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Simple model of epidemic dynamics with memory effects
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We introduce a compartment model with memory for the dynamics of epidemic spreading in a constant
population of individuals. Each individual is in one of the states S = susceptible, I = infected, or R = recovered
(SIR model). In state R an individual is assumed to stay immune within a finite-time interval. In the first part, we
introduce a random lifetime or duration of immunity which is drawn from a certain probability density function.
Once the time of immunity is elapsed an individual makes an instantaneous transition to the susceptible state.
By introducing a random duration of immunity a memory effect is introduced into the process which crucially
determines the epidemic dynamics. In the second part, we investigate the influence of the memory effect on the
space-time dynamics of the epidemic spreading by implementing this approach into computer simulations and
employ a multiple random walker’s model. If a susceptible walker meets an infectious one on the same site,
then the susceptible one gets infected with a certain probability. The computer experiments allow us to identify
relevant parameters for spread or extinction of an epidemic. In both parts, the finite duration of immunity causes
persistent oscillations in the number of infected individuals with ongoing epidemic activity preventing the system
from relaxation to a steady state solution. Such oscillatory behavior is supported by real-life observations and
not captured by the classical standard SIR model.
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I. INTRODUCTION

The history of mathematical modeling in epidemic spread
can be traced back to Bernoulli in 1760 [1]. However,
it was much later by the seminal work of Kermack and
McKendrick [2] that this field became a modern and active
area of research. The basic approach they introduced is the
so called SIR model, where the acronym SIR stands for S =
susceptible, I = infected, R = recovered. It turned out that
the dynamics of some infectious diseases, such as measles,
mumps, and rubella can be well captured in a nonlinear dy-
namics framework, such as SIR type models. For the most
simple case of spatially homogeneous infection rates, several
versions of SIR models have been introduced [3,4]. Among
the wide range of SIR type models we mention here a recent
one based on continuous-time random walks [5] motivated
from fractional dynamics with anomalous transport and dif-
fusion effects [6–10] which may be important mechanisms in
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epidemic spreading. A non-Markovian SIR epidemic spread-
ing model is presented in an upcoming paper [11] where
effects of the incubation period, delayed infectiousness, and
the distribution of the recovery period are analyzed.

It is unsurprising that the interest in this field has liter-
ally exploded in recent years driven by the present pandemic
COVID-19 context. Some related models can be found in
the references [12,13]. The application of general approaches
introduced in epidemic modeling, especially those related
to stochastic processes and dynamics indeed have turned
out to be fruitful to open a wide new interdisciplinary area
of research. These approaches were further enriched by the
emergence of network science with pertinent applications
in transportation processes on complex networks as models
for human societies, online networks, and transportation net-
works again have boosted this area as a vast interdisciplinary
field. Many of these problems can be described as a random
walk on complex graphs for which an elaborated framework
exists [14–23] among them various random walk models in
biased graphs [24–29] to name but a few.

Epidemic spreading in complex networks was studied in
several works (and many others) [21,30–33], among them
scale-free networks [34] and activity-driven adaptive temporal
networks [35] including percolation effects in small-world
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networks [36,37]. A renormalization group model of the sec-
ond COVID wave in Europe has been established [38].

An important class of approaches which has been applied
to epidemic spreading is the so called “rock-paper-scissors
games (RPS) models” [39]. First versions of RPS games can
be traced back more than 500 yr ago to ancient China (Ming
dynasty) constituting a class of probabilistic games with three
possible outcomes at each trial. The dynamics behind this
game has considerably contributed to the understanding of
the evolution and coexistence of species. It was found that the
spread of certain bacteria producing antibiotics is governed by
a RPS type dynamics [40]. Simply speaking the RPS dynam-
ics can be considered as a random walk on a directed graph
with three nodes (see Ref. [17] for a thorough outline and
connections with epidemic spreading dynamics). It has, there-
fore, in wider sense connections to the general class of SIR
models (compartment models) including the generalization
introduced in the present paper allowing transitions among the
three states S, I, or R.

Despite the vast fund of sophisticated models, the vari-
ety of newly observed phenomena makes it more than ever
desirable to develop sufficiently simple models containing a
minimal set of parameters to allow identification of the rele-
vant ones governing the epidemic dynamics. This aim was the
main source of motivation for the present paper.

