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The random Lotka-Volterra model is widely used to describe the dynamical and thermodynamic features of
ecological communities. In this work, we consider random symmetric interactions between species and analyze
the strongly competitive interaction case. We investigate different scalings for the distribution of the interactions
with the number of species and try to bridge the gap with previous works. Our results show two different
behaviors for the mean abundance at zero and finite temperature, respectively, with a continuous crossover
between the two. We confirm and extend previous results obtained for weak interactions: at zero temperature,

even in the strong competitive interaction limit, the system is in a multiple-equilibria phase, whereas at finite
temperature only a unique stable equilibrium can exist. Finally, we establish the qualitative phase diagrams and
compare the species abundance distributions in the two cases.
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I. INTRODUCTION

The incredible biodiversity that characterizes natural
ecosystems has attracted ecologists for a long time. Also,
investigating biotic and abiotic interactions along with the
determination of their strength is a central topic in ecology
given their key role in shaping community stability and spa-
tiotemporal processes [1,2].

On a theoretical level, modeling the interactions between
many different components—from bacteria in a microbial
community to plant-pollinator impact in a forest to birds
in starling flocks—can get complicated quickly. Given the
presence of many entities interacting in myriad ways, in the
last decades physicists have started drawing parallels with
complex and disordered systems. As yet, there is no single,
well-established theory allowing us to understand such sys-
tems and to integrate the plethora of empirical data coming
from a growing number of controlled experiments. In par-
ticular, a quantitative general framework able to discriminate
between the niche theory [3,4], based on a limited number
of niches, each occupied by a single species according to
the competitive exclusion principle [5], and neutral models
[6], in which species are treated as equivalent, is still miss-
ing. Mechanisms according to which individuals shape and
reorganize their niche have been studied both at equilibrium
and in out-of-equilibrium settings, using, for instance, time
series and ecological succession principles. Other key eco-
logical questions generally include (1) relaxation either to a
single-equilibrium or to a multistability regime; (2) the correct
definition of ecosystem diversity, i.e., the number of surviv-
ing species that characterize each of these equilibria; (3) the
typical behavior of fluctuations and functional responses to
external perturbations [7-9]; (4) interplay between stochastic
and deterministic processes and how community diversity and
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variability are related to them [10]; and (5) appearance of
chaotic dynamics and periodic cycles to be experimentally
measured in real ecosystems [11,12].

Addressing these questions is notoriously challenging.
However, remarkable advances have been made starting from
minimal models and employing random matrix theory and
dynamical systems formalism [13-20].

One of the most employed and most successful frame-
works in theoretical ecology is provided by the generalized
Lotka-Volterra equations, which were proposed a century ago
to describe the dynamics inside an ecological community
[21-24]. Due to their extremely general setting, they have
led to applications in many other fields, such as economics,
immunology, genetics, and evolutionary game theory [25-28].
In the following, we will focus on their mean-field disordered
version describing the evolution of a large well-mixed ecosys-
tem with randomly interacting species. Interestingly, in the
limit of a large number of components, new and powerful
ingredients come into play.

As is often the case in statistical physics, despite the lack
of information on the underlying microscopical structure, this
model turns out to be appropriate to tackle the staggering
complexity of ecological systems [17,29]. It shows the clear
advantage of being exactly solvable, and it can reproduce
salient features of community dynamics, such as collective
behaviors and emergent patterns in terms of phase transitions
between different increasingly complex regimes. Notably,
critical glassy phases have recently been shown in the Lotka-
Volterra model with symmetric random interactions between
species [20,30,31].

Most of the results in the literature thus far have been
obtained in the weak interaction case. Preliminary results in
the opposite direction (and with nonsymmetric interactions)
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were shown in [32]—although with a relatively small num-
ber of species—and in [29,33] pointing out the appearance
of a disordered phase with sudden turnovers of the dom-
inant species. Also, power-law distributions of the species
abundances and chaotic dynamics have been experimentally
observed in planktonic ecosystems [11,34,35] suggesting that
such behaviors can be driven by strong interactions. More-
over, the hypothesis of some combination of many weak
interactions and few strong ones has been proposed to explain
the emergence of directional ecological dynamics [2].

In this paper, we aim to complete and extend the analysis
by investigating emergent phase transitions for a large number
of species and strong symmetric interactions. In this regime,
we expect completely different features from the weakly in-
teracting case.

When the interactions are mediated by the environment,
as is usually the case in microbial systems, the strength of
the interactions can be continuously modified by environ-
mental changes, such as the concentration of nutrients [36].
Studying the strongly interacting limit could therefore be rel-
evant to predict the behavior of an ecosystem in the case of
strong environmental modifications (see, for instance, [29] for
a controlled experimental setting). The growing interaction
strength can also have an evolutionary origin in the case of
active competition, in which two competing microbial strains
directly harm each other, i.e., through the production of toxins
or antibiotics [37].

The article is organized as follows: in Sec. II we will
introduce the mathematical model and discuss different pos-
sibilities for the scaling of the couplings as a function of the
number of species in the pool; in Sec. III we will recap the
main results obtained for this model from a thermodynamic
perspective using in particular disordered system techniques.
Then in Sec. IV and Sec. V we will enter into the details
of our work and analyze the zero-temperature and the finite-
temperature regimes. We will present our results in these
scenarios in terms of the phase diagrams, the typical scalings
for the average abundance, as well as the resulting probability
distributions. In Sec. VI we conclude by presenting some
perspectives for future research on this topic.

II. THE MODEL

We will consider a well-mixed ecological community
model: all individuals from all species can interact, and their
presence or absence does not depend on the specific location,
in good agreement with observations in the oceanic plankton
[33].

The dynamical equations for the species abundances N;
[30,31], where the index i runs over the S different species,
are defined by

dN;
T —N; |:VN,Vi(Ni) + Zaiij:| +ni(t) +m;. (1)
j#i

«;j is a random interaction matrix, 1; is a white noise, and
m; is an immigration rate that couples the community to a
regional pool of species, ensuring that all species are present.
The immigration rate is typically assumed to be small in order

not to affect the behavior of the system. For simplicity, we will
also assume it to be constant over species, m; = m.

