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Stability analysis of intralayer synchronization in time-varying multilayer networks
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The stability analysis of synchronization patterns on generalized network structures is of immense importance
nowadays. In this article, we scrutinize the stability of intralayer synchronous state in temporal multilayer
hypernetworks, where each dynamic units in a layer communicate with others through various independent
time-varying connection mechanisms. Here, dynamical units within and between layers may be interconnected
through arbitrary generic coupling functions. We show that intralayer synchronous state exists as an invariant
solution. Using fast-switching stability criteria, we derive the condition for stable coherent state in terms of
associated time-averaged network structure, and in some instances we are able to separate the transverse subspace
optimally. Using simultaneous block diagonalization of coupling matrices, we derive the synchronization stabil-
ity condition without considering time-averaged network structure. Finally, we verify our analytically derived
results through a series of numerical simulations on synthetic and real-world neuronal networked systems.

DOI: 10.1103/PhysRevE.105.024303

I. INTRODUCTION

In the past decade, the study on multilayer networks [1,2]
has become a prosperous research area due to its ability in
describing many real-world systems [3—7] with heterogeneous
interacting layers. Another interesting generalized network
structure is hypernetworks [8—10], where an ensemble of
nodes are simultaneously interconnected through various in-
dependent connection topologies. For instance, in neuronal
network, the neurons are interconnected via chemical and
electrical pathways [11]. The precise illustrative power of
these generalized structures naturally comes up with increas-
ing analytical complication to scrutinize stability of collective
behaviors emerging on them. Synchronization [12—16] is one
such collective phenomena whose stability analysis is very
significant as it generally does not emerge if this is not stable.

To execute systematic stability analysis of synchronization
state in large networks [17,18], the crucial step is to split
up whole space of the variational equation into parallel and
transverse subspaces and evaluate the maximum transverse
Lyapunov exponent to find out if perturbations associated
with transverse subspace will die out or not. For stability of
complete synchronization in large-scale network of identical
oscillators, the master stability function (MSF) [19] approach
provides the essential tool, which further broadens in various
ways [18,20,21]. In the case of hypernetworks, the stability of
synchronization has been analyzed by dimensionality reduc-
tion [8] of the master stability equation through simultaneous
block diagonalization of coupling matrices [22]. To scrutinize
stability of coherent state in multilayer networks a few new
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procedures has been provided recently [23-25]. However,
all of these studies have been performed for static network
structures, while most of the real-world systems [26-30] are
time-varying [31], meaning that the connection topologies
between generic agents vary over time [32,33]. In Ref. [34],
the authors analyzed stability of synchronous state in temporal
networks through fast-switching stability procedure. Other
than the fast-switching approach, the stability of coherent
state in time-varying networks can be performed by the con-
nection graph stability method [35,36]. Very recently, Zhang
et al. [37] have proposed an all-round simultaneous block
diagonalization framework that enables the stability analysis
of synchronization patterns for monolayer, multilayer, and
temporal network structures [38]. The main theme of the
present work is to analyze the stability of synchronization
in generic temporal multilayer hypernetworks, particularly
intralayer synchronization [39,40]. Until now, the study of
synchronization on temporal multilayer networks has been
done mainly on a case-by-case basis, either by taking mul-
tiplex network structure [40,41] or with assumption of certain
types of intralayer and interlayer coupling functions (mostly
diffusive) [40,42].

Here we propose a general mathematical framework to in-
vestigate intralayer synchronization phenomena on temporal
multilayer hypernewtork. In particular, we consider a group
of generic units, represented by nodes of the multilayer hy-
pernetwork, interacting within and between the layers through
completely arbitrary linear or nonlinear coupling functions
with only consideration of static interlayer links. In such broad
circumstances, we uncover that the intralayer synchronous
state emerges as a stable invariant solution. Besides, we derive
the necessary condition for emergence of stable intralayer
coherent state using the fast-switching stability method and
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simultaneous block diagonalization technique. We show that
the temporal multilayer hypernetwork achieves stable in-
tralayer synchronization state for adequately fast switching
whenever the corresponding time-averaged network does.
Further, we show the master stability equation optimally
decouples into independent transverse modes if one time-
average Laplacian matrix commutes with all other time-
average Laplacians and interlayer adjacencies. However,
through the simultaneous block diagonalization technique, we
show that the parallel and transverse modes can be sepa-
rated without considering time-average network structure, and
furthermore, the dimensionality reduction of master stability
equation can be possible even if the coupling matrices are not
commutative. Last, all of our analytical results are verified
with the numerical simulations of paradigmatic and real-world
neuronal networked systems.

The rest of this article is organized as follows. In Sec. II, we
propose the generalized model for time-varying multilayer hy-
pernetwork. The analytical results associated with intralayer
synchronization state is illustrated in Sec. III. In Sec. IIT A,
the invariance condition for the coherent state is derived. Sub-
sequently, in Sec. ITII B, we establish the condition for stability
of synchronous solution. The corresponding numerical results
are provided in the subsequent Sec. IV. Finally, we sum up all
our results and conclude in Sec. V.

II. GENERALIZED MATHEMATICAL MODEL:
MULTILAYER HYPERNETWORKS

We consider a multilayer network consists of two layers,
each composed of N generic units. In each layer, the nodes
are simultaneously interconnected through two or more topo-
logically different connections, called tiers. In particular, we
assume N nodes in each layer are collaborated via M distinct
tiers characterizing various types of connections between the
dynamical units. We assume that the equations of motion
defining the dynamics of our multilayer hypernetwork can be
represented by the following sets of equations:

M N
xi()=Fx)+ Y ey P0G (xi:,x))
=1 j=1

N
+ 1) BUH (xi. ).
j=1

M=

M
Vi) =FG)+ ) €

B=1 J

AP OG i, y)

1

N
+ 1Y By x), i=1,2,..N. (1)
j=1

Here x;(t) and y;(¢) are the d-dimensional state vectors il-
lustrating the dynamics of the node i for layers 1 and 2,
respectively, and Fi, : RY — R? represent the isolated node
dynamics presumed to be identical for each node of a partic-
ular layer but different for different layers. Gl[gl] ‘R4 x R —
RYand H;, : RY x RY — R are continuously differentiable
functions, representing the output vectorial functions within
each layer for tier B and between the layers, respectively.

FIG. 1. Schematic representation of temporal multilayer hyper-
network. The left and right panel, respectively, describe the structure
of multilayer hypernetwork at two time instances, t = t; and t = t,.
Solid black and yellow lines in each layer represents the intercon-
nection between nodes through two distinct tiers. Dotted black lines
represents static interlayer connections.

Here, we assume the coupling functions to be arbitrary non-
linear functions. Further, the intralayer coupling functions
conforming to tier 8 can be different for different layers and
the interlayer functions are nonsymmetric, i.e., H;(x,y) is
different from H;(y, x), [ = 1, 2. The real-valued parameters
€p and X describe the intralayer coupling strength for the tier
B and interlayer coupling strength, respectively.

Moreover, the adjacency matrix .«7!"#1(¢) recounts the in-
tralayer network structure associated with the tier 8 of layer
[ at a time instance ¢, where ,dig.l’ﬁ ! (t) = 1 if the ith and jth
nodes are interconnected in tier 8 of layer / at time t and
zero otherwise. The layerwise connections of the multilayer
hypernetwork are varying in time through the probabilistic
modification of the whole intralayer network with a rewiring
frequency f. Smaller f indicates that the intralayer links are
almost static, while large f corresponds to very fast swapping
of the links over time. Here, we assume that the network
structure of tier B for both the layers are equivalent. Although,
their corresponding adjacency matrices will not usually be
the same because of the kinematic behavior of the links of
each individual tier. The adjacency matrices .7!"#1(¢) define
the associated zero-row sum Laplacian matrices .ZP1(z),
whose diagonal entries are .2} (1) = Zy:l dly’ﬁ I(t), and
off-diagonal entities are obtained by just considering nega-
tives of the nondiagonal entries in ./!-A1(z), i.e., .,Z”i[l.l’ﬂ](t) =

—,ing.l’ﬁ ](t) for i # j. However, the interlayer connections
between the nodes of two layers are characterized by the
interlayer adjacency matrices 2!, (I = 1,2). ") = 1 when
there is a pairwise link between the ith node of one layer
and the jth node of the other layer, and zero otherwise. The
interlayer links are considered to be static over time. We define
the intralayer degree of the ith node of tier 8 in layer / as
di”‘ﬂ ] @)= 21;;1 421/;&["3 ] (t) and the interlayer node degree in

layer [ is denoted by el[” = 21;;1 %’l[;] This is the most com-
prehensive system for a temporal multilayer hypernetwork
we can consider, as the coupling functions and the adjacency
matrices does not fall under extra limitations.

