evolution in time of the epidemic size in a graph with
the same degree. This description has more resemblance with
a degree based approximation and, as in our case, it catches
with similar accuracy the value of the epidemic threshold for
a random regular graph of connectivity 3.

V. AVERAGE CASE FOR UNCORRELATED
HETEROGENEOUS GRAPHS

The systems of equations defining IBMF, PBMF, rDMP,
and CME could be large and delicate to solve on a given
graph, although a simple numerical integration normally
works. However, in many cases we are interested in gen-
eral predictions for certain families of graphs or topologies.
In this section we derive an average version of the CME
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FIG. 4. (a) Comparison between Monte Carlo simulations and the predicted endemic equilibrium for each approximation as a function of
λ for random regular graphs. Each MC point is an average of the last value of the probability of infected computed for 104 simulations over
the 1000 nodes in the system. (b) Comparison between the epidemic threshold predicted by the methods as a function of graph connectivity.

approximation to characterize SIS epidemics on uncorrelated
random graphs. Our approach relates closely to that in [24,25],
based on IBMF approximation, where the prevalence at the
stationary state is derived just above the epidemic threshold.

The simplest description of a graph ensemble is given
by the distribution of degrees of its nodes. In the case of
uncorrelated graphs, that distribution is the full description
of the ensemble. One of the first theoretical approaches used
for epidemic modeling on networks was the degree based
mean-field approach (DBMF) [26]. It provided a set of master
equations for the probability of a node of degree k to be
infected at time t , assuming statistical equivalence of all nodes
of degree k. As stated in [21] DBMF can be obtained by
performing a degreewise average over the IBMF equations.

A similar procedure can be performed in the context of
CME. Since the CME equations depend on the information
coming from the neighbors in the network, it is expected
that nodes more connected will have a different behavior
than those less connected. We therefore attempt to reduce the
number of equations in our system by characterizing all nodes
with the same degree by a couple of average parameters

pγ = 1

Nγ

∑
i:di=γ+1

pi, pγ
→ = 1

Mγ

∑
i:di=γ+1

∑
j∈∂i

pγ
i j . (16)

In both cases the normalization factors count the number of
terms in the sums: Nγ is the number of nodes with degree k =
γ + 1, while Mγ is the number of graph edges that contain
one of these Nγ nodes.

Averaging Eqs. (12) and (13), and after some simplifica-
tions, we get the average CME:

ṗγ = −μpγ + β(γ + 1)(1 − pγ )
∑
γ ′

g(γ ′)pγ ′
→, (17)

ṗγ
→ = −μpγ

→ + βγ (1 − pγ
→)

∑
γ ′

g(γ ′)pγ ′
→, (18)

where g(γ ) is a contact degree distribution. A node extracted
randomly from the set of nodes V has degree k with dis-
tribution k ∼ P(k). However, in order to average the CME
equations we rather need to know the excess-degree distribu-
tion g(γ ) of nodes that are sampled by randomly picking up an
edge (i, j) ∈ E . In the case of uncorrelated graphs, a known

result [21] relates degree and contact degree distribution
by

g(γ ) = (γ + 1)P(γ + 1)∑
γ (γ + 1)P(γ + 1)

, γ ∈ [0, 1, . . .]. (19)

Following [26,27] we can obtain the endemic threshold in
terms of � = ∑

γ g(γ )pγ
→. In the stationary state ṗγ = 0 and

ṗγ
→ = 0 in (17) and (18) lead to equations for pγ and pγ

→ as a
function of �:

pγ = λ(γ + 1)�

1 + λ(γ + 1)�
, pγ

→ = λγ�

1 + λγ�
. (20)

Plugging the last equation into the definition of �, we
obtain a self-consistent equation similar to the one in
[26–28],

� = f (�) ≡
∑

γ

(γ + 1)P(γ + 1)

〈k〉
λγ�

1 + λγ�
, (21)

which always has a disease-free solution � = 0. This solution
becomes unstable (endemic case) when ∂� f (�)|0 = 1, which
defines the critical parameters resulting in