More precisely, the continuous variable N;(¢) denotes the
relative species abundance at time ¢ obtained by normalizing
the population by the total number of individuals N that
would be present in the absence of interaction. The underlying
discrete birth-death process in population dynamics is then
approximated by a continuous formalism embedding a mul-
tiplicative Gaussian demographic noise, whose covariance is
inversely proportional to N.r. The demographic stochasticity
variable 7;, accounting for deaths, births, and other unpre-
dictable events,! is then modeled by a white noise with zero
mean and variance (n;(t)n;(t")) = 2T N;(¢)5;;6(t —t'), with
T x1 /1\7ref.2

Vi(NV;) appearing in Eq. (1) represents a single-species po-
tential, which in the logistic growth Lotka-Volterra model is
quadratic in N;:

N?
VilN:) = —p; <kiNi - j) )

The dynamics controlled by this potential has two fixed
points, respectively, in zero (unstable) and in the carrying
capacity, k; (stable). The timescale at which the stable equilib-
rium is reached is fixed by the parameter p;. In the following
we shall take p; = 1, and k; = k constant over species. Our
results are easily generalizable to the case in which p; and k;
are normally distributed [30]. We will come back to this point
and to a possible variation of this scenario.

Following pioneering works by May [38], the system
parameters are usually sampled from random distributions,
which make tools from statistical mechanics of disordered
systems ideally suited. Nonetheless, at variance with [38],
where the random sampling is performed at equilibrium, we
consider here a pool of species with reciprocal random in-
teractions [20,39—41], and we start from the hypothesis that
the final equilibrium composition is a result of the dynamics.
Random interactions are thus encoded in the matrix «;; whose
elements are drawn from a Gaussian distribution and assumed
to be symmetric,® «;; = ;. Even though it can appear to be a
quite strong assumption, the symmetric case turns out to rea-
sonably well describe communities in which the interactions
stem from competition for resources or mutualistic behavior
[42,43]. In the following, we will focus on the competitive
case considering positive values of the parameter denoting the
mean interaction; negative values would instead favor cooper-
ation.

In other words, Eq. (1) represents a set of generalized
Langevin equations for which, in the case of purely symmetric

I'The noise should be interpreted through Ito’s convention since we
want it to depend on the abundance at previous times. In this way,
we correctly find that if a species is extinct it remains so at any later
time (in the absence of immigration).

The larger the global population, the smaller the strength, T, of
the demographic noise [31].

3The introduction of random asymmetric interactions would corre-
spond to nonconservative forces in the dynamics and therefore give
rise either to limit cycles or chaotic behavior.
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couplings, it can be shown that the corresponding Fokker-
Planck equation admits a stationary probability distribution
with associated temperature 7. We will therefore denote in
the following the zero temperature case as the process of av-
eraging the abundances over an infinite population. Both cases
of zero and finite temperature have been recently investigated
using disordered system techniques [20,30,31]. The phase di-
agram at zero temperature was first obtained within the cavity
method in [20], in which an additional parameter allowing
also for asymmetric interactions was considered. Novel re-
sults, related to the introduction of a finite demographic noise
and immigration, were then discussed in [31].

When the interactions are not too widely distributed, a sin-
gle equilibrium, that is always reached no matter the assembly
history, is found. Conversely, at high enough heterogeneity
of the interactions, upon decreasing the amplitude of the
demographic noise the system undergoes a phase transition
characterized by the emergence of multiple equilibria. De-
creasing further the noise, a second phase transition can take
place below which all states are marginally stable and hierar-
chically organized [31], hence underscoring several analogies
with low-temperature glassy phases.

Meaningful scaling with S

Two different choices have been considered in the literature
for the scaling of the mean and the variance of the distri-
bution of the interactions «;; with the number of species. In
[20,30,31], the «;; are extracted independently from a dis-
tribution with mean[c;;] = /S and var[e;;] = 02/5, where
@ and o are taken to be finite in the large S limit. With this
choice, the total effect on one species of the interaction with
all others can remain finite even with an infinite number of
nonextinct species, and we can find an analytical solution to
the problem. In [29,32,44] the interactions are assumed not
to scale with the number of species, as is natural to do if we
assembly an ecosystem by artificially adding species to the
community [29]. In [32] the introduction of asymmetric inter-
actions can lead to a chaotic phase in which there is a sharp
separation between many rare species and a few abundant
ones with sudden turnovers between the two. In [33] it was
shown that in this chaotic phase the abundances distribution
satisfies a power-law distribution, in agreement with what was
observed in marine microorganisms communities [35] and
long-term experiments with a complex food web composition
[11]. The main motivation of our work is to bridge the gap
between these two different approaches.

In the case of symmetric interactions, we cannot observe
chaotic dynamics, but, as a first step, we can study the map-
ping of one scaling of the interactions into the other and try to
clarify still unanswered questions. If mean and variance scale
as the inverse of the number of species, we can recover o;; ~ 1
by taking p oc S, o o +/S. We will thus explore the limit in
which w is large and consider both finite o and o o \/u.
We will see that, at least at zero temperature, taking © — oo,
o o ,/u is indeed equivalent to considering a;; ~ 1.

We will determine which phase is reached in the different
limits and characterize the average behavior of the abundance
and its probability distribution.

III. A THERMODYNAMIC FORMULATION

Considering the symmetric interaction case allows us to
write a quasiequilibrium stationary probability distribution
[30] with Hamiltonian

H = ViN)+ Y eijNiNj+ (T —m) ) In(N).  (3)

i<j i

which is reminiscent of a spin-glass structure where the (con-
tinuous variables) abundances play the role of the spins.

Note also that to guarantee the probability distribution to
be integrable at small N;, we need m > 0. This reflects the
fact that, in the absence of immigration, N = 0 would be an
absorbing boundary condition, and at any finite value of the
demographic noise any species would sooner or later become
extinct. Alternatively, we can take the limit of small immigra-
tion after the 7 — O limit.

In the thermodynamic limit, as S — oo, physical quanti-
ties do not depend on the realization of the disorder o;;. In
particular, the free energy, which contains information about
macroscopic equilibrium properties of the system, is self-
averaging.* This can be computed through the replica method
[45], a standard tool in disordered systems. In this way, we can
fully characterize the phase diagram both at zero and at finite
temperature. The main passages of the solution according to
the replica formalism, adapted from [30,31], are presented in
Appendix A. To have an overall picture, in the following we
shall perform in-depth analysis in the case of strongly compet-
itive interactions, which is still poorly understood. We shall
mostly focus on the single-equilibrium phase, first, because
we will see that this is the only relevant phase in the strong
interaction limit at finite temperature, and, second, because
at zero temperature we have a direct transition to the critical
multiple-equilibria regime. Here the analytical computations
become extremely involved and beyond the scope of this
work.