Figure 1 represents a schematic sketch of temporal multi-
layer hypernetwork consisting of two layers, each composed
of N = 8 units and M = 2 distinct tiers. The connection be-

tween nodes through different tiers are shown in two different
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colors, solid black lines corresponds to one tier, and solid
yellow for another one. The left and right panels delineate
the structure of the multilayer network for two different time
instances t = t; and t = f,. Here, the connections between
nodes of two different layers are static over time, which are
shown in dotted black line.

Throughout the following section, our primary target is to
derive analytically the necessary conditions for which the in-
tralayer coherent state of the multilayer hypernetwork Eq. (1)
is stable.

III. ANALYTICAL RESULTS

A. Invariance of intralayer synchronization

Intralayer synchronization state emerges in the multilayer
network Eq. (1) if each node in individual layers evolves
synchronously with other nodes of the same layer. Mathemat-
ically, there exists two solutions, X,(?), ys(t) € R4, such that

Ix;(t) — x,(t)|| = O and
ly:it) —ys®)|| — 0 as t - 0 for i=1,2,...,N.
Then the associated synchronization manifold is defined by
S = {[x,(t), ys(1)] € R* : x,(t) = x,(r), and

yi(t) =ys(t) for i=1,2,...,N and teR"}.

If the coupling functions are confined to synchronization so-
lutions, i.e.,

Gy'(%,. %) =0, Gy (¥, y,) =0, and
Hl (X.Yv YY) = 07 Hz(ys‘9 XA‘) = Oa

then the existence and invariance of an intralayer coherent
state will be guaranteed. Furthermore, we consider arbitrary
sort of coupling functions. In this case, as the network struc-
ture varies with respect to time, the existence and invariance
condition on the network topologies for the emergence of
intralayer synchronization is a challenging problem.

Suppose the multilayer hypernetwork begins to evolve with
the intralayer coherence solution at a time instance ¢ = £y, then
X;(ty) = x,(to) and y;(tp) = ys(t), for i =1,2,...,N. Then
the evolution of the ith node for the two layers at t = ¢y can be
written from Eq. (1) in terms of node degrees as

M
Xi(to) = Fi(x,) + Y _ epd) P ()GY (%, x,)
p=1

+ AeE'HHl(Xm y‘v)’

M
Vitto) = Fa(yo) + Y épd P ()G (35, ¥0)
B=1

+ 1el? Hy (s, x,). 2)

To sustain the intralayer synchronization solution, both the
layers should advance on the same time evolution. Therefore,
the velocities of any two distinct nodes in layer 1 should be
identical, i.e.,

X;(ty) = X¢(ty), forany i#k, and i,k=1,2,...,N.

Since the intralayer and interlayer coupling functions are ar-
bitrary, this yields for layer 1,

d"Pay=d"P(t) and eV =M.
Similarly for layer 2,
d?P )y =d?Pr) and e =P

Hence, for the synchronization solution to be invariant the node
degree of each dynamical unit for tier B in individual layers
are identical and also the interlayer degree of all the nodes is
equal for each layer.

We further consider that the in-degree of nodes associated
with tier 8 is constant in time, i.e.,

N
Yl Py=d¥ 1=12 and p=1.2,...M (3)
j=1
Hence, the synchronous solutions (X;, y4) evolves accord-

ing to the following equations:

M
X = Fi(x) + Y epd PG (xs, %) + helHy (x,, y,)
p=1
M
Vo = Fa(ys) + ) epd PG ye, y,) + AP Hy (v, x,). (4)
p=1

B. Stability analysis

The intralayer synchronization occurs when the syn-
chronous manifold S is stable under small perturbation in the
transverse subspace. We consider small perturbation of the ith
node around synchronous state, i.e.,

8X; = X; — Xy and 8y; = y; — ¥s,

and execute linear stability analysis of Eq. (1). Therefore, the
linearized equation can be expressed in terms of stack vectors
as
M
8% = Iv®JF (x)8x + Y _ epd P Iv@JGL (x,. %,) + Iy
p=1
M
® DGY(x,, x,)18x— Y ep. L Pl(1)@DGY (x,, x,)8x
p=1
+ M Iy@THi (X, y,)8% + BUQ@DH: (x;, y,)8y],

M
8y = N@IF(y)oy + 3 esd PN @IG 2y, y,) + Iy
p=1
M
® DGy (v, ¥10y =) _ €52 > 1 0)@DG (v, y5)3y
p=1

+ AP Iy®THy (5, X,)8y + B @DH, (y;, X,)x],
(5)

where
8x(t) = [6x,(1)", 8x2()", ..., 8xy(*)"]", and
8y(®) = [8y1(1)", 8y2()", ..., yw ()"1".
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J and D are the Jacobian derivative operators corresponding
to the first and second variables, respectively.

These linearized sets of variational equations contain
two components: one attributing for the motion along
intralayer synchronization manifold, called parallel modes,
and other describing the modes transverse to the manifold,
called transverse modes. The necessary condition for synchro-
nization state to be stable requires all the transverse modes
must converge to zero in time. To perform the linear stability
analysis one then needs to decouple the variational equa-
tion into parallel and transverse mode and examine whether
the latter ones die out or not. To accomplish a stable synchro-
nization state for static network, the classical MSF approach
appropriately decouples the high-dimensional variational
equation to perturbation mode independent low-dimensional
equations through a suitable coordinate transformation which
completely diagonalizes the coupling matrices. But for the
temporal network scenario, as the Laplacian matrices changes
with time, it accounts for many noncommuting matrices.
Since noncommuting matrices are not simultaneously di-
agonalizable, we cannot directly apply the classical MSF
formalism to these circumstances. For this reason, we review
two different well-known techniques for stability analysis of
our temporal multilayer hypernetwork. One is based on the
fast-switching stability technique, for which time-averaged
networks are considered to bring down the problem of sta-
bility analysis in MSF form and the other one follows
simultaneous block diagonal (SBD) approach, which simul-
taneously decouples an arbitrary set of symmetry matrices
into finest block diagonalized form and as a result decouples
the variational equation into optimal form without considering
further conditions like time-averaged network formation.

1. Fast-switching approach

Fast switching [34-36] suggests that the change of net-
work structure with time is much faster as compared to the
evolution of oscillators coupled to each other. To perform
the stability analysis we convert the variational Eq. (5) to a
suitable time-averaged form where the intralayer topologies
corresponding to each tier are converted into time-averaged
structures through the transformation of time-varying Lapla-
cians into static time-averaged ones. In this regard, we recall
the subsequent Lemma proposed by Stillwell et al. [34] re-
garding fast-switching stability convention.

Lemma 1. If there exits a time average matrix M of the
matrix valued function M (¢) such that

_ 1
T J
|

M
P = Iy 1 ®JF (x)ny + Y epd P [Iv 1 @IGY (%, %) + Iy 1®DGY (%, %,)]

p=1

and for some constant T, then for fairly fast switching the
system,

w(t) =[A@) + M@)]w(), t =1, (0)
will be uniformly asymptotically stable whenever the time
average system,

w(r) =[A@) +M]w(), (1) = Xo,
is also uniformly asymptotically stable.