λc = 〈k〉
〈k2〉 − 〈k〉 , (22)

where 〈k〉 is the average node degree and coincides with
known results [29,30]. Equation (22) is also obtained ana-
lyzing the Jacobian of the linearized version of Eq. (18). It
improves over the naive mean-field prediction λc = 〈k〉/〈k2〉
[21]. The random regular graphs coincide with Table I since
〈k2〉 = 〈k〉2. For graphs with Poisson degree distribution
(like Erdős-Rényi) 〈k2〉 = 〈k〉2 + 〈k〉 the epidemic threshold
becomes λc = 1

〈k〉 . For scale free graphs with power law dis-
tributed degrees, λc is finite whenever the second moment
〈k2〉 is finite. As is discussed in [20], these types of message
passing approximations fail to predict a vanishing endemic
threshold for scale free networks whose exponents are rather
large.

A. General graph ensembles

Equations (17) and (18) are already a reduction of N
differential equations to K average equations, where K is the
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FIG. 5. Average probability of being infected as a function of
time. The epidemic outbreak was in 10 nodes of each graph of 1000
nodes in an ensemble of 10 random regular graphs of connectivity 3.
Each point of MC is an average over 104 simulations.

maximum degree in the graph. However, K itself could be
large. We can further simplify by averaging now over the
nodes degree and reducing to only two parameters p̃→ =∑

γ glink (γ )pγ
→ and p̃ = ∑

γ P(γ )pγ :

˙̃p = −μp̃ + β p̃→
∑

γ

(γ + 1)P(γ )(1 − pγ ), (23)

˙̃p→ = −μp̃→ + β p̃→
∑

γ

γ glink (γ )(1 − pγ
→). (24)

These equations are still not closed, since the right hand sides
still depend on the degree based parameters. The product by
(γ + 1) and γ inside the sums in the right hand sides does
not allow for a direct connection with the definitions of p̃ and
p̃→. We will show, however, that in the case of Erdős-Rényi
graphs such a connection can be obtained, though through
some approximations and Ansätze.

A very simple case is that of regular graphs, where degree
distribution is deltaic P(γ ) = g(γ ) = δk−1,γ . Equations (17)
and (18) reduce to two equations for the parameters pk−1(t ) ≡
p(t ) and pk−1

→ (t ) ≡ p→(t ):

˙̃p = −μp̃ + β k p̃→(1 − p),

˙̃p→ = −μp̃→ + β (k − 1) p̃→(1 − p→), (25)

whose numerical integration can be compared with Monte
Carlo simulations of epidemics in graphs with the same ver-
tex degree k, and with the corresponding integration of the
single instance CME equations (12) and (13). Figure 5 shows
that the steady state is well predicted, while the transient is
not, even in comparison with CME itself. This is a natural
consequence of the loss of the spatial structure in the average
case.

B. Closure on Erdős-Rényi graphs

For an Erdős-Rényi graph node degrees are Poisson
distributed: P(γ ) = e−κ κγ+1

(γ+1)! and glink (γ ) = P(γ − 1), where
κ is the average degree. We can connect the terms in-
side the sums in (23) and (24) with the derivatives of
p̃ and p̃→ with respect to the parameter κ by noting

FIG. 6. Comparison between average-CME and CME for Erdős-
Rényi graphs with mean connectivity (average degree) κ = 3, several
values of μ, and β = 0.4. The figure shows the single site probability
of infection as a function of time. As the ratio λ = β/μ decreases,
the steady state has less infection probability. Each point of MC is an
average over 104 simulations.

that

∂ p̃

∂κ
= −p̃ + 1

κ

∑
γ

(γ + 1)P(γ ) pγ , (26)

∂ p̃→
∂κ

= −p̃→ + 1

κ

∑
γ

γ glink (γ ) pγ
→. (27)

As shown in Appendix C, by substitution in (23) and (24)
we get

˙̃p = −μ p̃ + β κ p̃→

[
1 − p̃ − ∂ p̃

∂κ

]
, (28)

˙̃p→ = [βκ − μ] p̃→ − β κ p̃→

(
p̃→ + ∂ p̃→

∂κ

)
. (29)

In order to solve these equations we need some Ansätze for
the dependence of the mean values p̃ and p̃→ on the mean
degree in the graph. Inspired by the whole derivation of the
cavity master equation for spin systems, we propose

p̃(t ) = 1
2 {1 + tanh [β κ χ (t ) − μ]}, (30)

p̃→(t ) = 1
2 {1 + tanh [β κ ε(t ) − μ]}, (31)

where χ (t ) and ε(t ) are some time-dependent fields that are
obtained by inverting these very formulas in terms of p̃ and
p̃→.