Our paper is organized in two principal parts. In the first
part we introduce a modified SIR model by taking into ac-
count random duration (life times) of immunity following a
prescribed probability density function (PDF). We consider
here especially an Erlang PDF which contains two free param-
eters and turns out to be flexible enough to capture real-life
situations consisting of two essential regimes: In one regime
the recovered individuals all enjoy a similar time of immunity
with a narrow immunity lifetime PDF. In the other regime
the immunity lifetimes are broadly scattered and may differ
considerably from one to another recovered individual. For
these two regimes the memory effect is studied. Contrary
to the standard SIR model the so modified model exhibits
an infinite set of fixed points with nonvanishing numbers of
infected individuals. A local analysis shows the existence of
oscillatory instabilities for certain fixed points, a behavior
also known from delay-differential equations, such as the
Hutchinson model [41,42]. The full nonlinear solution for
these cases reveals the existence of limit cycles with persistent
oscillations in the numbers of infected individuals. In these
situations the epidemic activity never ends, thus, herd immu-
nity is not well defined anymore. The epidemic dynamics then
is characterized by recurrent diminution and outbreaks of the
epidemic activity. The resulting persistent epidemic activity
is in contrast to the standard SIR model where the disease
extincts when herd immunity is reached.

Indeed oscillatory behavior with periodic outbreaks has
been observed for a long time in the dynamics of several
diseases and was already stated in 1929 by Soper in a model
for the time evolution of measles cases [43]. In that work
an empirical predator-prey model (infectious-susceptible in-
dividuals) was introduced showing damped oscillations and
connected with observed real-world data.

Recent advanced models of the generalized SIR type
(compartment models) also yield oscillatory behavior in the

dynamics of the infected population [44,45]. In the paper
of Greer et al. [44] sustained oscillations with remarkably
accurate periodicity occur “naturally,” i.e., without employing
rather artificial periodic source terms. There, the coefficients
of the SIR model are assumed being time dependent and
demographically forced by empirical data. In contrast to our
model that approach does not take into account memory
effects. A further recent compartment model that accounts
for memory effects is presented in the paper of De Luca
and Romeo [45]. This work is based on a delay differential
equation approach referring to a fixed population taking into
account incubation times where also periodic behavior of the
numbers of infected individuals as an intrinsic property of the
delay differential equation ansatz is obtained.

Among the vast literature on the subject we further mention
the compartment model of Brauer considering a fixed popu-
lation which yields damped oscillations converging toward a
stable equilibrium steady state [46].

One crucial difference in the mentioned models to our ex-
tended SIR model is the fact that in our model the oscillatory
behavior can be easily connected with a physically directly
observable quantity, namely, the finite duration of immunity
which is randomly distributed among recovered individuals.

In Sec. IV we apply a multiple random walker’s model
(see Refs. [33,47] for details and the references therein) with
a constant population of SIR walkers (where each walker
is in one of the states S, I, R) navigating independently on
an undirected connected graph. We implement this approach
into computer simulations and consider walks on large-world
two-dimensional lattices where the following infection rule
applies. If a susceptible walker meets an infectious one on
the same node then the susceptible walker gets infected with
a certain probability. Then we employ the same assumption
on the occurrence of a random lifetime of immunity as in
the first part and simulate this behavior by an Erlang PDF.
We perform a series of computer experiments and identify
pertinent parameters responsible for the spreading, oscillation,
or extinction of the epidemic activity.

II. MODIFIED SIR MODEL WITH MEMORY

A. The standard SIR model

Let us briefly recall the standard SIR model [2]. This model
considers a population of individuals where each individual is
in one of the three compartments S, I, or R. We use the no-
tation s(t ), j(t ), r(t ) ∈ [0, 1] for the fractions of susceptible,
infectious, and recovered individuals, respectively. Neglect-
ing all birth and death rates we have a constant population
s(t ) + j(t ) + r(t ) = 1. The standard SIR model reads

ds

dt
= −β js, (1a)

d j

dt
= β js − γ j, (1b)

dr

dt
= γ j, (1c)

where β denotes the infection rate and 1/γ is the average
time of being infectious or the time of healing. The basic
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τ

FIG. 1. The standard SIR model is extended by the feedback loop
including a time delay.

reproduction number is related to β and γ as follows:

R0 = β

γ
,

and Re = R0s indicate the effective reproduction number
where Re − 1 measures the rate of new infections at time t
generated by one case j = 1 [see Eq. (1b)].