Using the above convention, we establish that the time-
varying multilayer hypernetwork Eq. (1) obtains stable
intralayer synchronization state whenever the corresponding
time-averaged system shows asymptotically stable intralayer
synchronization state (the proof is illustrated in Appendix 1).
As the network structures of tier 8 for both the layers are
equivalent, their corresponding time-averaged adjacency and
Laplacian matrices are identical. Then for an arbitrary real
constant T,

w(tg) = Wo,

121, (7

1 t+T _
T / Pl 2)dz = /181, and
t

1 t+T _
Tf LU(dz = LB 1=1,2 and B=1,2,.... P
t

Taking the time-average intralayer network topologies, the
time-averaged multilayer hypernetwork can be expressed in
terms of the following sets of equations:

M N
Xi=FRE)+ Y ey TG, %))

=1 j=1

N
+ A Z %;{}]Hl (X, ¥),
j=1
M N
Vi=B3)+ Y ey F0GHF§))
=1 j=1
N
+1 Y BIHGF:L %)), ®)
j=1
where X;(¥;) represents the states of the ith node in layer 1
(layer 2) for time-averaged network.

As the stability of intralayer synchronization for time-
average multilayer hypernetwork Eq. (8) guarantees the sta-
bility of intralayer synchronization in time-varying network
Eq. (1), the extinction of transverse modes corresponding to
time-averages system will then necessary implies the achieve-
ment of stable coherent state. Through a series of theoretical
steps detailed in Appendix 1, we derive the dynamics of trans-
verse modes for time-average system as follows:

(X) Z EﬂW[ﬁ](X)
p=1

x DGl (x,, )Y + A[e My 1 @TH (%, y)niY + UN@DH, (x,, yon].

y _IN 1®JF2(yY)n(y)+Zeﬂdw] IN 1®JG[ (yﬁ yr)+IN 1®DG[2](YV» YY

p=1

[P Iy 1 ®THy (s, x)0 +UP @DH (3, %)),

(y) Z € Wlﬂ]®DG[2](yq, yq)n(y)
B=I

©)

024303-4



STABILITY ANALYSIS OF INTRALAYER ...

PHYSICAL REVIEW E 105, 024303 (2022)

where n(x) and n(” represents the states of transverse modes
of time-average system.

Therefore, the problem of stability of intralayer synchro-
nization state for the time-varying multilayer network is then
reduced to solving the coupled transverse linear Eqgs. (9)
for calculation of maximum Lyapunov exponent (MLE).
Stability of coherent state needs MLE associated with the
transverse modes to be negative, as a necessary condition.
Given node dynamics and coupling functions, MLE is mainly
function of coupling strengths, time-averaged Laplacians as-
sociated with each tier and interlayer adjacencies, i.e., MLE
(€1, €2, ... ey, b, LM, 22 Mgl g2 T s
notable that, in comparison with the classical MSF scheme,
also in time-varying multilayer hypernetwork we are able
to separate the motion parallel and transverse to synchro-
nization manifold through fast-switching approach. However,
more intricacy in network structure in latter circumstance
gives a bunch of coupled linear differential equation to

J

analyze the stability, in spite of independent, uncoupled equa-
tions as in the case of classical MSF. Particularly, there remain
some terms in the transverse error Eq. (9) which are gen-
erally not transformable into block diagonal forms and as
a result the transverse error dynamics becomes 2d(N — 1)-
dimensional coupled equation. Furthermore, there are suitable
occasions where the coupled transverse modes can be op-
timally separated and the 2d(N — 1)-dimensional coupled
equation reduce into (N — 1), 2d-dimensional linear differ-
ential equations.

The relevant instances are as follows:

(1) The first instance is when each time average Laplacians
2Pl interlayer adjacency matrices AU, 1 =1,2 and g =
1,2,..., M are symmetric, and among them one Laplacian
commutes with all the other time-averaged Laplacians as well
as with the interlayer adjacencies (the detailed proof is in
Appendix 2). In this case the transverse variational equa-
tion reduces to 2d-dimensional N — 1 systems as

M
iy = TR (x5 +Ze dPIGY (x,, %) + DG (xy, x) |0 = Y~ €47/ DG (x,, x0fY
B=1 B=1

[ [I]JHI (X;, YV)W(X)

iy = TR (ymy + Ze dP[IGE (v, y5) + DG (ys. ¥9)]n

p=1

FU]DHI (Xs, YV)r)(Y)],

(Y) Z € y[ﬂJDG[Z] (yy’ yg)n(Y)
B=1

+ A[eP U Ha(ys, xo)nf + TEDH (v, xS ], "

where )7}‘9 Tand Fi”] fori =2,3, ..., N are the nonzero eigen-
values of time-averaged Laplacian matrices corresponding to
tier 8 and eigenvalues of interlayer adjacency matrices.

As for example, if we consider connection topology of
one tier of time-varying network as random network with
edge rewiring probability pianq and any arbitrary undirected
network structure for other tiers with bidirectional interlayer
connections, then we can get one such instance where trans-
verse dynamics decouples into independent modes.

(i1) Another instance for optimal separation of transverse
modes occurs when the number of distinct connection topolo-
gies in both layer equals to one, i.e., M = 1 and the time
average Laplacian matrices have all the eigenvalues equal
except the smallest zero eigenvalue. Further the interlayer
adjacencies A!!! and #'?! are identical (see Appendix 3 for
full derivation).

2. Simultaneous block diagonalization approach

To separate the parallel and transverse error components
the fast-switching approach considers the time-averaged net-
work structures. The commutative property of time-average
Laplacians and identical eigenvalues are also considered to
further reduce the transverse error system into lower dimen-
sional form. To overcome these limitations, here we use the
SBD [22,37,43] approach on the set of coupling matrices of
time-varying multilayer hypernetwork Eq. (1).

The SBD process can be conceptualized as follows: for a
prescribed finite set of symmetric matrices {B', B, ..., B},

(

there exists an orthogonal matrix P such that the matrices
P'"B™P possess a common block-diagonal structure for m =
1,2,...,q, leading to an optimal separation of perturbation
modes. This common block structure is identified by the
largest number of blocks and is unique up to block permu-
tations. In particular, this scheme guarantees the separation of
perturbation modes along the synchronization manifold and
transverse to the manifold. Further it decouples transverse
system into low-dimensional systems through transforming
set of matrices to optimal block diagonal forms.

To proceed, we rewrite the variation Eq. (5) by introducing

§X(t) = [6x(1)  Sy(1)]" as
sX(t) = ox(t) D +Ze d"P'p +Ze Ds
8y (1) 1 B 2 pt B
M
+ " €pDy + ADs +AD6:|5X, (11)
p=1
where
_ Iv®JR 0
- [ Iy ®JF2]
_ [weJdy +IN®DG 0
- 1N®JG[3]+IN®DG[3‘] ’

[j'M)@DG[” 0
0 9

L1 f”(t) ®DG ]
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De — ey ® JH, 0
5= 0 iy @, |
0 2" ® DH,
and Ds = |:58121®DH2 0 :
Now, let

vt =450 8],

2 0 0 0 e
Uil = [o 3[2,5J(,)] and B = [33[21 0 ]

Also, we consider that the interlayer coupling functions hold
JH\(x9, yo) = JH>(yo, x,) and DH (xo, yo) = DH>(yo, Xo).
Therefore, the variational Eq. (11) can be rewritten as

M M
85X = |:D1 + Zeﬂd[ﬁ]Dz + ZGﬁU“’ﬂ](f) ®DG/[31]
p=1 B=1

M
+) epUPPt) @ DGY' + D5 + 1.8 ® DH1:|8X.
p=1

(12)

All the terms in this linearized equation are block diagonalized
except the terms U“'ﬂ](t)@)DGL;“, U[2”3](t)®DG|2], and
% ® DH,. Now time-varying Laplacian matrices Z!-#1(z),
Z281(¢) and the interlayer adjacency matrices are all sym-
metric matrices. Hence, the matrices U-#1(r), U>P)(¢), and
A are also symmetric. So, we apply the process of SBD
on the set of symmetric matrices {U!"#1(¢), U?P1(t), )} to
obtain a orthogonal matrix P that transforms these matri-
ces to finest block diagonalization form. Usually the SBD
technique works better for a finite collection of symmetric
matrices, so we adopt one extra assumption about the time-
varying intralayer connection topologies. We assume that
the collection of time-stamped intralayer adjacency matri-
ces {/Plt): 1=1,2; 8=1,2,...,M; andt e Rt} isa
finite set, which in turn gives finite number of symmetric
matrices UMP1(¢), U2P)(¢). To obtain the matrix P, we follow
the algorithm illustrated in Ref. [37]. Thereafter, we project
the state variable §X onto the basis of vectors formed by the
columns of P by defining new variable,

n(t) = (PRhLy)" §X(1).