The single-equilibrium phase

Once the thermodynamic problem is well defined, we can
resort to the replica method to obtain an effective Hamilto-
nian for a single-species abundance. In the single-equilibrium
phase the effective Hamiltonian reads (more details are found
in Appendix A)

Hepp = [1—0?B(ga — q0)IN?/2

+ (uh — k — 2/q0)N + (T —m)InN,  (4)

where 8 = 1/T denotes the inverse temperature. According to
Eq. (4) the single-species abundance is subject to an effective
Hamiltonian that, in addition to the single-species potential,
contains some extra terms due to the mean field interactions
with the rest of the system. One of these terms is propor-
tional to a Gaussian fluctuating field z that accounts for the
randomness of the interactions. The parameters 4, g4, and g

“For a self-averaging quantity typical realizations will have a free
energy equal to its average over the disorder.
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are self-consistently fixed to be first and second moments of
the distribution of N:

Y fooo dN e BHesr(qo:9a:0.2) Ny
/’l:( ): /DZ< fooo dN@fﬂH"ff(qo’qd’h’z) >7 (5)

Jo? dNePHers(@0-qh2) N2
J— 2\
a0 == /DZ< fooo dNe—BHerr(q0.94.h.2) >’ (6)

N2 fooodNe*ﬂHeff(qo,qd,h,z)N 2
f0= Z/DZ< fooo dN e=PHerr(90,4a:1.2) ) (D

where we have used the calligraphic notation for the Gaussian
integral in z, i.e., f Dz = f_oooo jTine’zz/ 2 The brackets indi-
cate the average over the Boltzmann distribution for N with
the effective Hamiltonian H,yr, while the overbar stands for
the average over the disorder, i.e., over the Gaussian variable
z. These averages coincide with the thermal and disorder
average for a single-species abundance.

Inthe T — 0, m — O limit the thermal averages are dom-
inated by the value N*(z), which minimizes the energy:

o
N*(z) = max {0, — Y2 4 ), (8)
1 —0%Aq
with
k— uh

A

= . ©)]
V400
This greatly simplifies the analytical and numerical treatment
of the equations, since only one average has to be performed.
Equations in the 7 — 0 limit were first obtained in [30]. We
recap here the main points.
At small temperature g; — qo < T, so that the relevant
parameter to study is Ag = B(gs — qo) = B(N?) — (N)2. The
set of self-consistent Egs. (5)—(7) can thus be rewritten as’

VB0

h =N*(z) = mwl(A),
; 900’
g0 =N*(2)* = (l_g—qu)zwz(A% (10)
_OWN*@) 1
CHP(N*(z) 11— 02Aqw0(A)’

where the w; are given by

widy = [ B 2r Ay (11)
A 27

Such self-consistent equations can be numerically solved by
iteration: we fix an initial guess for 4, go, and Ag, and we
compute the updated values by applying the formulas in (10).
To reach a faster convergence, some damping is added to the
iteration protocol. The algorithm keeps going until a fixed
point is reached; this will be a solution of the self-consistent
equations.

5The equation for Aq is obtained computing separately the variance
of N in the case of extinction [N* = 0, B({N?) — (N)?) — 0] and of
survival [N* > 0, B({N?) — (N)?) — 1/H}].

P(N)

P

0vVdo VT

(a) T=0 b)T>0

FIG. 1. Qualitative sketches of the probability distribution of the
abundance of a given species at zero (a) and finite temperature (b).
At finite temperature we show the distribution when m =T (in
blue) and upon re-introducing a small positive logarithmic term (in
orange).

The abundance of one species N* depends linearly on the
random value of z, unless this is smaller than the threshold
value —A, below which we have the species extinction, with
N*=0.

The species abundance probability distribution is thus a
Gaussian truncated in zero, plus a § function in zero with
weight equal to the fraction of extinct species [for more gen-
eral results see Fig. 1(a) below]. The weight of the Gaussian
part corresponds to the diversity ¢, i.e., the fraction of nonex-
tinct species, given by

¢ =0(N*) = wo(A), 12)

which can be exactly computed in terms of error functions.

Stability analysis

To check the stability of the single-equilibrium solution
we can compute the matrix of harmonic fluctuations of the
replicated free energy close to this equilibrium point. The
structure of its first vanishing eigenvalue, defined in the replica
terminology as a replicon eigenvalue, is known [46]. In the
single-equilibrium phase it is given by [30]

A= (Bo)[1 — (Bo)*((N2) — (N)2)2]. (13)

When this stability eigenvalue touches zero, the replica sym-
metric solution becomes unstable, leading to a more complex
landscape structure [45,47]. The marginality condition, A = 0,
is a key determinant for obtaining the transition line (this
instability line will be shown in orange in Fig. 5 below when
presenting our results in detail).

Conversely, at zero temperature we would always obtain
a diverging eigenvalue because of the multiplying B* fac-
tor. Since we are interested only in its sign, we rescale it
as A = A/(B%02) =1 — (Bo)*((N2) — (N)?)2. Performing a
computation similar to the one for Ag, A may be computed
analytically, leading to

_ g2 0(N*(z)) _ 2 wo(A)

—1-c2—202) (14
H W@y 4w

=1 .
(1 —02Ag)?
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IV. RESULTS: ZERO-TEMPERATURE SCENARIO

In the following sections, we aim to analyze previously
unexplored regimes completing the phase diagrams and in-
vestigating systematically the dependence of the control
parameters on high-u values and thermal fluctuations.

A. Finite number of species

To explicitly explore the case in which i oc S, 0% o S, it is
useful to consider first a finite number of species S.

The self-consistent expressions for h, ¢qg, and ¢g; in
Eqgs. (10) were obtained as the stationary conditions from a
saddle-point approximation in the limit § — oco. We can per-
form the same procedure by taking the limit 8 — oo instead
of § — oo (see Appendix A 1 b). Since S is a finite quantity,
we can now simply fix 4 = 1S, 0> = 2S. The only relevant
dependence on S is now through p and o; therefore taking
the § — oo limit is equivalent to taking the limit u — oo,
o — 00, 0 « ,/i. We conclude that, at least at zero temper-
ature, this naive approach is exact.

B. Analytical solution in the thermodynamic limit

In the following we generally work in the thermodynamic
limit, for § — oo, and consider various scalings for p© and
o, knowing that at zero temperature this mapping is exact.
The phase transition at 7 = 0 occurs at a constant value of
o, = \/% for any value of u [20,30].

Along the transition line, we find the following expres-
sions:

k k>
h=_5 q():n_27 Aq=17 (15)
2 2
which solve the self-consistent equations above. As is ex-
pected, we obtain that A = 0. The fraction of nonextinct
species ¢ is equal to 1/2 at the transition, in agreement with

one of the marginality conditions found in [30]:
¢’ = 5.