From this Ansatz we can express the derivatives with re-
spect to the degree in (28) and (29) in terms of p̃ and p̃→,
respectively (see Appendix C). We get then a closed system
of differential equations for these probabilities, that can be
solved numerically. The results of the integration are shown
in Fig. 6.

VI. CONCLUSIONS

Analytical and numerical results have shown that the cavity
master equation (CME) can be readily applied to effectively
approximate the average dynamics of susceptible-infectious-
susceptible models, where the average is intended over many
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stochastic realizations of the epidemic process. The main con-
tribution of this paper is methodological. CME corrects one
term of the dynamic message passing equations previously
derived in an intuitive way. Since CME is formally derived
from a general framework, and since this correction produces
a more accurate prediction when compared to numerical sim-
ulations, we retain CME to be the formal and correct way to
derive message passing equations in epidemic models.

When compared to standard mean-field approaches, the
takeaway message is nuanced. Numerical integration of CME
equations on loopy graphs like random regular or Erdős-Rényi
graphs are in good agreement with Monte Carlo predictions,
especially for the steady state, and usually better than individ-
ual based mean field, rDMP, and a kind of pair-based mean
field. Pair quenched mean field (PBMF-2) is still better than
all these approximations, including CME. Furthermore, CME
can be easily shown to drastically fail in graphs without loops
or graphs where the ecochamber effect is fundamental, as in
scale free networks.

Failure of CME on treelike topologies is all but expected,
especially since the deduction of cavity equations in statistical
mechanics is supposed to be exact on trees. Understanding
what fails and when in the derivation of CME could open the
way for better approximations in epidemics and beyond. The
CME formalism has already been extended beyond the pair

approximation [31] (at some considerable computational cost)
and the nonbacktracking feature disappears.

We also find appealing the applications of CME to multi-
state models (Potts variables with q states) that would include
the ubiquitous SIR and SIRS models. SIS epidemic mod-
els, for instance, are intrinsically nonbacktracking, since you
cannot get infected again, and CME features could be less
problematic in this setting.
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APPENDIX A: CAVITY MASTER EQUATION
FOR SIS MODEL

In this Appendix we will present more details on the for-
mulation of the CME for the SIS model. Let us take as starting
points Eqs. (10) and (11):

dP(σi )

dt
= −

∑
σ∂i

[
ri(σi, σ∂i )

( ∏
k∈∂i

P(σk|σi )

)
P(σi ) − ri(−σi, σ∂i )

( ∏
k∈∂i

P(σk| − σi )

)
P(−σi )

]
, (A1)

d p(σi|σ j )

dt
= −

∑
σ∂i\ j

[
ri[σi, σ∂i]

( ∏
k∈∂i\ j

p(σk|σi )

)
p(σi|σ j ) − ri[−σi, σ∂i]

( ∏
k∈∂i\ j

p(σk| − σi )

)
p(−σi|σ j )

]
. (A2)

Due to the complementarity of the probabilities Pi(I ) and Pi(S) we can focus on just deriving the equation for one of the
terms. Let us take Pi(σ ≡ I ) and rewrite Eq. (10) accordingly:

dPi(I )

dt
= −

∑
σ∂i

[
ri(I, σ∂i )

( ∏
k∈∂i

Pki(σ |I )

)
Pi(I ) − ri(S, σ∂i )

( ∏
k∈∂i

Pki(σk|S)

)
Pi(S)

]
. (A3)

The rate ri(I, σ∂i ) is the transition rate from state I → S and
in the SIS model and in most of the epidemic models it does
not depend on the state of the contacts of the infected person.
It just depends on the typical time of recovering (or dying)
from the disease, so this rate is directly the recovering rate
ri(I, σ∂i ) = μ. On the other hand, ri(S, σ∂i ) is the transition
rate from S → I . In infectious diseases, the contagion can
only occur if a susceptible individual is in contact with an
infected one [ri(S, σk ≡ I ) = β, ri(S, σk ≡ S) = 0], and the
probability of getting infected is additive with the number of
infected contacts. This means that we can rewrite ri(S, σ∂i ) =∑

k∈∂i ri(S, σk ):

dPi(I )

dt
= −μPi(I )