Using this coordinate transformation, the linearized Eq. (12)
becomes

M M
) = |:D1 + Y pd? Dy + > €0 (1) @ DGY!
B=1 B=1

M
+ Z epU>P1(1) ® DGY! + ADs + 2.2 ® DHl]n(t),
B=1

(13)

where
Uty = PTUMPI(1)P,
0Pty = PTUFI(1)P,
% = P" BP,

are the finest block diagonalized forms of U-A1(¢), U2Al(z),
and Z. These block diagonalized matrices have two 1 x 1

blocks which are associated with the parallel modes of syn-
chronization solutions corresponding to two layers and the
other blocks are associated with the transverse modes of syn-
chronization manifold. Thus, we can perfectly decouple the
perturbation modes parallel and transverse to the synchroniza-
tion manifold without implementing time-average network
structure. Apart from this, the finest block-diagonal forms
of the matrices also explains that the transverse modes are
not fully coupled. The high-dimensional coupled transverse
system reduces to many lower-dimensional linear systems by
means of sizes of blocks in the transformed block-diagonal
matrices. Hence, the further reduction of transverse error
systems is possible through this approach even without con-
sidering any limitations like fast-switching mechanism. The
stability condition of the synchronization manifold is then
reduced to solving the linear Eq. (13) for calculation of maxi-
mum Lyapunov exponent transverse to synchronous manifold.
The necessary condition requires the maximum Lyapunov
exponent to be negative. In Sec. IV B, we have elaborated the
whole process with a suitable example.

IV. NUMERICAL ILLUSTRATIONS

To illustrate our theoretical findings, here we consider
three cases of different isolate node dynamics and nonlinear
coupling functions. Specifically, we address two ideal chaotic
systems, the Lorenz [44] and Rossler [45] systems, and as a
real-world instance of neuronal evolution, the Sherman model
[46,47]. For numerical simulations, we consider that each
layer of the multilayer network consists of N number of nodes
interacting through two structurally different tiers at every
instance of time. To keep things simple, we take the interlayer
connections as one to one between the nodes of adjacent lay-
ers and dynamics of isolated nodes in both layers are identical.
To investigate the intralayer synchronous state, we define the
synchronization error as

trans+T'
B = Jim = [ Bamdr, (4
[“'ans

—oo T

where Eipa(t) = Zszz ||Xk(l)*X1(lz)(ngrJi’;(f)*YI(l)|| .

Here | - || symbolizes the Euclidean norm, #,,s determines
the transient of the numerical simulation and 7 is a sufficiently
large positive number. Asymptotic stability of Ei,q, will im-
ply each layer is synchronized. For intralayer synchrony to
emerge, we have used the threshold value of Ejy, as 107°.
Numerical simulations of the multilayer network are executed
using the fourth-order Runge-Kutta algorithm, with step of
integration §r= 0.01 (for chaotic oscillators) and 0.001 (for
neuron model), over a span of time 7 = 1000 after an initial
transient #ans = 2000. The initial condition of each dynamical
node is chosen randomly from the phase-space of isolate node
dynamics. At each instant, we rewire all tiers of both layers
separately with probability fér, where f is the frequency
of rewiring process. All the numerical results are obtained
by taking average over 10 network realizations and initial
conditions. At first, we will present the numerically obtained
results based on the fast-switching stability criterion.
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A. Numerical illustration of the fast-switching approach

In the next three subsections, we investigate the synchro-
nization state numerically by means of synchronization error
Einra and concurrently validate our analytical findings corre-
sponding to fast-switching approach for the three structurally
different networked systems with N = 200 nodes and differ-
ent nonlinear coupling functions in each occasion.

1. Coupled Lorenz systems with sine coupling functions

We first consider multilayer hypernetwork consisting of
coupled Lorenz oscillators interacting with sine coupling
functions. Then the corresponding equation of motion reads
as

Layer 1:

=

1,1 :
AN @) sin(ej — x)

X1 =0 —x1;) + €
=1

J

-+ Asin(xy; — x1;),

N
yi=x1(p —z1) =y + e Z %15_1,210) sin(y1;—y1:),
=

210 = X1iY1i — 021,

Layer 2:

N

o 2,1 .

foi = oy — x2) + €1 Y () sin(x; — x)
j=1

+ Asin(xy; — x2;),

N
Voi = Xx2i(p — 22i) — Y2i + €2 Z ﬁf}ﬁ-z'zl(f) sin(y2;—Y2i),
=1

20i = Xoiyi — @2, i=1,2,...,N, (15)

where each isolate unit is in a chaotic state with system param-
eterso = 10, « = 8/3, and p = 28. The intralayer connection
topology for tier 1 is represented by Erdos-Rényi random
network [48] with probability p;.nq and for tier 2 the intralayer
connection topology is small-world network [49] with aver-
age node degree 2k, and link rewiring probability pg,. For
various rewiring frequencies, the intralayer synchronization
error as a function of tier 1 coupling strength €, and tier 2
coupling strength ¢, is depicted in Fig. 2. The coherence and
incoherence regions, portrayed in white and black, are plotted
in Figs. 2(a)-2(d) for slow rewiring frequency (f = 10™%)
to very fast rewiring frequency (f = 10?), respectively. For
lower rewiring frequency [Fig. 2(a)], i.e., when the intralayer
links are nearly steady with time, higher tier 2 coupling
strength is needed to achieve synchrony and critical transition
point of €, decrease as the value of € increases. In Fig. 2(b)
when rewiring frequency f is increased to f = 1072, a small
enhancement of synchronization region is observed in (€1, €;)
plane. For further increment of f = 10° and f = 102, a no-
table enhancement in coherent region is perceived in Figs. 2(c)
and 2(d).

Figure 3 portrays variation of intralayer synchronization
in the parameter plane (¢;, f) and (e, f). For €; = 1.0, the

(b) E.
|ntra0-1
0.08
0.06
10
0.04
s N5 0.02
0 0 0
0 5 10 0 5 10
€4 €

FIG. 2. Coupled Lorenz oscillators: Intralayer synchronization
error in (€, €;) parameter plane. For (a) f = 1074, (b) f=1072,
(c) f =10° and (d) f = 10%. Other parameter values are d,, = 4,
Psw = 0.1, prang = 0.015, and A = 0.1. The solid magenta line in
panel (d) is the theoretical prediction of intralayer synchronization
threshold corresponding to MLE = 0. White region represents stable
intralayer synchronization state.

synchronized and desynchronized regions are plotted by vary-
ing €; and f in Fig. 3(a). At small values of €, up to 2.5, no
synchronization occurs by varying rewiring frequency from
slow to fast switching. Beyond €; = 2.5, higher rewiring fre-
quency required to achieve synchrony and the critical point
of f reduces with increasing value of €. Similarly, Fig. 3(b)
demonstrates the coherent and incoherent domains in the
(€2, f) plane for fixed value of €, = 1.0.

Next we proceed through the stability of synchronized state
based on the fast-switching approach. If .Z!!l and .Z"?! are
the time-average Laplacian matrices corresponding to tier 1
(random network) and tier 2 (small world network) for both
the layers, then

gl _ |~ Prand; for i # j,
Y (N — l)prand, for i = Js

(a)

(b) E
102 102 A
10° 10°
Y Y-

1072 1072
10 -

0 5 10

€

intra

0.
0.08
0.06
0.04
0.02
0

FIG. 3. Coupled Lorenz oscillators: Intralayer synchronization
error in (a) (€,f) and (b) (e,,f) plane. For (a) ¢, = 1.0 and for (b)
€; = 1.0. Other parameter values are dy, =4, psw = 0.1, prana =
0.015, and A = 0.1. The solid magenta circles in both the subfigures
indicate analytically derived critical value of the coupling strengths
for sufficiently fast switching of the intralayer network topologies.
White region represents stable intralayer synchronization state.