B. The extended model

Now we introduce a generalization of standard SIR where
we maintain the assumption of a constant population s(t ) +
j(t ) + r(t ) = 1. Contrary to the standard model where the
epidemic dynamics is characterized by the pathway of the
transition S → I → R ending in a fixed point j = 0, s <

1/R0, we extend the model to allow an additional transition
R → S, reflecting the often observed phenomenon of a finite
lifetime of immunity starting after healing (or vaccination),
see Fig. 1. Recovered individuals are assumed to be immune
for a certain random time which will be specified hereafter.

The balance of the recovered individuals can then be writ-
ten as dr/dt = birth rate minus death rate, namely,

d

dt
r(t ) = b(t ) − d (t ), (2)

where b(t ) indicates the rate of individuals which (instanta-
neously) recover at time t , i.e., making the transition I → R.
The quantity d (t ) stands for the rate of individuals (instan-
taneously) losing their immunity at time t undertaking the
transition R → S.

Now we connect this balance equation with a finite lifetime
(duration) of immunity (sojourn time in state R) and introduce
the causal PDF K (τ ) from which the finite time of immunity
is drawn: An individual that is recovered at instant 0 (“birth

FIG. 2. (a) The zeros of fi intersect for ξ = 0.2, ε = 0.01 at ω ≈
0.12, α ≈ 6.4 and at ω ≈ 0.085, α ≈ 15. (b) If ε exceeds a critical
value, no solution exists, ξ = 0.2, ε = 0.03.

FIG. 3. (a) Frequency and (b) time delay for a δ-distributed kernel.

of immunity”) loses its immunity at instant t ′ (“death of im-
munity”) with probability K (t ′)dt ′. Hence, the total death rate
R → S at time t can be written as

d (t ) =
∫ t

−∞
K (t − τ )b(τ )dτ, (3)

accounting for the complete history of births b(τ ) taking place
up to time t . The lifetime of immunity PDF is normalized∫ ∞

0
K (t )dt = 1. (4)

We will specify the PDF K (t ) subsequently. To keep our
model simple, we make the assumption that the birth rate of
recovered individuals is given by b(t ) = γ j(t ) as in standard
SIR, i.e., the transition rate I → R is assumed to depend
only on the value of j(t ) at instant t , i.e., without additional
memory.

4

2

3

s

j

s + j = 1

1

5

FIG. 4. Trajectories on the j-s-phase plane. For different initial
conditions, different behaviors can be seen. The bold (blue) lines
correspond to fixed points, solid: Stable; dashed: Unstable. Starting
close to the horizontal dashed line, a limit cycle is approached in
agreement with the linear computations from Sec. III B. All trajecto-
ries proceed clockwise.
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FIG. 5. Linear decrease insi(t ) after infection at t = 0 with the
identical slope for all infected walkers. During immunity (τ1 � t �
τ1 + 
τi), the slopes are individually distributed among the recov-
ered walkers, according to the occurrence of random life time of
immunity intervals in our case drawn from an Erlang PDF. Individu-
als i become susceptible again for si(t ) < 0.

With these remarks we can now establish a modified set of
SIR equations with memory where we rescale the time t →
γ t to arrive at the (dimensionless) form

d

dt
s(t ) = −R0s(t ) j(t ) +

∫ ∞

0
K (τ ) j(t − τ )dτ, (5a)

d

dt
j(t ) = R0s(t ) j(t ) − j(t ), (5b)

d

dt
r(t ) = j(t ) −

∫ ∞

0
K (τ ) j(t − τ )dτ. (5c)

We assume for the analysis to follow that these equations hold
for all t ∈ R for some prescribed values of s, j, r at t = −∞.

FIG. 6. Scaled Erlang distributions for immunity time 
τ =
1800 and different values of α.

C. Stationary solutions and linear stability

Equations (5) have the following stationary solutions:

0 � s0 � 1, j0 = 0, (6a)

s0 = 1/R0, 0 � j0 � 1 − s0. (6b)

Equation (6a) corresponds to a healthy population with s0 +
r0 = 1 which becomes unstable for Re = R0s0 � 1 (outbreak
of the epidemic). The fixed point (6b) describes the endemic
equilibrium.