The first condition represents May’s bound for the limit of
stability [38]: at a stable equilibrium the variance of the in-
teractions, o2 /S, should be smaller than the inverse of the
number of surviving species, S¢. The factor 1/4 is because
we are considering symmetric interactions so that the variance
is effectively smaller. May’s bound is therefore saturated at
the transition, this property also holds in the entire multiple-
equilibria phase. Also the second marginality condition is
fulfilled by our solution.

We can then expand the equations close to the transition
point in powers of do = o — o,; solving them to the first
order we obtain

V2 )

k
h=—(1+""do
u 2

o’Ag =1 (16)

k2
=m0+ 2V2(m /i — 2+ m)do],

Ag =1 —V2do,

% =22do. (17)
The results are in good agreement with the numerical solu-
tions at linear order around o.. We refer the interested reader
to Appendix B. The expansion confirms that to the leading
order the average abundance at zero temperature is inversely
proportional to u, also away from the transition line.

We also obtain that the diversity ¢ is independent of .
Therefore, the vanishing trend of the average value of the
abundances at large u is not due to the extinction of a large
fraction of species, but to a general decrease in the typical
value of the abundances. Indeed, the truncated Gaussian de-
scribing the nonzero part of the distribution is centered around
a quantity proportional to k — wh (that is exactly zero at the
transition and tends to zero at large u for any o) and has
a width proportional to /g, that goes to zero at large p
[see also Fig. 1(a)]. The exact cancellation at the transition
between the carrying capacity k and the mean effect of other
species ph is the reason why a finite o can play a crucial role
even in the limit of large mean interaction.

Taking o oc ./ to recover the scaling «;; ~ 1 we always
end up in the critical phase or in an unbounded-growth region.
Indeed, increasing further the heterogeneity of the interactions
results in a pathological unbounded growth of the abundances,
due to the emergence of a subset of species with coopera-
tive interactions strong enough to override the single-species
saturation. This effect can be cured by adding a stronger
divergence at large N in the single-species potential, but this
possibility goes beyond the aim of this paper. For more details
about a cubic potential see [9], which accounts for mutualistic
interactions under some specific assumptions.

V. RESULTS: FINITE TEMPERATURE

Going back to finite temperature, in addition to the disorder
average we have to consider the thermal one, with the effec-
tive Hamiltonian of Eq. (4). This contains a quadratic and a
logarithmic term; a quadratic Hamiltonian would allow us to
explicitly compute the thermal averages and to make some
analytical progress on the solution. Therefore, to eliminate the
logarithmic contribution we can use two different strategies:

(i) We can set m = T, but this case is a bit pathological
since the slightest change in m would result in a diverging or
zero value of the probability distribution in N = 0. Further-
more, to really understand the role of temperature we would
like to be able to vary it independently from the immigration
rate.

(i) Alternatively, the term also drops if we take the T —
0, m — 0 limit as we did in the previous section. Neglecting
the logarithmic term in the Hamiltonian but keeping a finite 8
allows us to artificially study the Hamiltonian that controls the
system at zero temperature, but in the presence of fluctuations.
This corresponds to effectively disentangling the effect of
demographic noise on the potential and the temperature that
appears in the Boltzmann weight.

The case in which we neglect the logarithmic term is also
of interest because it can be directly mapped into the replicator
equations [48,49]. The mapping between the random replicant
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0.05

0.02

FIG. 2. Numerical results for the average abundance & = (N) as
a function of u for geometrically increasing values of 8, from B, =
1 (purple) to B, = 200 (red). The full line (shown for 8 = B,.in)
and the dashed line represent the asymptotic results for u > g for
K B, respectively.

model and the Lotka-Volterra equations has been put back on
the table recently and shown exactly in the thermodynamic
limit [31].

In the following, we will neglect this logarithmic term,
keeping in mind this double interpretation of what we are
doing. Then in the single-equilibrium phase the quadratic
Hamiltonian can be rewritten as

d
Hepp = S (N = NoY’, (18)
where N, is linear in the Gaussian field z and d is a constant:
d=1-0"Bqa — q),

h—k—
Noz—ﬁ%zjo—\/q_o.

The factor d controls the concavity of the Hamiltonian, so that
we need it to be positive to have a stable system, while N rep-
resents the minimum of the parabola. The positive constraint
on the abundances implies that if Ny < 0 the minimum of the
energy will shift to N = 0.

As can be checked a posteriori, we assume that i goes
to zero more slowly than k/u in the large p limit. Ny then
diverges to —oo allowing us to perform an expansion of the
self-consistent equations and to obtain the asymptotic expres-
sions:

19)

qa ~ o—. (20)

The derivation, valid for p > B, is detailed in Appendix C.
These results are in good agreement with the numerical solu-
tion at small 8 and large u (Fig. 2), as we specifically proved
for this work.

The disorder, represented by the fluctuating field z, plays
no role in this limit: the term containing z is simply dropped

in the expansion by noting that uh —k > o,/qo. In other
words, the constant terms in the effective Hamiltonian are
so large that fluctuations become negligible. Moreover, at
variance with the zero temperature regime, here the scale of
the populations is independent of the carrying capacity k: it is
determined by the thermal fluctuations and the immigration,
which turn out to be strictly linked.

We can also compute the stability eigenvalue (see Ap-
pendix C for more details), obtaining

2
- (,30)2(1 - %) - 0. Q1)

We see that it is always positive in the limit of large u,
indicating that the single-equilibrium solution that we have
studied so far is correct. Always finding a single equilibrium
means that the disorder is irrelevant in this regime.

A. Crossover and comparison between the two
temperature regimes

It is interesting to compare the probability distributions of
the abundances in the two regimes. In both cases, we have
a truncated Gaussian (see Fig. 1), but they have different
origins. At zero temperature the finite width of the distribution
is due to the disorder, which entirely determines the value of
the abundance. The distribution is composed of a truncated
Gaussian, centered close to zero and with width proportional
to ./qoo, and of a § function in zero with weight equal to
the truncated part of the Gaussian, 1 — ¢. This distribution
is often found in disordered systems with hard constraints
(here represented by N > 0); for example, it arises in resource
competition ecosystems [50,51], in the computation of the
storage capacity of a neural network [52], and in the study
of optimal equilibria in complex economies [53].