4
0 5 10 10
€
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and

_(1_psw), for i—kgy < Js i+ksw and l# J
2 = L2k, for i = j,

_ ]% ,  otherwise.

Clearly Z!" commutes with the other Laplacian .#!?! and
the interlayer adjacency matrix (in this case identity matrix).
So, we can recast the transverse error equation in the reduced
form as Eq. (10), which in this case becomes

8x1; = o (8y1; — 8x11) — €17 18xy;

+ A cos(xy — x1)(8x2; — 8x1;),

891i = (p — 21)8x1; — 8y1; — x1821; — €278y,
821 = y10x1; + x18y1; — Bdzu;,
i = 0 (8yn — 8x2) — €17 8

+ Acos(x; — x2)(8x1; — 8x2;),

821 = (p — 22)8x21 — 8y2i — 12822 — €278y,

822 = y20x2; + X282 — Bdz2i, i=2,...,N, (16)

where (x1, y1, z1) and (x3, y2, z2) are the state variables of the
synchronization manifold.

The necessary condition for synchronization requires max-
imum Lyapunov exponent obtained by simulating Eq. (16),
to be negative. We verify the numerically obtained intralayer
synchronization region in the (€, €;) plane by means of
maximum transverse Lyapunov exponent for adequately fast
switching. The critical curve for synchronization, character-
ized by MLE = O is drawn in solid magenta line in Fig. 2(d). In
this parameter space, the regions above and below the thresh-
old curve, respectively, depict coherent and incoherent state,
which exactly agrees with the numerically obtained result on
the basis of Ej,,. Hence, for sufficiently fast switching the
stability analysis of coherent state through the time-averaged
network formation exactly signifies the coherence in time-
varying network.

2. Coupled Rissler systems with nonlinear coupling functions

To further elucidate that the time-varying interactions
significantly contributes for the emergence of intralayer syn-
chronization, we consider the multilayer hypernetwork Eq. (1)
with isolated node dynamics as the Rdossler oscillators, inter-
acting with nonlinear coupling functions. Then the equation of
motion of the multilayer network can be described as follows

Layer 1:

N
fii=—yu—zite Y SO —xi)0; - B

=1
N
Yii =X+ ay; + € Z @)@ =y — B
=1
+ Ma — y1) (i — B,
21i = b+ (x;; — o)z,

E.
0.3 (b) lntrao_1

0.08

0.06

FIG. 4. Coupled Rossler oscillators: Intralayer synchronization
error in (e, €;) parameter plane. For (a) f = 1074, (b) f=10%
Other parameter values are k; = 2, k; = 3, and A = 0.1. The solid
magenta curve in panel (b) represents the critical curve for which
MLE = 0, the regions below and above the critical curve denotes the
unstable and stable synchronization state, respectively. White region
represents stable intralayer synchronization state.

Layer 2:

N
i = —ya — i+ € ) AN O@ = x20) (025 — BY
Jj=1

N
Vo =X+ ayy + € Y AT @ — yo)(yaj — B
=1

+ Ao — y2) 1 — B

2i=b+ (0 —Cc)zy, i=12,...,N. (17)

The system parameter values are chosen as a = 0.2, b = 0.2,
¢ =157, and the two coupling parameter values chosen as
o = 0.37, B = —0.37. The intralayer connection mechanisms
for tier 1 and tier 2 are considered as random network with
constant node degree k; =2 and k, = 3 to guarantee the
invariance condition of intralayer synchronization. The in-
tralayer coupling functions are acting through x and y variable
corresponding to tier 1 and tier 2, respectively, and interlayer
coupling is through y variable.

We have plotted Einqa(€1, €2) in Fig. 4 for slow and fast
rewiring frequencies, respectively. A significant enhancement
in synchronization region is noticed in Fig. 4(b) for suf-
ficiently large rewiring frequency (f = 10?) compared to
the synchronization region for sufficiently slow rewiring fre-
quency (f = 10~*), depicted in Fig. 4(a). For fast switching,
we validate the numerical results through time-average net-
work construction with theoretical predictions obtained from
Eq. (10), similarly as previous example. The analytical thresh-
old values for synchronization are portrayed in solid magenta
line imposed to Fig. 4(b), which shows that the numerical sim-
ulation for the fast-switching case is in very good agreement
with the analytical derivation for intralayer synchronization
threshold.

Further, Fig. 5 represents the region of coherence and
incoherence in (€, f) parameter plane for various val-
ues of tier 2 coupling strength €. For lower value
of €, =0.05, the synchronization region portrayed in
Fig. 5(a). By increasing €, to €, = 0.1 the enhancement in
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b E.
102 ( ) |ntra0.1
(0.193,10%)
0.08
0.06
0.04
(0.054,10%)
10.02
0
. 0.2 0.4
61 61

FIG. 5. Coupled Rossler oscillators: Intralayer synchronization
error in (€,f) plane. For (a) ¢, = 0.05, (b) €, = 0.1, (¢) €, = 0.15,
and (d) €, = 0.2. Other parameter values are k; =2 =4, k, = 3, and
A = 0.1. The solid magenta circles in each subfigure indicate analyt-
ically derived critical value of the coupling strength for sufficiently
fast switching of the intralayer network topologies.

Layer 1:

synchrony region is shown in Fig. 5(b). Further increment
of €; to e, = 0.15 [Fig. 5(c)] and €, = 0.2 [Fig. 5(d)] shows
significant enhancement in synchronization region. In all this
figure, the critical transition point for €; initially decreases
as the rewiring frequency increases up to f &~ 1072, Beyond,
f = 1072 the critical point against €; is almost vertical. We
found somewhat similar results as above when we plot the
variation of synchronization error in (€, f) plane for differ-
ent values of €; (corresponding figures are not shown in the
manuscript).

3. Coupled Sherman model of pancreatic 8 cells interacting
through electrical and chemical synapses

We now scrutinize our framework to study the neu-
ronal synchronization. Synchronization in neuronal networks
is of enormous significance. Studies in neuroscience have
identified existence of simultaneous interconnection between
neurons through various synaptic transmissions, which can be
perfectly schematized by multilayer networks [50,51]. Here
we consider ensemble of pancreatic 8 cells, represented by
paradigmatic Sherman model, interconnected concurrently
through electrical and chemical synapses in a multilayer net-
work framework. The dynamics of entire network is given by

N N
Vi = —lea(Vii) = Ik (Viio i) = Is(Viiy s10) + € Y N0 = Vi) + €(Es = Vi Y a2 erviy)
j=1

+ A(Es — Vi)' (Vay),
iy = u[r® Vi) — nil,
781 = s (Vip) — sui,

Layer 2:

j=1

N N
Vo = —lea(Var) — Ik (Vair ni) = Is(Vai, 520) + €1 Y () (Vaj = Vi) + €2(Es = Vai) Y A0 (V)

j=1

+ A(Es — Vo)I'(V1y),
Ty = u[n™ (Va;) — nail,

To§2 = s (Vo) — 524,

where Ica(V) = gcam™(V — Eca), Ik(V, n) = ggn(V — Ek),
Is(V,s) = ggs(V — Ek). Vj; is the membrane potential cor-
responding to the reversal potential Ec, = 0.025V, Ex =
—0.075V. The time constants and maximum conductance are
t=0.02,7,=58ca =36,k =10,andgg =4. u =1, an
auxiliary scaling factor, manages the timescale of the persis-
tent potassium channels. The values of the gating variables at
steady state are

m®(V) = {1 + exp[—83.34(V + 0.02)]} ",
n®(V) = {1 + exp[—178.57(V +0.016)]}"", and
s®(V) = {1 + exp[—100(V + 0.035345)]}".