Linearizing of Eqs. (5) with respect to the endemic equi-
librium (6b),

s = s0 + ueλt , j = j0 + veλt

yields the solvability condition,

λ2 + ελ + ε[1 − K̂ (λ)] = 0, (7)

where we introduced the abbreviations,

ε = R0 j0, K̂ (λ) =
∫ ∞

0
e−λt K (t )dt, Re{λ} � 0.

Here, 0 � ε � R0 − 1 serves as a bifurcation parameter, K̂ (λ)
denotes the Laplace transform of the immunity lifetime PDF,
and Re{·} stands for the real part.

For an oscillatory (Hopf) instability with λ = ±iω, Eq. (7)
turns into

f1 = −ω2 + ε[1 − K̂ ′(iω)] = 0, f2 = ω − K̂ ′′(iω) = 0,

(8)
where K̂ ′, K̂ ′′ denote real and imaginary parts of K̂ . At the
onset of an oscillatory instability, two conditions (8) have to
be fulfilled simultaneously.

III. IMMUNITY LIFETIME DISTRIBUTION

In this section we specify the PDF which governs the mem-
ory effect by the random life time of immunity of recovered
individuals.

A. Erlang distribution

An interesting candidate which is able to capture a variety
of behaviors is the so called Erlang distribution (also called γ

distribution) which has the form [9]

Kα,ξ (t ) = ξαtα−1

�(α)
e−ξ t , α > 0, ξ > 0, t � 0,

(9)
where index α may take any positive (including noninteger)
values and �(α) denotes the Euler � function which recovers
the standard factorial �(α + 1) = α! when α ∈ N0. For α = 1
the Erlang distribution turns into an exponential distribution.
The constant ξ−1 defines a characteristic timescale and has a
physical dimension of time. For α → 0+ (ξ finite) we have
the limit of a Dirac-δ function K0+,ξ (t ) = δ(t ) which also is
taken for α finite and ξ → ∞. For 0 < α � 1 the Erlang dis-
tribution is completely monotonic (CM) with d

dt Kα,ξ (t ) < 0
and for α < 1 weakly singular at t = 0. For α > 1 the CM
property breaks down, and the Erlang PDF has a maximum at
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t = 250 t = 2450 R  = 2.955e e t = 12100 eR  = 0.987t = 6100 R  = 1.152eR  = 2.346

FIG. 7. Time series for initial condition (i), black: susceptible; red: infected walkers. For details see the text.

tα,ξ = α−1
ξ

. The Erlang PDF has the Fourier (Laplace) trans-
form,

K̂α,ξ (iω) =
∫ ∞

−∞
e−iωt
(t )Kα (t )dt = ξα

(ξ + iω)α
, (10)

where 
(t ) indicates the Heaviside unit step function which
comes into play by causality. The Erlang PDF has a finite
mean (expected lifetime of immunity) 〈t〉 = ∫ ∞

0 tKα,ξ (t ) = α
ξ

,
i.e., large α and small ξ increase the duration of immunity of
recovered individuals.

We point out that the standard SIR model is contained in
our extended model as the limiting case when all recovered
individuals have infinite lifetimes of immunity (limit of eter-
nal immunity 〈t〉 → ∞).

Among the wide range of PDFs which are susceptible to
describe immunity lifetimes in individuals we have chosen
the Erlang PDF which is by its two parameters α and ξ

sufficiently flexible to describe several pertinent limits, such
as the cases of a uniform (nonrandom) finite immunity time τ0

[subsequent limiting Eq. (11)] as well as the “highly random
regime” with strongly fluctuating immunity times among the
individuals which is covered by the limit of large variance
〈(t − 〈t〉)2〉 ∼ α

ξ 2 � 1.
For K (τ ) = Kα,ξ (t ) given by Erlang PDF (9), system (8)

becomes rather involved. If ε and ξ are fixed, Eq. (8) forms a
nonlinear system for the variables α and ω and can have either
no solution at all or one up to (infinitely) many solutions. A
graphical solution is found plotting the zero lines of fi for

certain fixed values of ξ and ε on the α-ω plane and looking
for their intersections, Fig. 2. From there one can see that for
α below a critical value of ≈6.4 the fixed point (6b) is stable.

For later use we point out the following feature of the
Erlang PDF allowing a great flexibility to prescribe a globally
sharp time of immunity t0 or a broadly scattered distribution.
The possibility to prescribe a sharp expected immunity life-
time τ0 is ensured by the limiting property (α/ξ = τ0):

lim
ξ→∞

Kξτ0,ξ (t ) = δ(t − τ0), (11)

which is easily confirmed by performing this limit in
its Fourier transform K̂ξτ0,ξ (iω) = (1 + iω/ξ )−ξτ0 → e−iωτ0

yielding indeed the Fourier transform of Dirac’s δ-distribution
(11). We consider this case more closely in the subsequent
section.