At finite temperature in the strong interaction limit, the
effect of disorder is negligible, and the variability in the
abundances is due only to thermal fluctuations. The distri-
bution is the tail of a Gaussian centered in Ny, tending to
—oo at large u, and of variance 1/(8d). By lowering the
temperature, the tail of the Gaussian becomes narrower and
narrower and approaches a é function. At the same time, the
peak of the Gaussian moves to finite values, the z dependence
becomes relevant and causes a spread of the peak of the §
function. We recover then the zero-temperature distribution.
The probability distribution is the tail of a Gaussian only if
we neglect the logarithmic term, therefore at exactly m =T
If we reintroduce a small positive logarithmic contribution,
the probability distribution is forced to pass through zero
at N = 0 [in orange in Fig. 1(b)]; on the other hand, with
a negative logarithmic term we would have a divergence in
N = 0, integrable if m > 0.

While at zero temperature a finite fraction of the species
is extinct, at finite temperature they all have a positive, albeit
small, abundance. This is a consequence of the fact that in this
case we cannot take the limit m — O; the finite immigration
results in finite populations.

We can relax the assumption of constant carrying capac-
ities by taking them to be normally distributed. Our results
easily generalize to this case: we would still obtain Gaussian
distributions, but with a corrected variance [30]. We expect
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instead that considering a lognormal distribution for the car-
rying capacities, as suggested in [54], would strongly impact
our predictions leading to a wider distribution also for the
abundances.

We have seen that at zero and finite temperature we ob-
tain two different asymptotic behaviors: at T = 0 we have
h ~ k/u, while at finite temperature & ~ 1/+/B . Therefore,
we have also studied numerically the crossover between the
two regimes by considering increasing values of §.

As we can see in Fig. 2, we can continuously interpo-
late between the two solutions: when p >> 8 the numerical
solution is in good agreement with the finite-temperature
asymptotic expansion (purple dots and continuous line), while
for u© < B we approach the zero-temperature case (red dots
and dashed line). In between, we have a continuous crossover.

B. Strongly heterogeneous interactions

The solutions we have found in the limit of strong coupling
at fixed o and T do not depend on o. Since we do not expect
this to always be the case, we might wonder what is the limit
of validity of these results.

At zero temperature we have seen that taking o o¢ ./ —
00 is equivalent to considering «;; ~ 1, we expect this behav-
ior to hold also at small but finite temperature.

The finite-temperature expansion relies on the fact that

h—k—z
o= LA/

is large for any value of z that contributes significantly to the
integral, i.e., for z ~ O(1). This corresponds to requiring

uh —k uh —k
—_—>»1, —>»1
\/B\/ﬁ o9

Assuming the scalings of Eq. (20), these conditions are also
met if we take o o ,/u. For not too large values of the
ratio r = o /,/u we can numerically verify that the previously
found solutions are indeed still correct.

Nevertheless, an important difference with the previously
considered case is that now the second term in d =1 —
02B(qga — qo) does not go to zero at large u, but it tends to
a constant:

(22)

(23)

1
Bo(qa — qo) ~ r*up—; = r’. 24)

np

By increasing r, this constant reaches one, which in turn
implies that the coefficient of the quadratic part of the confin-
ing potential goes to zero. We observe then a divergence in the
average abundance and inevitably end up in the unbounded-
growth region.

Since the scalings we have obtained remain valid until
we encounter this singularity, the stability eigenvalue is still
given by Eq. (21), and in the scaling we are considering is
again positive. We can therefore conclude that at large u
and finite temperature we have a direct transition from the
single-equilibrium phase to the unbounded-growth phase.

To further verify this claim we have studied the numeri-
cally integrated solutions of the self-consistent equations at
fixed p and B upon varying o. In agreement with the previous
analysis, we find two qualitatively distinct scenarios, which

A 2’\02
Fo ol
1.0 0.8f
8-2 0.6t
0.4 0.4/
0.2 0.2
t a : : : g
0.2 0.4 06 0.8 1 2 3 4
(a) (b)
d d
1.0 1.0
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
* a ag
02 04 0.6 0.8 1 2 3 4

() (d)

FIG. 3. Two scenarios for the breakdown of the single-
equilibrium phase. At small temperature (8 = 1000, orange) we find
a value of o for which the stability eigenvalue goes to zero, while the
denominator d is finite, hence ending up in the multiple-equilibria
phase. At large temperature (8 = 1, blue) the denominator goes to
zero before the stability eigenvalue: the unbounded-growth phase
is directly reached. To properly capture the behavior in the two-
temperature regimes we use two different scales on the x axis. In
both cases, u = 20.

are shown in Fig. 3. For 8 > u, where our asymptotic compu-
tation is not valid, increasing o the stability eigenvalue crosses
0 [Fig. 3(a)] while d still has a finite value [Fig. 3(c)]. This
means that we are crossing to the multiple-equilibria phase,
in agreement with what is found in [31]. For 8 « u we see
instead that d approaches zero [Fig. 3(d)] while A has still
a finite value [Fig. 3(b)]: we thus have a direct crossing to
the unbounded-growth phase. We finally establish the phase
diagram at fixed finite temperature, in the o-u plane: at fixed
1 we progressively increase o until the stability eigenvalue
reaches zero obtaining a diverging result. In Fig. 4(a) we show
the stability eigenvalue as a function of o for different values
of w. This task is complicated by the fact that the numerical
algorithm encounters overflow problems well before the de-
nominator goes to zero, where a phase transition should occur
[see Fig. 4(b)]. This is expected as the numerical protocol
requires the computation of several exponentials and error
functions. Nevertheless, at small enough values of © we can
reconstruct the transition curve, which appears to be a straight
line in the o -u plane. This is in qualitative agreement with the
asymptotic expression for the stability eigenvalue [Eq. (21)],
which predicts a phase transition for o = w. This line is never
observed because at large p, where the asymptotic expression
is valid, the divergence sets in before the transition.
Considering a square root behavior for the transition point
to the unbounded growth region, which is what we expect
at large u, we can give a qualitative representation of the
phase diagrams, as shown in Fig. 5. In the bottom part we
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FIG. 4. Replicon eigenvalue and denominator of N, in Eq. (22)
as a function of o, for values of x between 5 (purple) and 30 (red).
The transition points, shown in black, correspond precisely to A = 0.
Here g = 100.

confirm the phase diagram obtained previously in the zero-
temperature limit [20] also for strong competition, i.e., as
u — oo. Note that at zero temperature the transition from the
single equilibrium to the multiple equilibria phase occurs at
a fixed value of 0. = 1/ V2, independent of p, while at finite
temperature o, grows linearly with u. Therefore it has to cross
the transition line to the unbounded growth region, since this
grows more slowly than linearly. We can thus conclude that at
finite temperature and strong interactions there is no multiple
equilibria phase.