j=1

(18)

We consider the neurons in a layer are interconnected
simultaneously subject to electrical gap junctional coupling
via electrical synapses and chemical ion transportation via
chemical synapses. The adjacency matrices corresponding to
electrical synapses are .«/!'!1, [ = 1,2, obtained from small-
world network with average degree kg, and edge rewiring
probability pgy,. &7 (121 ] = 1,2 describes the structure of
connections via chemical synapses, deliberated by random
network with constant node degree k.. Further, the neurons of
two different layers are connected through chemical synapses.
The sigmoidal input-output function

1

T = o — o1’
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0.063,102
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FIG. 6. Coupled Sherman model: Intralayer synchronization er-
ror in (€, f) plane. For (a) A = 0.0, (b) A = 0.02, (c) A = 0.04, and
(d) » = 0.05. Other parameter values are €, = 0.015, pg, = 0.15,
kgw = 4, and k. = 4, respectively. The solid magenta circles in each
subfigure indicate analytically derived critical value of the coupling
strength for sufficiently fast switching of the intralayer network
topologies.

describes the procedure for initiation of nonlinear chemical
synapse. The synaptic reversal potential is E; = —0.02. Slope
of the sigmoidal function, and synaptic firing threshold are
determined by the real-valued constants A, and 6, which are
fixed at ®; = —0.045 and A; = —1000.

Figure 6 portrays the result corresponding to intralayer
synchronization in (€, f) parameter plane for various in-
terlayer coupling strength A. In the absence of interlayer
coupling (A = 0), the coherent and in-coherent regions are
portrayed in Fig. 6(a) and by introducing A = 0.02, the en-
hancement in synchronization region is obtained in Fig. 6(b).
Further increments of A to A = 0.04 and 0.05 show more
enhancements, which are delineated in Figs. 6(c) and 6(d).
Figures 7(a)-7(d) represents similar results in (¢;, f) param-
eter plane for increasing value of interlayer coupling strength
A. Apart from this, we notice that in neuronal network also
the threshold to achieve synchronization lowers with the in-
crease in rewiring frequency f. For sufficiently fast switching
(f = 10%), Einra(€1, €2) is reported in Fig. 8, along with the
analytical conjecture obtained from Eq. (10) (shown in solid
magenta line laid over the diagram), which confirms that the
numerical result is in good agreement with our analytical
derivation.

B. Numerical results of simultaneous block
diagonalization method

In this subsection, we investigate the validity of our ob-
tained theoretical results associated with simultaneous block
diagonalization framework. For this, we consider the example
of coupled Lorenz oscillators with sine coupling function
described earlier in Eq. (15). The parameter values are
taken same as before (see Sec. IV A 1). Each layer of the
multilayer hypernetwork consists of N = 8 nodes intercon-
nected through two different tiers. The network architecture
of each tier are taken as complete graph of N nodes by

intra 0.01

0.008

0.006

0.02 0.03

0.004

0.002

FIG. 7. Coupled Sherman model: Intralayer synchronization er-
ror in (e, f) plane for (a) A = 0.0, (b) A = 0.02, (c¢) A = 0.04, and
(d) A =0.05. Other parameter values are €; = 0.35, ps, = 0.15,
kgw = 4, and k. = 4, respectively.

randomly removing two edges. In this scenario, we consider
more systematically temporal networks that alternate be-
tween two different configurations. Particularly, the networks
corresponding to each tier changes between two networks
alternatively in odd and even time spans, i.e., each adjacency
matrices o7 1(r), o71-2(1), o7211(1), and 71221 (¢) have two
network realizations corresponding to odd and even times.
The interlayer connections are all to all, i.e., one node in a
layer is linked with each node of the other layer. We first scru-
tinize the region of synchronization and desynchronization by
evaluating the synchronization error Ej,y,. The correspond-
ing results are portrayed in Fig. 9. Figure 9(a) describes
Einra(€1, €) for a fixed interlayer coupling strength A = 0.1.
As €, increases the decreasing critical transition point of €,
to achieve synchrony, confirms enhancement of intralayer
synchronization. Figure 9(b) illustrates Einq, (€1, A) for fixed
intralayer coupling strength €, = 0.05 for tier-2. The synchro-
nization threshold against €; is almost same with increasing A

intra

0.03 0.01

0.008

0.006

0.004

0.002

0 0.35 0.7
€

FIG. 8. Coupled Sherman model: Intralayer synchronization er-
ror in (€, €;) parameter plane. The other parameter values are A =
0.02, psw = 0.15, kg, = 4, and k. = 4. The solid magenta continuous
line represents the curve corresponding to synchronization threshold
MLE = 0 which separates the synchrony and desynchrony region.
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(a) E
0.5 "0.1

0.08
0.06
0.04
0.02

1.5

FIG. 9. Variation of intralayer synchronization error in (a)
(€1, €2) and (b) (€1, A) plane. The other parameter values are > = 0.1
for panel (a) and €, = 0.05 for panel (b). The solid magenta lines cor-
responds to the intralayer synchronization threshold obtained from
analytical prediction.

up to & & 0.5. For X just greater than 0.5, the critical point for
€1 suddenly decreases to €; = 0.47. Beyond that the critical
coupling to achieve synchronization decreases as A increases.
Similar phenomenon is also observed in (€, A) parameter
plane for fixed €; (corresponding figure is not shown here).

Next, we study the analytical stability of the syn-
chronization state using SBD approach. As the network
changes its configuration between even and odd times,
the Laplacians associated with each tier also wvaries.
Therefore, as discussed in Sec. IIIB2, the variational
Eq. (12) will have a set of noncommuting matrices S| =
{UN-(odd), U (even), U2 (0dd), U?I(even), .. .,
U2 (odd), U>?)(even), #}. Here UU-Plodd) and
UU-Pl(even), |, =1,2 are associated with the network
configuration at even and odd times. Applying the SBD
approach, we transform the above set of noncommuting
matrices in common block diagonal form (Fig. 10). We
notice that the set of matrices transforms into block diagonal
matrices with blocks of sizes 1 x 1,2 x 2,3 x 3, and 4 x 4.
Among them two 1 x 1 blocks are associated with the parallel
modes to synchronization manifold and all the other blocks
are associated with the transverse modes to synchronization
manifold. Since the maximum size of block is 4 x 4, we can
rewrite the higher-dimensional transverse system in terms of
lower-dimensional subsystems as

4
8k1; = oy — 8x11) — € Y N8y,
=1

— )L@i[il] COS(X2 - xl)lei,

4
851 = (p — 20)8x1; — Sy — X182, — €2 »_ G52 08y,
=1

8z1i = y18x1; + x18y1; — adzy4,

4
Sty = o (8ys — x2i) — €1 ) C 1 (0)xs

j=1

— )»@i[iz] cos(x1 — XQ)(S)CQ,',

4
8¥2i = (p — 22)8%0 — 8y2i — 128221 — € Y _ €17 (1)dyai,
j=1

822i = y20x0; + X20y2 — adzp;, i=1,2,3,4. (19)

R
BN
.
5 R,

FIG. 10. The block representations of all the noncommuting ma-
trices in the set S; after applying SBD algorithm are portrayed from
panels (a) to (i). Here the nonzero elements are colored in light to
deep black according to their increasing values and the zero elements
are colored in white.