∑
σ∂i

∏
k∈∂i

Pki(σ |I )

+ Pi(S)
∑
σ∂i

[∑
k′∈∂i

ri(S, σk′ )

] ∏
k∈∂i

Pki(σk|S). (A4)

Let us apply the equivalence
∑

σ∂i

∏
k∈∂i → ∏

k∈∂i

∑
σk

to in-
vert the sum and product in the first term of the right hand side
(RHS):

dPi(I )

dt
= −μPi(I )

∏
k∈∂i

[∑
σk

Pki(σ |I )

]

+ Pi(S)
∑
σ∂i

[ ∑
k′∈∂i

ri(S, σk′ )

] ∏
k∈∂i

Pki(σk|S). (A5)

The term
∑

σk
Pki(σ |I ) is exactly the sum of Pki(I|I ) +

Pki(S|I ) = 1 and therefore also the product is equal to 1:

dPi(I )

dt
= −μPi(I ) + Pi(S)

∑
σ∂i

[ ∑
k′∈∂i

ri(S, σk′ )

] ∏
k∈∂i

Pki(σk|S).

(A6)
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Now we rewrite the second term of the RHS as follows:

dPi(I )

dt
= −μPi(I ) + Pi(S)

∑
σ∂i

∑
k′∈∂i

ri(S, σk′ )Pk′i(σ |S)

×
∏

k∈∂i\k′
Pki(σ |S), (A7)

dPi(I )

dt
= −μPi(I ) + Pi(S)

∑
σk′

∑
k′∈∂i

ri(S, σk′ )Pk′i(σ |S)

×
∑
σ∂i\k′

∏
k∈∂i\k′

Pki(σ |S). (A8)

Exchanging again the sum and the product, but now on the last

term, we get
∑

σ∂i\k′ [
∏

k∈∂i\k′ Pki(σ |S)] = 1 and, using that
ri(S, S) = 0 and ri(S, I ) = β, we obtain Eq. (12):

d pi

dt
= −μpi + β(1 − pi )

∑
k

pki. (A9)

Following the same steps it is easy to derive Eq. (13) for
conditional probabilities.

APPENDIX B: AVERAGE CASE EQUATIONS
FOR ERDőS-RÉNYI GRAPHS

In this Appendix we will show how to perform the closure
of average-case equations for Erdős-Rényi graphs (Sec. V B).
Let us start by explicitly writing the derivatives with respect
to κ:

∂ p̃

∂κ
= ∂

∂κ

(∑
γ

P(γ )pγ

)
= ∂

∂κ

(∑
γ

e−κκγ+1

(γ + 1)!
pγ

)
,

(B1)

∂ p̃→
∂κ

= ∂

∂κ

(∑
γ

glink (γ )pγ
→

)
= ∂

∂κ

(∑
γ

e−κκγ

γ !
pγ

→

)
.

(B2)

Computation of (B1) and (B2) gives

∂ p̃

∂κ
= −

∑
γ

e−κκγ+1

(γ + 1)!
pγ +

∑
γ

(γ + 1)
e−κκγ

(γ + 1)!
pγ

= −p̃ + 1

κ

∑
γ

(γ + 1)P(γ )pγ , (B3)

∂ p̃→
∂κ

= −
∑

γ

e−κκγ

(γ )!
pγ

→ +
∑

γ

γ
e−κκγ−1

γ !
pγ

→

= −p̃→ + 1

κ

∑
γ

γ glink (γ )pγ
→. (B4)

The sums in the right hand sides of (B3) and (B4)
are also involved in Eqs. (23) and (24). Then, remember-
ing that κ = ∑

γ (γ + 1)P(γ ), we can rewrite Eq. (23) as

follows:

˙̃p = −μp̃ + β p̃→
∑

γ

(γ + 1)P(γ )(1 − pγ ),

˙̃p = −μp̃ + β p̃→
∑

γ

(γ + 1)P(γ )

−β p̃→
∑

γ

(γ + 1)P(γ ) pγ ,

˙̃p = −μp̃ + βκ p̃→ − βκ p̃→

(
p̃ + ∂ p̃

∂κ

)
, (B5)

which leads directly to Eq. (28). Equation (29) can be derived
by an analogous procedure, using an equivalent expression for
the mean connectivity: κ = ∑