To estimate the order of magnitude of the value of u at
which the multiple equilibria phase disappears, we can con-
sider the value of d at the transition point, extracted from
Fig. 4(b). This parameter appears to decrease linearly as a
function of w. We expect the intersection between the transi-
tion line and the divergence line to occur when the value of d
at the transition reaches zero, and we can thus get an estimate
of the corresponding value of u from a linear extrapolation,
obtaining u = 39.1. This analysis must be taken as only qual-
itative since there is no guarantee that the linear behavior is
maintained close to divergence.

We also tried to compute the interception between the
linear extrapolation of the critical value o, and the square
root curve o = /i that we expect to describe the transition
to the unbounded growth phase at large . We obtained a
much larger value than with the previous method (1 = 614),

Unbounded

Single equilibrium

u

(a) T>0
o Diversity
1.0

Unbounded
growth 0.9
0.8
Multiple

equilibria 0.7
0.6
m 05

u

(b)T =0

FIG. 5. Qualitative phase diagrams at finite and zero temper-
ature, respectively. The lowest part corresponds to the single-
equilibrium phase, whereas between the orange line and the blue
one a multiple-equilibria phase occurs. Above the blue line, the
unbounded-growth region is characterized by a divergence of the
species abundances. In the 77 — 0 limit, the diversity is also plotted
in the single-equilibrium phase.

confirming that the analysis should be considered only qual-
itative because of the practical issues of approaching the
divergences and the deviations from the asymptotic behavior
at small p. In conclusion, taking o o ,/i0 — 00O to recover
a;; ~ 1 has dramatically different outcomes in the zero- and
finite-temperature cases: at zero temperature we end up in the
multiple equilibria phase, whereas at finite temperature we
always remain in the single-equilibrium phase.

It is not easy to conclude what would actually happen for a
finite system. On the one hand, we have seen that the temper-
ature is related to the inverse of the size of the system so that a
finite system will always have a finite temperature, and there-
fore at large p it would end up in the single-equilibrium phase.
On the other hand, we have seen that at zero temperature we
can explicitly take © o< S, so that a finite number of species
would result in a finite u associated with a possible multiple
equilibria phase. The outcome would therefore depend on
how the size of the populations compares with the number
of species, remembering that the crossover between the two
asymptotic solutions is controlled by the ratio w /8.

Drawing an immediate comparison between our results and
the numerical analysis performed in [32] is still difficult be-
cause the introduction of nonsymmetric interactions leads also
to chaotic behavior. Moreover, since the study in [32] relies
on a relatively small number of species (S ~ 20), claiming
to end up in any of the asymptotic regimes is not foregone.
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We nevertheless expect that in the zero-temperature limit the
asymmetry may be functional in transforming the multiple
equilibria of the Hamiltonian into chaotic trajectories. Upon
increasing the number of species the chaotic phase should
progressively invade the entire phase diagram, in agreement
with recent numerical and experimental results [29]. Con-
sidering also demographic noise would contribute to adding
stochastic fluctuations to the trajectories, hence pushing the
transition to chaos and possibly merging the chaotic attractors
into one [31]. Whether the resulting chaotic phase is char-
acterized by one or multiple attractors would depend on the
relative strength of the demographic noise and its interplay
with interaction heterogeneity.®

VI. CONCLUSIONS AND OUTLOOK

In this work, we explored the limit of symmetric strongly
competitive interactions in the random Lotka-Volterra model.
We showed that at zero temperature the strong competition
limit (in which the distribution of the interactions does not
scale with the system size) is equivalent to taking o o /it —
oo. We therefore studied the limits in which the mean in-
teraction u — oo, the heterogeneity parameter o ~ 1, and
o & /I, at zero and finite temperature. In both cases, the
average abundance goes to zero upon augmenting the average
interaction, but according to two different asymptotic behav-
iors. At zero temperature, the average abundance decreases
as the inverse of the mean interaction, so that the average
effect of the ecosystem on one species remains constant. The
transition to the multiple-equilibria phase is maintained, and
it occurs at the same value of the interaction heterogeneity as
predicted for this model in the weakly interacting scenario.
Therefore, considering a large heterogeneity to recover the
strong competition limit would always lead the system to
the multiple equilibrium phase. Interestingly, the decrease of
the average abundance at fixed heterogeneity is not due to
a loss of diversity, but to a general decrease of the typical
abundance. We then computed an expansion around the tran-
sition line, which is in good agreement with our numerical
analysis at linear order. At finite temperature, we performed
an asymptotic expansion in the . — oo limit, and obtained
that the average abundance decays as 1/4/B, in remarkable
agreement with the numerical results. In the finite-temperature
case, we had to include a finite immigration rate to com-
pensate for stochasticity-induced extinctions. This leads to
larger populations that result in a diverging average inter-
action, so that the finite fluctuations we were considering
become irrelevant. Consequently, we found that in this limit
there is no phase transition at finite o: the system appears to
be always in the single-equilibrium phase. Furthermore, by
studying the crossover between the two regimes we found that
in both cases the species abundance distribution decays as a

®We expect the zero-demographic noise scenario to be relevant
also in the case of TARA expedition data on planktonic ecosystems,
as characterized by an enormous number of individuals [35], then
allowing for chaotic regimes if asymmetry in the interactions is also
taken into account.

Gaussian, showing that a key ingredient to recover power-law
distributions in the abundances is the introduction of a full
class of interactions, including unilateral ones. An in-depth
investigation of the asymmetric case—that can be studied
either perturbatively or by resorting to the cavity method for
arbitrary values of the covariance between o;; and « j;—is left
for future research. Alternatively, one can also complexify
the model by including both demographic and environmental
noise, regulated by two different scalings as a function of
population size, which would allow us to identify regimes
governed by power laws.

Finally, we considered the case in which o scales as /i,
and recovered the previous solution for small enough val-
ues of the ratio o /,/u. At large u, for some critical value
of this ratio, still of O(1), there is a direct phase transition
to the unbounded growth phase. We then claim that at fi-
nite temperature and large value of the average interaction
no multiple-equilibria phase appears. Having a more direct
comparison with real-life ecosystems especially in terms
of a multistability regime as pointed out in our theoretical
phase diagram appears to be a timely problem to address.
Dilution experiments in which tuning nutrient supply rates
and environmental parameters are gaining momentum due to
increasingly sophisticated techniques able to reproduce syn-
thetic microbial communities [29]. Modifying the availability
of nutrients, which basically affects the strength of the inter-
actions, and the number of species can trigger abrupt changes
in the community composition: these are signaled either by
uncontrollable multiplication or by the emergence of several
stable compositions if competing species have different stoi-
chiometries with respect to the same essential nutrients [55].