81 = o 8y — dxip) — €%, (0)dx;
— A@}ill cos(xy — x1)8x1;,
81 = (p — 21)8x1; — Syni — x1821; — €657 (1)Syus,
8210 = y18x1; + x18y1; — adz1i,
8o = 0 (8yzi — 8xai) — €161 (1o
— 22 cos(x) — x2)8x2),

8y = (p — 22)8%2i — 8yai — ¥28201 — €E 2 (1)8yni,

8221‘ = y28X2i + x25y2,~ - 0[822,‘, l = 5, 6, 7, (20)
where (x1, y1,z1) and (x», ¥, z2) are the synchronized solu-
tions. The matrices €-Al(¢), and 2!, 1,8 =1,2 are the
block diagonalized form of the intralayer Laplacians .Z-#1(¢)
and the interlayer adjacencies 2!, 21, after discarding the
1 x 1 blocks associated with parallel mode. The maximum
Lyapunov exponent corresponding to this lower-dimensional
subsystem, Eqs. (19) and (20), gives the condition for stable
intralayer coherent state of the temporal multiplex hyper-
network. In Figs. 9(a)-9(c), the continuous magenta lines
represent the curves corresponding to the synchronization
threshold MLE = 0. The regions below and above these
curves, respectively, depict MLE >0 and MLE <0. Value of
negative MLE gives stable synchronization state and positive
MLE signifies unstable synchrony. These maximum Lya-
punov exponent plots are found to be suitably confirmed with
our numerical experiments.
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V. CONCLUSION

Here we have considered a universal model attributing
for temporal multilayer hypernetwork framework with arbi-
trary sorts of intralayer and interlayer coupling functions,
and explicitly carried out the stability analysis of intralayer
synchronous state. We derived the invariance condition of
the coherent state and based on that condition look into the
derivation of necessary condition for stable synchronization
solution. The process of stability analysis is conducted by
means of two well-known concepts—the fast-switching ap-
proach and simultaneous block diagonalization technique.
Employing fast-switching approach, we show that the tem-
poral network achieves stable intralayer synchronization state
whenever corresponding static time-average structure is in
stable intralayer coherent state. The condition for stable syn-
chronous motion is derived with respect to time-averaged
network structure, and we have delineated that, in some
instances, our method resembles classical MSF approach.
However, using simultaneous block diagonalization proce-
dure, we derive the condition for stability of intralayer
synchronous solution for temporal networks, without re-
stricting to time-average network structure. In this case,
we have shown that the transverse modes associated with
synchronization manifold can be decoupled into finer form
without any assumption. Finally, the analytical inferences are

J

M

accompanied by several numerical results, which confirms the
sustainability and universality of our approach. We expect, our
study will pave the way for a new understanding of collective
properties emerge in temporal multilayer framework. The use
of our methods irrespective of coupling functions provide the
scope to apply it for exploration of large class of coupling
schemes associated with complex systems that can be repre-
sented by multilayer networks.

APPENDIX

1. Proof of resemblance between time-varying and
time-averaged systems

From Eqgs. (1) and (8), one can easily obtain that the
synchronization solution for both the time-varying and time-
averaged networks follows Eq. (4). Hence, without loss
of generality, we assume that X; =x, and y; =y,, for
all i=1,2,....,N at the state of synchrony. To analyze
the stability of synchronization state for the time-averaged
case, we consider 8X(1) = [8%, ()", 8% (1)", ..., 8%, (1)"]" and
8y(t) = [8y1(0)", 8§72 (1)", ..., ayl(z)“]" as small perturbations
around the synchronization solution. Then the variational
equation for the time-averaged system can be expressed
by

8% = Iy®JF (x,)8% + Y epd P [Iy®J G} (x,. x,) + Iv®DGY (x,. x,)] %

p=1
M

— > e ZYIRDGY (x,, x,)8% + M Iv®JTHi (x,, y5)8% + BV @DH (x;., ¥5)87),

p=1
M

8y = IN®IFy(y,)85 + Y _ epd P [IN@IGL (ys. y5) + In®DGY (v, y,)|8¥

p=1

M
= > e 2 IQDGY (v, )85 + AleP Iv®J Ha(y. X,)85 + BV @DH(y,. X,)%].

p=1

(AL)

Since each of the time-averaged Laplacians are real zero row-sum square matrices, all of their eigenvalues ?i[ﬂ lec,i=

1,2, ..., N with one eigenvalue )71['3 !

zero. Here, we have taken into consideration that the network structures corresponding to

each tiers are connected. The associated set of eigenvectors forms an orthogonal basis V1 of CV. As Z!#] is real square matrix,
e . . . s - -1
it is unitarily triangularizable. So, there exists an upper triangular matrix W' such that Wl = yIBI7" 2By 18] We assume

1 [B]
78 V2
Bl _ 1 [B]
vIW= |75
LB
VN N2

[A] [A]
Vi3 .. Uy

18] (8]
Ups - Uy |,

[A] [A]
Uyz -+ Unn

where the eigenvector corresponding to ?I[ﬂ I'= 0 is taken as the first column. The variational Eq. (A1) contains all the parallel
and transverse components to the synchronization manifold. To decouple the transverse modes from parallel one, we project
the stack variables 6% and 8§ onto the basis of eigenvectors V!l corresponding to the time-averaged Laplacian of tier 1 by
introducing new variables n® = (VIl®1,)~16% and n¥ = (VI!®1,)~!18¥. The choice of the set of eigenvectors is completely
arbitrary, one can choose any other basis and all the other eigenvector sets will eventually transform to such a basis through
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unitary matrix transformation. The generic Eq. (A1) in terms of new variables then becomes

M
7% = Iv@IF (x,n® + ) epd P [Iv@IGY (x,, %) + Iv®DGY (x,, %) ]n®
g=1

M
= > eV ZPVINEDG . x)n® + A [Ny @I Hi(x, yn® + (VI BV I @DH, (x4, v 0],

p=1
M
7Y = Iy@IF(yon™ + Y epd P [Iy@IGE (ys, y0) + Iv®DG (s, y) [n®
B=1
U 1 1
=Y gV ZPWVINRDG (v, yn® + Al Iv@THa(ys, x)n'Y + (VI BPVINRDH, (y,, x)n P, (A2)
p=1

Using the triangularizable property of .Z!#! we have

yli=t gy — yi=ly gy e=tyun (A3)

. . . . . —1 . . .
As the columns of V!#! are orthogonal eigenvectors, it is a unitary matrix, i.e., VI#1™ = VIf1* where * indicates conjugate
transpose of a matrix. So, we can write

[1,8] [1,8] [1.8] [B.1] [B.1] [B.1]
I vy, U3 v Upy 1 vy Vi5 e Uy
111 _ [1,8] [1,8] [1,8] -lom _ [8.1] [B,11 [B],1
vyl yBl = |0 (2 Usy o Uy |, and vyl = | o Uzg vzg UZ’;V
[1,8] [1,8] [1.8] [B.1] [B.1] [B.1]
0 vy Vy3 e Unn 0 vy Uy3 v Uny

Substituting these expressions in Eq. (A3), we get

(A4)

y7161
y=t gisiyn _ [ 0 W :|

Ov—n)x1 Wzlﬁ]

where W1 € C*MV=1 and W1 € C¥-D*=1)_ Similarly, the triangularizable property of interlayer adjacency matrices and
the identical node degrees for invariance of synchronization manifold gives

O1xv—1)
Wl =12 (AS)
O1xv—1) Us

i
vl gy o _ [ ¢

Suppose, in parallel and transverse coordinates, the transform variables ™ (r) and n®(¢) yield the decomposition n® =
%, 707 and n® = [P, V], where n¥, n¥ € C4 and X, nY € CN-D4 Making these decomposition in Eq. (A2) and
substituting Eqs. (A4) and (AS5), we get

M
) =JFR xR + ) epd PTG (g, %) + DGy (x,, %)y
p=1

M
- Z EﬂWI[ﬁ](X)DGI[;](XS, Xs)n(TX) + )\[e[]]JHl(Xs’ ys)n;JX) + e[l]DHl (st YS)U;)Y)]s
B=1

M
7:7;3() = IN71®]F1 (Xs)n;‘X) + Z Eﬁd[ﬁ][lN71®JGg](st Xs) + IN71®DG}3](X37 Xs)]n;“X)
B=1

M
=Y W, @DGY (%, x)nF + A[e NIy 1 ®TH, (%, y )0 + UY@DH (x,. y)n ] (A6)
B=1
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and

M
g = IR yong + Y epd P [IG (v, y0) + DGY (vs, yo) |0
=1

- Z W' @DGY (y,, yom + A[ePTH, (y,, x)n + e DH, (v, )0,

B=1
M
Y = I a@IBynY + > epd [y 1 @IGS (v, y5) + Iv1®DGY (v, y) [
B=1
- Z W RDGE (v, yons + A[e Iy_1 @I Ha(ye. %0 + U @DH, (s, x)n Y ]. (A7)
B=1

Notably, the evolution of latter components, i.e., n(x) and n(y ) are independent of the former ones, i.e., n(x) and n},y) . The
dynamics of the former ones, attributing to the motion parallel along the intralayer synchronization manifold and that for the
latter ones characterizing the transverse modes to the synchronization state.