γ γ glink (γ ).
Now we just need to obtain closed expressions for the

derivatives in (28) and (29). In order to do so, let us com-
pute the κ derivative on both sides of Ansätze (30) and (31).
We get

∂ p̃

∂κ
= 1

2
{1 − tanh2 [β κ χ (t ) − μ]}β χ (t ), (B6)

∂ p̃→
∂k

= 1

2
{1 − tanh2 [β κ ε(t ) − μ]}βε(t ). (B7)

We can reuse Eqs. (30) and (31) for eliminating χ (t ) and
ε(t ) from (B6) and (B7), thus obtaining the following closed
expressions for the derivatives:

∂ p̃

∂κ
= 1

2κ
[1 − (2 p̃ − 1)2][tanh−1(2 p̃ − 1) + μ], (B8)

∂ p̃→
∂k

= 1

2κ
[1 − (2 p̃→ − 1)2][tanh−1(2 p̃→ − 1) + μ].

(B9)

This allows us to numerically solve Eqs. (28) and (29).

APPENDIX C: ANALYTICAL DIFFERENCE
BETWEEN PBMF-2 AND CME

To understand the difference between PBMF-2 and CME
we need to have both approximations with the same notation,
meaning that we have to put both in the notation of the joint
probabilities or in the notation of the conditional probabilities.
Here we are going to translate the equations of PBMF-2 into
the conditional probabilities notation:

dφi j (t )

dt
= dρi j� j

dt

= dρi j

dt
� j + d� j

dt
ρi j . (C1)

Therefore,

dρi j

dt
= dφi j (t )

dt

1

� j
− d� j

dt

ρi j

� j
. (C2)

Let us rewrite the set of equations (6) of PBMF-2 in terms
of the individual probability of being susceptible �i instead of
the individual probability of being infected:

d�i(t )

dt
= μ[1 − �i(t )] − β

∑
j∈∂i

φi j (t ),
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dφi j (t )

dt
= − (2μ + β )φi j (t ) + μ[1 − �i(t )] − βφi j (t )/(� j )

×
∑

k∈∂ j\i

φk j (t ) + β[�i(t )−φi j (t )]
∑

k∈∂i\ j

φki/(�i)(t ).

(C3)

In terms of the conditional probability the join probability then
takes the form
dφi j (t )

dt
= −(2μ + β )ρi j (t )� j (t ) + μ[1 − �i(t )]

−βρi j (t )� j (t )/(� j )(t )
∑

k∈∂ j\i

ρk j (t )� j (t )

+β[� j (t ) − ρi j (t )� j (t )]
∑

k∈∂i\ j

ρki(t )�i(t )/(�i )(t ).

(C4)

Then,
dφi j (t )

dt

1

� j (t )
= − (2μ + β )ρi j (t ) + μ[1 − �i(t )]

� j (t )

−βρi j (t )
∑

k∈∂ j\i

ρk j (t )

+β[1 − ρi j (t )]
∑

k∈∂i\ j

ρki(t ), (C5)

and the time derivative of the individual probability
of being susceptible times the conditional probability

and divided by the individual probability of being
susceptible is

−d� j (t )

dt

ρi j (t )

� j (t )
= −μ[1 − � j (t )]

ρi j (t )

� j (t )
+ βρi j (t )

×
∑

k∈∂i\ j

ρk j (t ) + βρi j (t )ρi j (t ). (C6)

Adding (C5) and (C6) we get

dρi j

dt
= − (2μ + β )ρi j (t ) + μ[1 − �i(t )]

� j (t )

−μ[1 − � j (t )]
ρi j (t )

� j (t )
+ β[1 − ρi j (t )]

∑
k∈∂i\ j

ρki

+βρi j (t )ρi j (t ). (C7)

Finally, let us rewrite it to see which terms are missing in
CME:

dρi j

dt
= −μρi j (t ) + β[1 − ρi j (t )]

×
∑

k∈∂i\ j

ρki + μρi(t )

� j (t )

−μ
ρi j (t )

� j (t )
+ βρi j (t )ρi j (t ) − βρi j (t ). (C8)
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