Although our analysis is restricted here to strong interac-
tions, recent studies tend to support distributions of interaction
strengths that are highly skewed—with few strong and many
weak interactions—highlighting how a wide organization of
species interactions is fundamentally similar between mutu-
alistic and antagonistic ones [1]. A major direction for future
research would be to investigate in more detail these complex
interaction networks and to account also for higher-order (not
only pairwise) contributions.
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APPENDIX A: THE SOLUTION IN THE REPLICA
FORMALISM

We consider the Hamiltonian

H =Y ViN)+ Y ajNiN;j+ (T —m) Yy In(N;). (Al)

i<j i

The disorder average of the free energy can be computed
through the replica method [45], a standard tool for fully
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connected disordered systems based on the identity the limit n — O is performed through analytic continuation.
Despite being thermodynamically independent, the replicas

—BF = InZ = lim InZ" (A2) are correlated because they are taken at the same realization
>0 n of the disorder; integrating over the disorder introduces an
The quantity on the right-hand side can be computed for inte- effective coupling between them.
ger n by introducing n independent replicas of the system, and Let us thus proceed with the computation of Z":

J

/Hdoz” exp|: Z(auzazl;éS) i|/HHdN“exp|: ZH N” ] (A3)

<j

We can perform the Gaussian integration over the o;;:

2 2
Zn = /]_[ [Tan exp [Z = (ﬂ XH:M“N?) - B Z ! Z[V,—(Ni) (T —m) V)] + ZNﬁN;H. (A4)

a=1 i i<j i<j

We perform a Hubbard-Stratonovich transformation, introducing the variables Q,;, H, to decouple the abundances of different
species; this results in a coupling between different replicas. The replicated partition function can be written as

Zr = / [ [dQuw [ [ 4Ha exp [SA{Qus, Ha})] (A5)
a<b a
in terms of an action A4
1
A({Qap. Ha}) = o ’B (Z 0%+ 5 ZQM) b S D HI+ 5 ) InZi(Qu Hab) (A6)
a<b a i

that contains an effective partition function for the abundances of one species in the different replicas, at fixed values of Q,, and
H,:

Zi = / Hd]vla exXp [_IBHeff({]via}v {Qab:Ha})]v (A7)
Hegp = —po” [ZM“I\’,-”Qab + % > (N:‘)zQaa} +2 [uHaNf +V(N) +(T - m)lnN:‘]- (A3)
a<b a a

In the S — oo limit only the values of Q,, and H, that extremize the action will contribute:’

InZ"

= A(Qu Hi D). (A9)

From the stationarity conditions we obtain

1
0 o Q= D INND)

200, i
aQ,: — X (A10)
0 mega

The brackets indicate thermal averages under the hamiltonian H, ;. Since H, sy depends on Q and H, these equations represent
some self-consistency conditions.
As it is the case for spin glass systems, we see that Q,;, represents the overlap matrix between replicas, and H, the field.

1. The replica symmetric solution

We now need to make an ansatz on the solution. This will be then checked for stability by computing the Hessian of the
action, and in particular the first eigenvalue that becomes zero, the replicon [46]. Since the action is symmetric under exchange

"H, would actually need to be integrated over the imaginary axis; deforming the integration contour and using the method of steepest descent
would then yield the stated result.
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of replica indices, the first ansatz we make is that the solution respects this symmetry. In this case all the fields must be equal and
the overlap can take only two different values: go for the overlap between different replicas, and g, > ¢qo for the self-overlap:

Ow =qo, a#b,
QaaZQda a=b7
H,=h, Va. (A11)

If there were multiple equilibria, two distinct replicas would have a different overlap according to whether they were in the
same state or not. Since here distinct replicas always have overlap g, this ansatz corresponds to assuming that there is a unique
equilibrium state. The “size” of this state is characterized by the overlap between different replicas gg: if it is large (g9 < gg4) the
configurations in the same state are very similar, so that the state is very localized in phase space; if it is small (g9 < g4) the
state is very wide. We can insert it in the action and in the effective Hamiltonian:

1 nn—1) n Bun 1
AGa, qo. h) = —=0*B*| ——— + =4 2 n? 4+ 2 InZiqa, qo. h), Al2
(90, @0, ) = =50 B%| =——45 + 54z | + = +52,~:n (qa- 0+ 1) (A12)
po 2
o a a 2 a a a
H,p = —T|:q0 (Xa:zvl. ) +(qa — qo)Xa: (N9 ] - Z [WhN{ +V (N?) + (T — m)InNf]. (A13)
To decouple the different replicas we introduce a Gaussian integration over an auxiliary variable z;, obtaining
Z T dy —Zz{ / dN; exp [—BHgs (N, h )]}” (A14)
i = e iCXpl— i ) , N5 2 ’
- m p RS qd, 90
Hys = —po* T N2 + (uh — 2 /@o0 Ny + V(N + (T = m) In N, (A15)

One of these terms is proportional to a fluctuating field z that accounts for the randomness of the interactions.
Considering again the stationarity condition, performing the analytic continuation for n — 0, and taking into account the fact
that after the integration over the fluctuating field z all species are equivalent, the self-consistent Eqs. (A10) become

fooo AN e~ PHrs(q0.94,1.2) \f L
"= /DZ( fOOO dNe‘*/gHRS(CIO»qd,h,z) ) = ( )a

fooo AN e~ PHrs(q0.9a,h.2) N2 .
= /DZ< fooo dN e—BHrs(q0.94,h.2) > = (N9),

0 dNePHs@-ah N 2 :
©= /DZ( fooo dN e—BHrs(q0.94.h.2) ) = (N)*, (A16)

where we used the calligraphic notation for the Gaussian integral in z: [ Dz = f_oooo %e‘zz/ 2. The brackets indicate the average

over the Boltzmann distribution for N under the effective Hamiltonian Hgg, and the overbar the average over the disorder,
represented by z. These averages coincide with thermal and disorder average for a single-species abundance.
If we manage to solve Egs. (A16), we can go back and obtain the free energy as

F _InZ" . A(h, 90, 9a)
f=—=—1im = —lim ———.
S n—0 I’l,BS n—0 an

Nevertheless just knowing if the system is in the replica symmetric phase allows us to understand several physical properties.
For example, we have seen that the replica symmetric phase corresponds to a unique stable equilibrium, therefore we already
know that the equilibrium state will not depend on the assembly history, and we expect the system to relax to it and the
fluctuation-dissipation theorem to hold [47,56,57].