®T_(F) r]lr

Assuming £4(t) = [y ny € C?>W=1Dd_the evolution of transverse modes are rewritten as

M
Lalt) = {A(f) Y elEY © DGY (%, x,) + EYY' ® DGY(y,. ys)]};du), (A8)
p=1
where
A(t)_[ An() AU;”@)DH](xs,ys)]
AU3[2]®DH2(yss X;) A (1) '
M
Ann(6) = Iy ®IF (%) + Y epd P [Iy 1@7GY (X, X,) + Iy 1®DGY (X, x,)] + Ay 1 @TH (%, ¥,),
p=1
M
Ap(t) = Iy1®JFy(ys) + Y epd P [Iy 1@IGE (ys. ¥5) + Iv-1®@DGY (ys, ¥5)| + re® Iy 1 @TH (v, X,),
p=1
and
£ :[ W, 0<N—1>x<N—1>} and E) — [Ow Dx(N-1) 0<N—1_>63<]N—1>]
Owv—nxv—=1)  Ow—1)xv—1) Ov—nyxv—1) w,

(

Now, we implement the identical coordinate transforma-
tion to the variational Eq. (5) corresponding to the temporal
multilayer hypernetwork by projecting the stack variables on
the same basis of eigenvectors V!, The new variables are then

defined [
efined as El[ﬁ](t)z[ W70 Ow-nxwv-n | 4nd
Ov—1xv—=1)  Ov—1)xv—1)

t
where ¢, (1) = [ " (Y) "Jr € €2V represents the state of
the transverse mode and

x) _— (yll -1 ¥ — (ylll -1
Y = VH®l;) 'éx and " = (VY®I;) dy. E[ﬁ](l‘) _ I:O(N_I)X(N_l) O(N_lz)x(]v_l)i|
5 = .

Ov—nxv—1y ~ W,77(2)
Proceeding as earlier and by spectral decomposition of stack
variables into parallel and transverse modes, we can express

the evolution of variational equation transverse to synchro- W (), I =1,2 comes from the fact that time-varying
nization manifold as Laplacians are similar to a upper triangular matrix W-A1(t) =
[
. gum] such that VI~ 1Bl (pyy 11T = WilBl(r),
M 7

. Bl = L (4T llBl(\g =
= | A(r) — e EP (1) @ DGW(x,, x Assuming, LBl — T ft (2)dz, B =

L(0) [() ;_1 s{E @) ® DG (x,. %)) Lo M = 1,2 gives

18] 2] 4T
+ E,7 (1) ®DGﬂ (¥s, ys)}i|§e(l), (A9) vyt gisym l /‘f V[”_lg[l'ﬂ](z)V[”dz.
T J
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From this interpretation one can easily deduce that
_ 1 t+T ;
m = / Wy Fl(2)dz,
t

which implies E[ﬁ] L ft+T E[ﬂ](z)dz forl =1,2.

Thus, with the reference of Lemma 1, we come to a
conclusion that the transverse error system corresponding
to time-varying structure [Eq. (A9)] stabilizes whenever the
all transverse modes of the time-averaged system [given by
Eq. (A8)] extinct. The extinction of all transverse modes
indicates a stable synchronization state. Hence, the stable
intralayer coherent state of the time-averaged multilayer hy-
pernetwork Eq. (8) implies achievement of stable intralayer
synchrony for time-varying network Eq. (1).

2. Derivation of Eq. (10)

Since all the time average Laplacians and interlayer
adjacency matrices are real and symmetric, they are all diago-

J

nalizable. Let Z!"" commutes with all the other time average
Laplacian matrices R (B=2,3,...,M) as well as inter-
layer adjacency matrices %!, [ =1, 2. Since, all the above
matrices are diagonalizable and .Z!") commutes with all other
matrices, they share a common basis of eigenvectors and V!l
diagonalizes .Z!"). Then V!'! also diagonalizes all the other
matrices. Therefore,

ylu=! gy _ diag{0 < 717 < 9P, . < P,
and

111 iy 0 : l I 1 / l
v gyl — diag{e = 0, o, oM, ..., riPY.
Here, ]_/i[ﬁ] and I’i”] for i=1,2,...,N are the eigen-
values of time-averaged Laplacian matrices correspond-
ing to tier B and that of interlayer adjacency matri-
ces. This implies W[ﬁ] = dlag{y[ﬂ] < y3[ﬁ], e < yl\[,ﬂ]}, and
U3”] = dlag{F2U], F3[”, el F]\[,l]}. Hence, by substituting the
above expressions in the transverse error system Eq. (9) or
Eq. (A8), we have

M
= TR0 + ) epd PTG (x,, x,) + DGy (%, x0) sy

p=1
M

— > e IDGY (xy, x )Y + A[ I H (x,, yon + LUDH, (x, yong ],

B=1
M

g = JRGyony + > epdP[IG (v, y,) + DG (ys. yo) |ng

B=1

Zf 7DG (v, yom + AP Ty, x0n + TEDH (v, 0050,

p=1

i=2,3....,N. Equation (A10) clearly shows that the
2d(N — 1)-dimensional coupled transverse error system is
now decoupled into (N — 1) subsystems, each are of 2d di-
mension.

3. Dimensionality reduction for single tier

As we have assumed that each layer of the multilayer
hypernetwork has only one tier, let the corresponding time

J

(A10)

(

average Laplacian matrix .Z!! with the set of eigenvalues

{0,y,...,y)}. Therefore, VII™' 2V — 10,y ... y}. It
——— ——

(N —1)times (N—1)times
implies, Wz[” = diag{y, ..., y}. Also, by our assumption,
(N—1)times
PN = P2 = . So, we have, el!l =el?l = e(say) and
U 1 — =U; 2l = = Us(say). Then the transversed error Eq. (9) or
Eq (AB) becomes

1Y = Iy_1®JF (x)ny + e1d"M[Iy_1 @G (%, %) + Iv_1®DGH (x,, x,) | 0¥

_ EIVDG[I](XM X:)T)(X) —+ X[eIN_1®JH1 (Xs, ys)n(i) + U3®DH1 (Xs’ ys)n(y)],
WY = Iy 1 @IF (oY + e1d' [Iv18IGP(y,, y,) + Iy 1®DGP(y,, y) ]n

— €] )/DG[ ](YM YJ)n(y) + )‘-[eIN I®JH2(YJ9 X, )U(Y) + U3®DH2(yu Xs)n(X)]'

Every terms of the above transverse error equations are block diagonalized except Us ® DH(Xy, ¥;) and U3 ® DH,(ys,

(A11)

X ). Now

since the interlayer adjacency matrix is symmetric, Us is also symmetric. Hence, it is diagonalizable by its basis of eigenvector.

Now, if the eigenvalues of the interlayer adjacency matrix % are {e, I3, I3, ...,

eigenspace of Us, say V3, we get

ViU Vs = diag{D, T, ...

I'y}, then projecting the error system on the

W
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Hence, Eq. (A11) can be rewritten as

iy = IRy +ed TG (%, %) + DG e, x0) o

— a1y DG (x,, X0 + A[eJHy (%, yo)n5. + TDH (%, yong .
0 = IR yon + ed' [JG(ys. yo) + DG (ys. yo)nf)

— ey DGy, yoms + A[eJHa(y,. x,)n5 + TIDH(ys, )15,

(A12)

i=2,3,...,N. This is certainly a N — 1 number of 2d-dimensional equations.
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