B. δ distribution

A case that can be evaluated straightforwardly is that of
a δ-distributed kernel K (t ) = δ(t − τ0) which is captured by
the above limiting case (11) of the Erlang distribution. The
integrals in Eqs. (5) are then evaluated as

∫ ∞

0
K (τ ) j(t − τ )dτ = j(t − τ0) ,

leading to a set of coupled delay-differential equations (see
Ref. [48] for a general outline). Hence, Eqs. (8) take the

0000j=0.01    P=0.14  R  =1.12 j=0.07    P=0.18  R  =1.44 j=0.13    P=0.25  R  =2.0 j=0.18    P=0.4  R  =3.2

FIG. 8. Long-time distribution for both initial conditions but several values of P and R0.
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Re
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200 210 230

/τ1
220

FIG. 9. Effective reproduction number over time for P = 0.4
(black) and P = 0.2 (green).

simple form

−ω2 + ε[1 − cos(ωτ0)] = 0, ω + sin(ωτ0) = 0. (12)

These are two coupled transcendental equations for ω and
τ0 that have again either no or (infinitely) many solutions.
For this simple case they can be determined analytically (see
Fig. 3)

ω =
√

ε(2 − ε), τ0 = (2n + 1)π + arccos(1 − ε)

ω
,

n = 0, 1, 2, . . . . In the following we consider the smallest
delay time, i.e., n = 0 for which (6b) becomes unstable. It is
clear that also here an upper limit for ε exists.

C. Numerical solutions

We solved the fully nonlinear system (5) numerically ap-
plying a standard fourth order Runge-Kutta method [49]. It
is sufficient to restrict Eqs. (5a) and (5b) since r decouples.
We used the δ kernel of Sec. III B. To evaluate the delay term
j(t − τ0), the last n = τ0/
t values of j are stored, where 
t
denotes the Runge-Kutta time step.

Figure 4 shows the s- j phase plane. We fixed the basic
reproduction number with R0 = 1.5. As initial conditions we
use a point s(0), j(0) somewhere on the phase plane and fix

/τ1t

j

FIG. 10. Mean relative number of infected walkers over time for
P = 0.4 (black) and P = 0.2 (green).

t

j
R  = 8

R  = 3.2

/τ 
1

0

0

0
R  = 0.96

FIG. 11. The plot depicts the relative number j(t ) of infected
walkers vs t with regular oscillations for a δ kernel (identical im-
munity lifetimes). j(t ) oscillates for an intermediate regime of R0

(bold, red) where the infection dies out for large R0 (thin) or R0 < 1
(bold blue).

the past values of j according to

j(t ) = j(0), −τ0 � t � 0.

The value of ε is then computed from the initial value j(0),
and if S(0) is close to 1/R0, the frequency of the Hopf bifurca-
tion corresponds to that shown in Fig. 3. We chose a time step
of 
t = 10−4, leading to more than 105 iterations per cycle.
The fixed points from Sec. II C are marked in bold (blue), solid
for stable, dashed for unstable. The horizontal dashed line
marks the oscillatory instability computed in Sec. III B, and
the vertical one is a monotonic instability. Due to the different
local behaviors, the form of the trajectories depends strongly
on the initial condition. For certain starting points, trajectories
may end on a stable fixed point or on a limit cycle, born at the
threshold computed in Fig. 3. However, also the size of the
limit cycle depends on the initial values of j(0) and s(0). For
larger values of j(0) the size of the cycle increases. Note that
due to the restriction j + s + r = 1, the trajectories must not
leave the plane limited by the upper right black line.

IV. TWO-DIMENSIONAL MULTIPLE RANDOM
WALKER’S APPROACH

In a previous paper [33] we considered a population of Z
random walkers (particles) to derive estimates for the basic
reproduction number and to explore space-time patterns of the
epidemic activity in computer simulations. Here we employ
the same multiple random walker’s model, however, we take
into account our above introduced memory effect by assuming
a random finite lifetime of immunity drawn from an Erlang
distribution. We also consider limiting cases of a Dirac-δ
distribution when the lifetime of immunity is identical for all
recovered individuals.