(A17)

a. The replicon eigenvalue
The replica symmetric solution we have considered so far is correct only if it corresponds to a maximum of the action in
Eq. (A6). To see whether this is the case we can study the harmonic fluctuations around the replica symmetric solution by
differentiating the action to second order with respect to the overlap matrix:
2A
8Qazb8 QL'd

(-). indicates the connected part of the correlator. If all the eigenvalues of this stability matrix are strictly positive, the fluctuations
are finite and the replica symmetric solution is stable.

Mapea = = B2 % (8(ap).(ca) — B> (NONP, N°N9),.). (A18)
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Due to replica symmetry, there are only three independent matrix entries, depending on how many replica indices appear
twice:

Mapca = =B o*((NeNPNCNT) — (NaNb)?),

Mapae = —B*a* ((N*)ENEN€) — (NaNP)2),

Mapap = p20? — B*a* ((N)2(NP)?) — (NONP)2). (A19)

The stability matrix can be explicitly diagonalized [46]. The first eigenvalue to become negative is the replicon, which has the
general form

A= Mab,cd - zMab,ac + Mab,ab~ (AZO)

In the replica symmetric phase, taking the n — 0 limit, we obtain

A= (Bo)’[1 — (Bo)*(IN2) — (N)2)]. (A21)

b. Zero temperature and finite size

We can rewrite the effective action at first order in 7 as

1 1 1
A(qa, go. h) = nB| —=0’qAq + —ph* + — Y InZi(qa. qo. h) |. A22
(44> qo. 1) nﬂ[ 70 Q0Aq+ 1 +Sﬁn2i:n (qa> g0, h) (A22)
The quantity in parentheses has a finite limit for n — 0, B — oo. Because of the B factor, we can recover the saddle point
approximation by taking the limit 8 — oo instead of § — oc.

2. The replica symmetry-broken phase

When the replicon eigenvalue computed around the replica symmetric solution is negative, replica symmetry is broken and
multiple equilibria appear. Following Parisi’s scheme [45], we consider a more structured ansatz: replicas are divided into n/m
groups of m replicas; the overlap matrix assumes three different (decreasing) values according to whether we are considering the
self-overlap, the overlap between replicas in the same group, or the overlap between replicas in different groups.

We can then compute again the replicon around the new solution (one-step replica symmetry broken), and if it is still negative
we can iterate the procedure, dividing each group in subgroups. At each step the solution is characterized by one more overlap
parameter. If an infinite number of steps are required, we say the solution displays a full replica symmetry breaking. In this case
the replicon approaches zero in the limit of infinite number of steps, so that the solution is marginally stable.

APPENDIX B: RESULTS AT ZERO TEMPERATURE

In Fig. 6 below we show the comparison between numerical and analytical results for the average abundance and the overlap
parameter in the RS ansatz, both obtained at zero temperature.

Critical point solution Correctionto

T+ critical point solution
X
0.0004f
01001 0.0002; e
: : : : : =g
0.010¢ _0.0002 02 03 04 05 .7 08
-0.0004
0.001¢ ~0.0006
H -0.0008

2 5 10 20 50
(a) (b)

FIG. 6. Comparison between numerical (dots) and analytical (continuous lines) results at zero temperature. Left: (N) = h (blue) and go
(orange) for o = o.. Right: corrections to & (blue) and go (orange) to the first order in 0 — o,.
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APPENDIX C: LARGE p EXPANSION AT FINITE TEMPERATURE

We have obtained the quadratic effective Hamiltonian:

d 2
Hpp = E(N — No)”, (CDhH
where N is linear in z and d is a constant:
uh —k —zo . /qo
d=1-0"B(qs — q0). NOZ_\/ET' (C2)

We can explicitly compute the integrals over N and express them in terms of Ny and d. Inserting the results into the self-consistent

Egs. (5) we obtain
_NO
f /@ etfe(—No) 0}’
N

12+ Ng)}, (C3)
2
2 e
=— | Dzl ————+MNo| -
" pa / Z[ﬁ erfe(—No) °}

As suggested by the numerical results, we assume that &, gy, and g4 tend to 0 in the limit of large w and that i goes to 0 more
slowly than 1/u. These assumptions will be checked for consistency at the end of the computation. If they hold, the constant
term in Ny tends to minus infinity, while the factor that multiplies z is small. Because of the Gaussian weight in Dz (and as it can

be checked numerically) only values of z of order 1 contribute to the integral, so that the argument of the complementary error
function is large and we can use the asymptotic expansion:

4a= ﬂd/ DZ[ D ety

,(2n— D!
erfe(x) = Z(— ) (2 eI (C4)
e‘Ng

—_— =Ny — — + + O(1/N, C5
/7 erfe(—Np) TN, 2N (1/83). )
Inserting the first nonvanishing term of this expansion into the equation for 4 we obtain an integrand with only fundamental
functions of z:

|2 / 11 e 1
h~—|— | Dz— = — | dz . (Co6)
Bd 2Ny B 2m wh—k —zo . /q0
The integral has now a divergence in z = —(uh — k)/(0./qo) that was not present in the original expression and that is due to

the failing of the asymptotic expansion for Ny ~ 0. Remembering that we expect the main contribution to the integral to be given
by z ~ O(1) and that uh — k > o./qo, we expand

1 1 0./q02
d C7
ﬂ/ quh k—zov@ ﬂ (;m K- uh—kp ) 7

The integrals in z are now immediate; considering only the dominant order we obtain a simple equation for A:

1

h~ T (C8)

Similarly,

2 /D 1 1 2
©=pa )] s T pun—rr T
2 1 2 (©9)
~ = | D~ T _—p2.
4 ﬂd/ 22 7 B(uh — k)
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Solving the second-order equation for /i, expanding the solution at the dominant order in 1/x and plugging it into the

equations for go and g4, we get the closed-form results:

hNkJm/k +4u/p 1

2
2

q0

1
T B
2
W= g

VB
(C10)

In the last expansion for & we have neglected higher powers of .,/ ]‘27’3, therefore we expect the results to be correct only when

u> B.
We can compute the replicon eigenvalue:

A= (Bo)*[1 — (Bo)*((N?) — (N)2)2].

The quantity under the overbar can be computed in a similar way to what was done in the previous section, giving

((N?) = (N)?)* =

‘We thus obtain

k=(ﬁo)2(

4 /D Loy e N B
(Bd)? ‘12 Oﬁerfc(—NO)

(C11)
2 2
e Mo 1 4 1
[ﬁel”fc(—No)] } 4(Bdb)? ¢ B (12
02
|- F) >~ 0. (C13)
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