A. The model

Recall the multiple random walker’s model where each
walker performs independent jumps at times t = 1, 2 . . . on
a two-dimensional grid of N = L2 nodes. The positions of the
walkers i = 1, . . . , Z are indicated by

1 � x(n)
i � L, 1 � y(n)

i � L,
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FIG. 12. Time series for a completely random initial distribution, black: susceptible; red: infected walkers. For larger R0 = 6.4 the infection
nearly dies out but then spreads again from certain isolated centers. Compare also the rates in Fig. 11.

where xi, yi, L are integer numbers. Here, n denotes the time
instants of the jumps. The walkers may jump according to

x(n+1)
i = x(n)

i + η(n)
x , y(n+1)

i = y(n)
i + η(n)

y , (13)

with equally distributed random integer numbers ηx, ηy ∈
[−h, h] where we consider h � L in order to simulate a large-
world network. For instance for h = 1 only jumps up to the
neighbor nodes are possible. Let s(n)

i be an individual state
variable characterizing the “state of health” of walker i. If
walker i is infected at time n, we put s(n)

i = 1. To describe
gradual recovery effects, we assume a linear decrease in time,

s(n+1)
i = s(n)

i − μ, (14)

with 1/μ as a global characteristic relaxation time of healing.
By choosing the time step 
t = 1, s(n)

i is a synonym for
si(n 
t ) = si(n).

In the present model we assume for the sake of simplicity
that μ is a global quantity, i.e., identical for all Z walkers. In
other words all infected walkers need the same characteristic
time τ1 = (1 − s1)/μ from infection to full recovery (transi-
tion I → R, see Fig. 5).

We define individual i as infectious at time t = n if 1 �
s(n)

i > s1, recovered (immune) if s1 � s(n)
i � 0, and suscepti-

ble if s(n)
i < 0. We depict this behavior of the individual health

state variable sn
i in Fig. 5.

For infection, the following rule applies. If an infected
walker i and a susceptible one j meet at the same instant n
on the same node, i.e.,

x(n)
i = x(n)

j , y(n)
i = y(n)

j and s(n)
i > s1, s(n)

j < 0,

then walker i infects walker j with a given probability P.
In case of infection we reset its state variable s(n)

j = 1. As

mentioned we allow here for individual lifetimes of immunity
following a PDF as introduced in Eq. (3) where we focus on
the Erlang PDF of Eq. (9). Then (14) takes the more general
form, see Fig. 5,

s(n+1)
i =

{
s(n)

i − μ, if s1 � s(n)
i � 1

s(n)
i − νi, if s(n)

i < s1.
(15)

The individual slopes are given as νi = s1/
τi (Fig. 5), where

τi denotes the lifetime of the immune phase.

Let us now specify 
τi drawn from an Erlang PDF
Kα,ξ (
τ ) [see Eq. (9)] as discussed in Sec. III A, Fig. 6. Then
the values of s1 and μ can be computed from

μ = 1

τ1 + 〈
τ 〉 , s1 = 1 − μτ1, (16)

where τ1 indicates the time of healing (assumed constant for
all individuals) and

〈
τ 〉 =
∫ ∞

0
τKα,ξ (τ )dτ = α

ξ
, (17)

being the expected (Erlang) lifetime of immunity.

B. Numerical results

Here we show results on a N = 1500 × 1500 grid with
Z = 30 000 walkers and τ1 = 600, 〈
τ 〉 = 1800. The param-
eters for the Erlang distribution are chosen as α = 5 and with
Eq. (17) ξ = 5/1800. The basic reproduction number can be
estimated as (see Ref. [33] for details),

R0 = ρPτ1,
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FIG. 13. Time series of the absolute number of cases in Kenya during the years 2020/2021 [50].

where ρ = Z/N ≈ 0.0133 is the average density (expected
number of walkers on a node). As an initial condition we
assume for the first ZI walkers being infectious,

s(0)
i = ηi, i = 1, . . . , ZI ,

where the ηi are equally distributed random numbers between
s1 and 1. The other walkers are assumed to be healthy and
susceptible,

s(0)
i = 0, i = ZI + 1, . . . , Z.

For the initial positions, we assume: (i) all infectious walkers
are in the central position of the grid, and the other (sus-
ceptible) ones randomly distributed, and (ii) all walkers are
randomly distributed on the grid. For the maximum jump
distance of the walkers we take h = 4.

Figure 7 shows a time series for (i) with ZI = 2000. A
dynamics similar to a wood fire can be recognized at smaller
times. Then the distribution turns into a more and more ran-
dom and homogeneous one as long as R0 > 1. For smaller R0

the disease extincts. For (ii), the same long-time behavior is
observed (last frame in Fig. 7). The mean number of infected
walkers depends on the probability of infection P and, there-
fore, on R0. This behavior is depicted in Fig. 8.

It is interesting to see that the effective basic reproduction
number Re fluctuates around a value of one, quite indepen-
dently from the probability P, see Fig. 9. We compute Re

directly from the simulations by counting the infections per
particle and time step.

Another important fact is that the mean numbers of in-
fectious and susceptible walkers do not asymptotically reach
stationary values but rather oscillate around a mean value with
a certain frequency (Fig. 10). As a consequence the epidemic
activity never exhibits extinction, at least, for R0 > 1. This is
one of the main differences to the standard SIR model. The
standard SIR dynamics where the epidemics always comes to
an end (even for R0 > 1) is recovered in the limit 〈
τ 〉 → ∞
corresponding to infinite lifetime of immunity. The oscilla-
tory behavior becomes even more pronounced if the width of
the PDF becomes smaller, i.e., when many individuals have
similar immunity lifetimes. In the limit of a δ-function (all

individuals have identical immunity lifetime), the oscillation
become very regular (Fig. 11) showing synchronization of
the walkers for arbitrary initial conditions. After a certain
number of oscillations, the decrease in the relative number of
infected individuals reaches almost extinction but then breaks
out again in a certain location, and the cycle begins anew.
This behavior can be seen in Fig. 12. These oscillations exist
only in a bounded region of R0. For R0 < 1, the disease dies
out rapidly. For R0 larger than a critical value that depends
also on 〈
τ 〉 extinction is reached after a certain number of
oscillations (Fig. 11). Qualitatively this is the same scenario
found with our extended SIR model where limit cycles only
exist for ε below an upper limit.

On the other hand oscillatory behavior is supported by
the time series of COVID-19 cases in Kenya for the years
2020/2021, see Fig. 13 with recurrent outbreak of the epi-
demic activity. Although the observed amplitudes and periods
are different from our model, at least, qualitatively an oscil-
latory epidemic activity as obtained by our model seems to
be supported by these real-life data. Be reminded that such
an oscillatory behavior cannot be captured by the classical
standard SIR model.

V. CONCLUSIONS

We proposed an extension of the standard SIR model that
considers the memory effect introduced by a random finite
immunity time after recovery from infection of the individu-
als. The immunity time is supposed to have a certain variation
among the individuals and is described by a PDF, here the Er-
lang distribution. Contrary to the standard SIR model, where
the disease extincts after one sweep of infection, in our case a
regime of R0 > 1 may exist with persistent limit cycles lead-
ing to a time-periodic behavior of the number of infectious and
susceptible individuals. Depending on the basic reproduction
number R0, the oscillation amplitude of the infected particles
can be rather small. For large R0, the amplitudes may grow in
such a way that a kind of herd immunity is reached at a certain
time and the disease extincts.
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In the second part we considered a multiple random
walker’s model. It shows qualitatively the same memory ef-
fects: Oscillating solutions in an intermediate range of R0

whose amplitudes depend on R0 but also on the special form of
the PDF ruling the individual immunity time of the walkers.
The memory effect induces oscillatory characteristics in the
epidemic activity where the epidemic activity never ends. This
outcome seems to be, at least, qualitatively supported by real-
world situations (Fig. 13). Nevertheless, further quantitative
modeling research is needed to confirm this observation.

Our model can be extended in different directions. The pro-
cess of recovery, i.e., the duration of being ill (infected) can as
well be assumed to be random and modeled by a memory term
with another given PDF. On the other hand, spatial effects can
be taken into account considering diffusion terms including

space-fractional diffusion with long-range jumps and Lévy
flights [6,22,27]. In this way, spatially localized structures as
encountered in the random walker simulations may occur.

Further generalizations can be introduced by assuming
variable infection probabilities when susceptible and infected
walkers meet. The infection probabilities may vary among the
individuals and may also depend on time. The interest of such
a model is the possibility to capture effects of individually
fluctuating virulence, vaccination, or resilience to the disease.
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